MAULANA AZAD NATIONAL INSTITUTE OF TECHNOLOGY BHOPAL

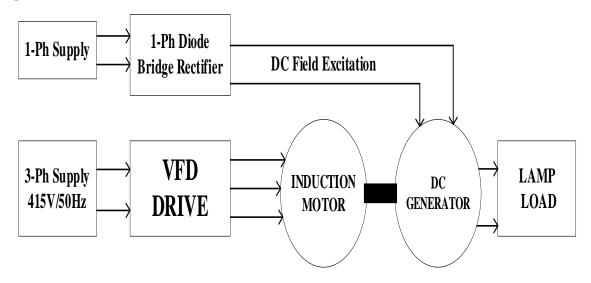
मौलाना आजाद राष्ट्रीय प्रौद्योगिकी संस्थान,भोपाल

Department of Electrical Engineering

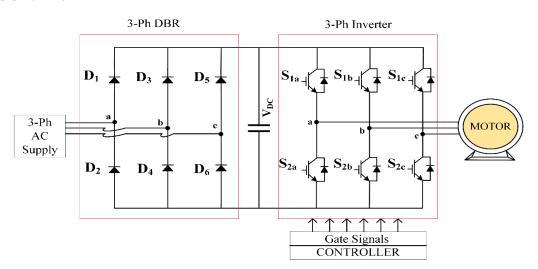
विद्युत अभियांत्रिकी विभाग

Advance Power Electronics & Drives Lab एडवांस पॉवर इलेक्ट्रॉनिक्स एवं ड्राइव्स लैब

> Lab Manual (B.Tech) ਨੀਕ ਸੈਗ੍ਰ 31 (B.Tech)


Experiment no. 1

Objective: Speed control of a three-phase induction motor using v/f control


Apparatus required:

S No	Apparatus Name	Qty	Ratings
1	Induction Motor	1	3/2.2(HP/KW),415V,4.5A,1440RPM
2	Sep. Excited DC Motor	1	3 HP, 220V/11A, 1500 RPM
3	Voltmeter	3	0-500V(AC), 0-300V(DC), 0-300V(DC)
4	Ammeter	3	0-5A(AC), 0-5A(DC), 0-5A(DC)
5	INDUCTION Controller/ Drive	1	DELTA MS300
6	Resistive Load	1	440V/20A

Block diagram:

Components of VFD:

Theory:

Speed control-

The various methods of speed control through semiconductor devices are as under:

- 1. Stator Voltage Control.
- 2. Stator Frequency Control
- 3. Stator Voltage And Frequency Control (V/f).
- 4. Stator Current Control.
- 5. Rotor Voltage Control.
- 6. Voltage, Current And, Frequency Control.

The V/F control algorithm is one of the basic control modes which is widely accepted. V/F is abbreviated from voltage/frequency. V/F control is an induction motor control method that ensures the output voltage is proportional with the frequency, so it maintains a constant motor flux, preventing weak magnetic and magnetic saturation phenomena from happening.

V/f control of the induction motor means varying the speed of the motor by changing frequency but, at the same time, keeping the V/f ratio constant. This is important to maintain the same air gap flux in the motor and hence a constant torque.

• Induction motor –

A 3-phase induction motor consists of a stator and a rotor. The stator carries a 3-phase stator winding while the rotor carries a short-circuited winding called rotor winding. The stator winding is supplied from a 3-phase supply. The rotor winding drives its voltage and power from the stator winding through electromagnetic induction and hence the name.

An induction motor cannot run at synchronous speed. If it runs at synchronous speed, there would be no cutting of the flux by the rotor conductors and there would be no induced EMF, no current, and no torque. Therefore, the rotor of the induction motor rotates at a speed slightly less than the synchronous speed. For this reason, an induction motor is also known as Asynchronous motor.

The difference between the synchronous speed and the actual rotor speed is known as slip speed, i.e.,

Slip speed =
$$N_S - N_r$$

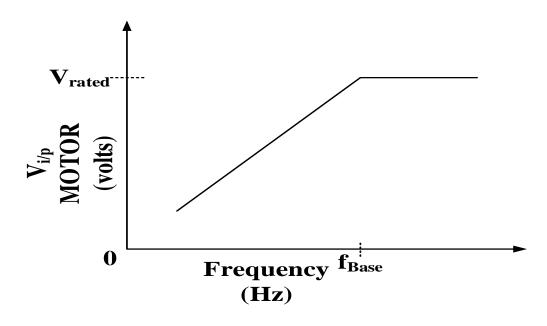
Where N_s is synchronous speed and N_r is the actual rotor speed.

Generally, the slip speed is expressed as a fraction of the synchronous speed is called the per-unit slip. The per-unit slip is usually called the slip and denoted by 's'. Thus,

$$s = \frac{N_s - N_r}{N_s}$$

Dc motor -

Here DC machine is used as a generator for loading the induction motor. It supplies the DC power to variable resistive lamp load to analyze the dynamic characteristics of induction motors at different values of loads.


Procedure-

- 1. Make the connections as per the wiring schedule.
- 2. Ensure proper coupling between the respective machines
- 3. Now check whether DC voltmeter connected across the generator is showing any reading. It may be required to change the polarity of the meter if the deflection is in reverse direction.
- 4. Observe DC voltage generated on DC voltmeter and ammeter. Load lamps may also glow.
- 5. Maximum load current should not exceed rated motor/generator amperes.
- 6. Observe the voltage and load current on meters.
- 7. Change the frequency and note down the readings at a constant load
- 8. Increase the load and repeat the step 7
- 9. Note down the readings as per the following table.

OBSERVATION TABLE-

S.NO.	Frequency (Hz)	V _{IM} (volts)	I _{IM} (Amps)	Speed (rpm)	Load Voltage	Load Current	Load (Watts)
1	C				(Volts)	(Amps)	T 11
1.	f_1						Load 1
2.	f_2						Load 1
3.	f_3						Load 1
4.	f_1						Load 2
5.	f_2						Load 2
6.	f_3						Load 2
7.	f_1						Load 3
8.	f_2						Load 3
9.	f_3						Load 3

Calculations: Calculate v/f ratio at each value of load and draw a graph between the voltage and frequency of motor at different frequencies.

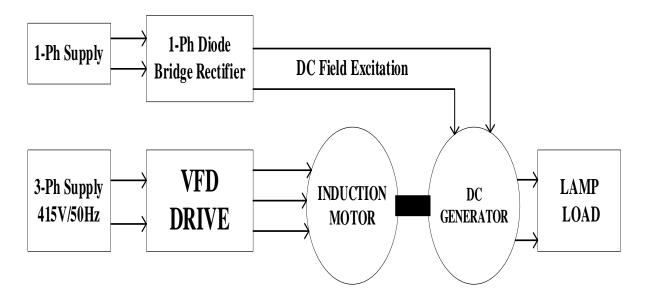
Conclusion-

The Speed Control of INDUCTION motor using the V/f method is done at different values of loads, the constant v/f ratio is calculated and a graph is plotted between voltage and frequency.

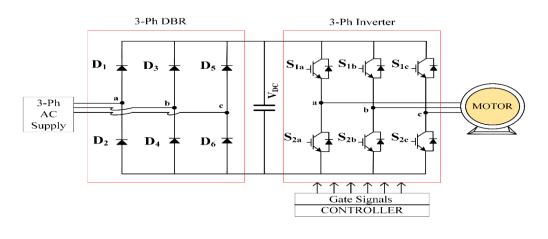
Precaution-

As the experiment involves 220V DC, and 415 volts 3 phase supply, students should become thoroughly familiar with all the connections to avoid possible fatal electric shock hazards.

- 1) Wear shoes that cover the feet.
- 2) Don't wear loose clothes.
- 3) Maintain a work space clear of extraneous material such as books, papers, and clothes.
- 4) Don't use broken connecting wires.
- 5) Turn off the power switch to equipment before making connections.
- 6) The motor input current should not exceed its rated value.


प्रयोग क्र. 1

उद्देश्य: वी/एफ नियंत्रण का उपयोग करके तीन-फेज इंडक्शन मोटर की गति नियंत्रण


आवश्यक उपकरण:

क्रमांक	उपकरण का नाम	मात्रा	रेटिंग
1	टंटनभून गोना	1	3/2.2(एचपी/किलोवाट),415वी,4.5ए,1440
1 इंडक्शन मोटर			आरपीएम
2	अलग से उत्साहित डीसी मोटर	1	3 एचपी, 220वी/11ए, 1500 आरपीएम
3	वाल्टमीटर	3	0-500V(AC), 0-300V(DC), 0-300V(डीसी)
4	एमीटर	3	0-5ए(एसी), 0-5ए(डीसी), 0-5ए(डीसी)
5	इंडक्शन कंट्रोलर/ड्राइव	1	डेल्टा MS300
6	प्रतिरोधक भार	1	440V/20A

ब्लॉक आरेख

वीएफडी के घटक:

लिखित:

• गति नियंत्रण -

अर्धचालक उपकरणों के माध्यम से गति नियंत्रण की विभिन्न विधियाँ इस प्रकार हैं:

- 1. स्टेटर वोल्टेज नियंत्रण।
- 2. स्टेटर फ्रीक्वेंसी नियंत्रण
- 3. स्टेटर वोल्टेज और फ्रीक्वेंसी नियंत्रण (वी/एफ)।
- 4. वोल्टेज, करंट और, आवृत्ति नियंत्रण।

वी/एफ नियंत्रण एल्गोरिदम बुनियादी नियंत्रण मोड में से एक है जिसे व्यापक रूप से स्वीकार किया जाता है। V/F, वोल्टेज/फ़्रीक्वेंसी से संक्षिप्त है। वी/एफ नियंत्रण एक इंडक्शनमोटर नियंत्रण विधि है जो सुनिश्चित करती है कि आउटपुट वोल्टेज आवृत्ति के साथ आनुपातिक है, इसलिए यह एक निरंतर मोटर फ्लक्स बनाए रखता है, जिससे कमजोर चुंबकीय और चुंबकीय संतृप्ति घटना को होने से रोका जा सकता है। इंडक्शन मोटर के वी/एफ नियंत्रण का अर्थ है आवृत्ति को बदलकर मोटर की गति को बदलना, लेकिन साथ ही, वी/एफ अन्पात को स्थिर रखना। मोटर में समान वाय् अंतराल फ्लक्स और एक स्थिर टॉर्क बनाए

इंडक्शन मोटर -

रखना महत्वपूर्ण है।

3-फेज इंडक्शन मोटर में एक स्टेटर और एक रोटर होता है। स्टेटर में 3-चरण स्टेटर वाइंडिंग होती है जबिक रोटर में शॉर्ट-सिकेट वाइंडिंग होती है जिसे रोटर वाइंडिंग कहा जाता है। स्टेटर वाइंडिंग की आपूर्ति 3-चरण आपूर्ति से की जाती है। रोटर वाइंडिंग विद्युत चुम्बकीय प्रेरण के माध्यम से स्टेटर वाइंडिंग से अपने वोल्टेज और शक्ति को संचालित करती है और इसलिए इसे यह नाम दिया गया है।

एक इंडक्शन मोटर समकालिक गित से नहीं चल सकती। यदि यह समकालिक गित से चलता है, तो रोटर कंडक्टरों द्वारा फ्लक्स में कोई कटौती नहीं होगी और कोई प्रेरित ईएमएफ, कोई करंट और कोई टॉर्क नहीं होगा। इसलिए, इंडक्शन मोटर का रोटर सिंक्रोनस गित से थोड़ी कम गित पर घूमता है। इस कारण से, इंडक्शन मोटर को एसिंक्रोनस मोटर के रूप में भी जाना जाता है।

तुल्यकालिक गति और वास्तविक रोटर गति के बीच के अंतर को स्लिप गति के रूप में जाना जाता है, अर्थात,

स्लिप की गति = N_S - N_r

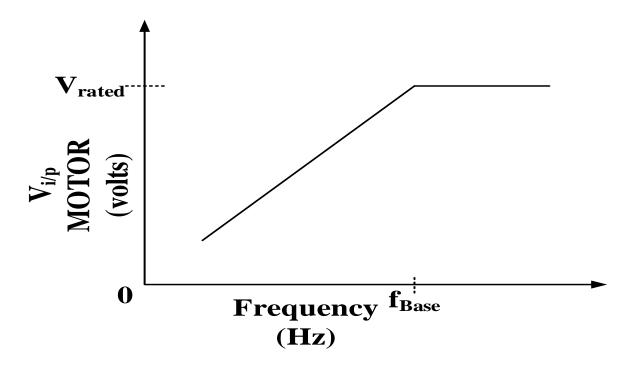
जहां N $_{\rm s}$ समकालिक गति है और N $_{\rm r}$ वास्तविक रोटर गति है।

आम तौर पर, स्लिप गित को तुल्यकालिक गित के एक अंश के रूप में व्यक्त किया जाता है जिसे प्रति-यूनिट स्लिप कहा जाता है। प्रति-यूनिट स्लिप को आमतौर पर स्लिप कहा जाता है और इसे 'एस' द्वारा दर्शाया जाता है। इस प्रकार,

$$s = \frac{N_s - N_r}{N_s}$$

डीसी मोटर-

यहां DC मशीन का उपयोग इंडक्शन मोटर को लोड करने के लिए जनरेटर के रूप में किया जाता है। यह लोड के विभिन्न मूल्यों पर इंडक्शन मोटर्स की गतिशील विशेषताओं का विश्लेषण करने के लिए परिवर्तनीय प्रतिरोधी लैंप लोड को डीसी पावर की आपूर्ति करता है।


प्रक्रिया-

- 1. वायरिंग शेड्यूल के अन्सार कनेक्शन बनाएं।
- 2. संबंधित मशीनों के बीच उचित युग्मन स्निश्चित करें
- 3. अब जांचें कि जनरेटर से जुड़ा डीसी वोल्टमीटर कोई रीडिंग दिखा रहा है या नहीं। यदि विक्षेपण विपरीत दिशा में हो तो मीटर की धुवीयता को बदलने की आवश्यकता हो सकती है।
- 4. डीसी वोल्टमीटर और एमीटर पर उत्पन्न डीसी वोल्टेज का निरीक्षण करें। लोड लैंप भी चमक सकते हैं।
- 5. अधिकतम लोड करंट रेटेड मोटर/जनरेटर एम्पीयर से अधिक नहीं होना चाहिए।
- 6. मीटर पर वोल्टेज और लोड करंट का निरीक्षण करें ।
- 7. आवृत्ति बदलें और स्थिर लोड पर रीडिंग नोट करें
- 8. भार बढ़ाएँ और चरण 7 दोहराएँ
- 9. निम्नलिखित तालिका के अन्सार रीडिंग नोट करें।

अवलोकन तालिका-

क्र.सं.	आवृत्ति (हर्ट्ज)	V_{IM}	I _{IM}	गति	लोड वोल्टेज	लोड करंट	लोड (वाट)
		(वोल्ट)	(एम्प्स)	(आरपीए	(वोल्ट)	(एम्प्स)	
				म)			
1.	f ₁						लोड 1
2.	f ₂						लोड 1
3.	f ₃						लोड 1
4.	f ₁						लोड 2
5.	f ₂						लोड 2
6.	f ₃						लोड 2
7.	f ₁						लोड 3
8.	f ₂						लोड 3
9.	f ₃						लोड 3

गणना : लोड के प्रत्येक मान पर वी/एफ अनुपात की गणना करें और विभिन्न आवृत्तियों पर मोटर के वोल्टेज और आवृत्ति के बीच एक ग्राफ बनाएं।

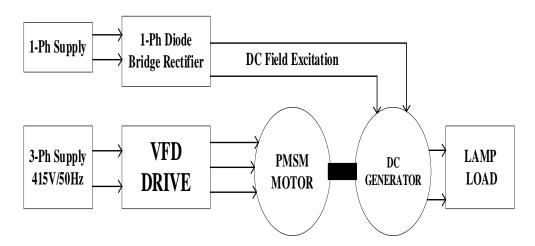
निष्कर्ष-

वी/एफ विधि का उपयोग करके इंडक्शन मोटर का गति नियंत्रण भार के विभिन्न मानों पर किया जाता है, स्थिर वी/एफ अनुपात की गणना की जाती है और वोल्टेज और आवृत्ति के बीच एक ग्राफ बनाया जाता है।

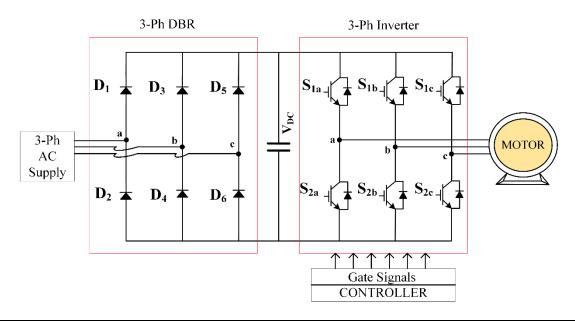
<u>सावधानी</u> -

चूंकि प्रयोग में 220V डीसी और 415 वोल्ट 3 चरण की आपूर्ति शामिल है, छात्रों को संभावित घातक बिजली के झटके के खतरों से बचने के लिए सभी कनेक्शनों से पूरी तरह परिचित होना चाहिए।

- 1) ऐसे जूते पहनें जो पैरों को ढकें।
- 2) ढीले कपड़े न पहनें.
- 3) कार्यस्थल को किताबों, कागजों और कपड़ों जैसी बाहरी सामग्री से दूर रखें।
- 4) टूटे हुए कनेक्टिंग तारों का उपयोग न करें।
- 5) कनेक्शन करने से पहले उपकरण का पावर स्विच बंद कर दें।
- 6) मोटर इनपुट करंट उसके रेटेड मूल्य से अधिक नहीं होना चाहिए।


Experiment no. 2

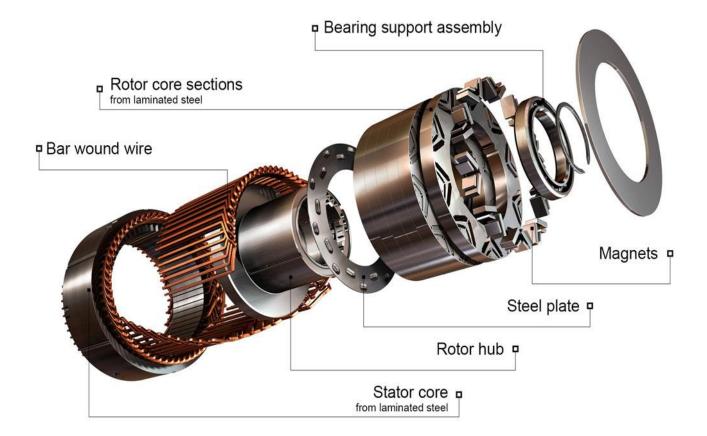
Objective: speed control of synchronous motor using v/f control.


Apparatus required:

S No	Apparatus Name	Qty	Ratings
1	PMS Motor	1	2.3KW/3HP, 415V/4A, 1500 RPM
2	Separately Excited DC Motor	1	5 HP, 220V/17A, 1500 RPM
3	Voltmeter	3	0-500V(AC), 0-300V(DC), 0-300V(DC)
4	Ammeter	3	0-5A(AC), 0-5A(DC), 0-5A(DC)
5	PMSM Controller/ Drive	1	DELTA MS300
6	Resistive Load	1	440V/20A

Block diagram:

Components of VFD:



Theory:

• PMSM –

A permanent magnet synchronous motor (pmsm), like any rotating electric motor, consists of a rotor and a stator. The stator is the fixed part. The rotor is the rotating part. The PMSM with (p) number of poles and frequency (f) rotates at synchronous speed (n_s)

$$N_S = \frac{120f}{P}$$

Dc motor -

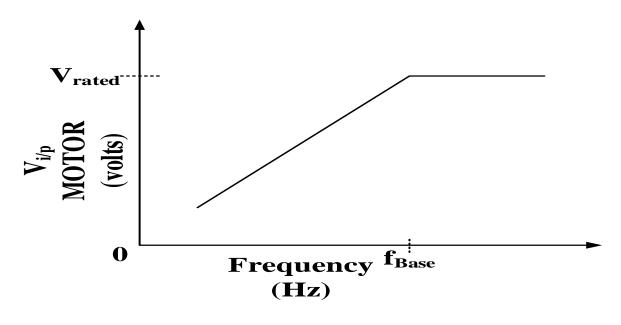
Here the dc machine is used as a generator for loading the pms motor. It supplies the dc power to variable resistive lamp load to analyze the dynamic characteristics of pmsm at different values of loads.

Speed control-

The various methods of speed control through semiconductor devices are as under:

- 1. Stator voltage control.
- 2. Stator frequency control
- 3. Stator voltage and frequency control.
- 4. Stator current control.
- 5. Rotor voltage control.
- 6. Voltage, current and, frequency control.

In this experiment, the variable voltage variable frequency (vvvf) control method is performed.


Procedure-

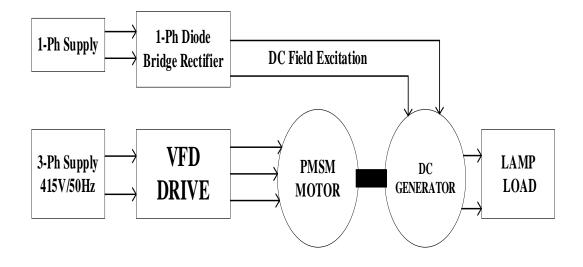
- 1. Make the connections as per the wiring schedule.
- 2. Ensure proper coupling between the respective machines
- 3. Now check whether dc voltmeter connected across the generator is showing any reading. It may be required to change the polarity of the meter if the deflection is in reverse direction.
- 4. Observe dc voltage generated on dc voltmeter and ammeter. Load lamps may also glow.
- 5. Maximum load current should not exceed rated motor/generator amperes.
- 6. Observe the voltage, and load current on meters.
- 7. Change the frequency and note down the readings at a constant load
- 8. Increase the load and repeat the step 7
- 9. Note down the readings as per the following table.

Observation table-

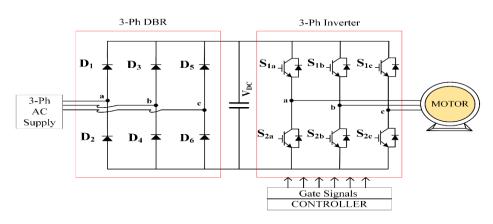
S.no.	Frequency (hz)	V _{pmsm} (volts)	I _{pmsm} (amps)	Speed (rpm)	Load voltage (volts)	Load current (amps)	Load (watts)
1.	F ₁				(1010)	(unips)	Load 1
2.	F_2						Load 1
3.	F ₃						Load 1
4.	F ₁						Load 2
5.	F_2						Load 2
6.	F ₃						Load 2
7.	F_1						Load 3
8.	F_2						Load 3
9.	F ₃						Load 3

Calculations: Calculate v/f ratio at each value of load and draw a graph between the voltage and frequency of motor at different frequencies.

Conclusion-
The speed control of the PMS motor using the v/f method is done at different values of loads, the constant v/f ratio is calculated, and a graph is plotted between voltage and frequency.
Precaution-
As the experiment involves 220v dc, and 415 volts 3 phase supply, students should become thoroughly familiar with all the connections to avoid possible fatal electric shock hazards
1) Wear shoes that cover the feet.
2) Don't wear loose clothes.
3) Maintain a workspace clear of extraneous material such as books, papers, and clothes.
4) Don't use broken connecting wires.
5) Turn off the power switch to equipment before making connections.
6) The motor input current should not exceed its rated value.

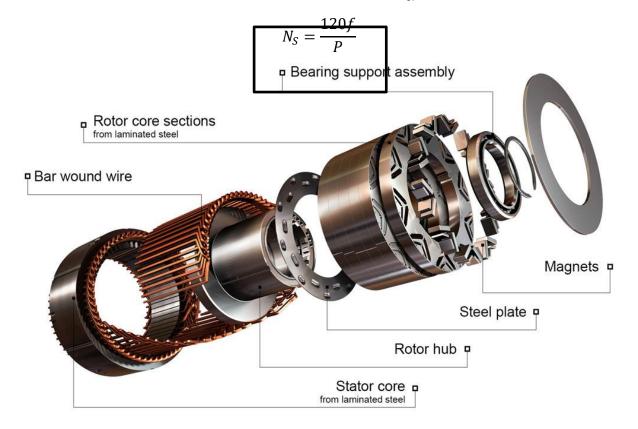

प्रयोग क्र. 2

उद्देश्य: वी/एफ नियंत्रण का उपयोग करके सिंक्रोनस मोटर की गति नियंत्रण


आवश्यक उपकरण :

क्रमांक	उपकरण का नाम	मात्रा	रेटिंग
1	पीएमएस मोटर	1	2.3KW/3HP, 415V/4A, 1500 RPM
2	अलग से उत्साहित डीसी मोटर	1	5 एचपी, 220वी/17ए, 1500 आरपीएम
3	वाल्टमीटर	3	0-500V(AC), 0-300V(DC), 0-300V(डीसी)
4	एम्मिटर	3	0-5ए(एसी), 0-5ए(डीसी), 0-5ए(डीसी)
5	पीएमएसएम नियंत्रक/ड्राइव	1	डेल्टा MS300
6	प्रतिरोधक भार	1	440V/20A

ब्लॉक आरेख:


वीएफडी के घटक :

लिखित:

पीएमएसएम -

किसी भी घूमने वाली इलेक्ट्रिक मोटर की तरह, एक स्थायी चुंबक तुल्यकालिक मोटर (पीएमएसएम) में एक रोटर और एक स्टेटर होता है। स्टेटर स्थिर भाग है. रोटर घूमने वाला भाग है। (पी) ध्रुवों की संख्या और आवृत्ति (एफ) के साथ पीएमएसएम समकालिक गति (एन एस) पर घूमता है

डीसी मोटर-

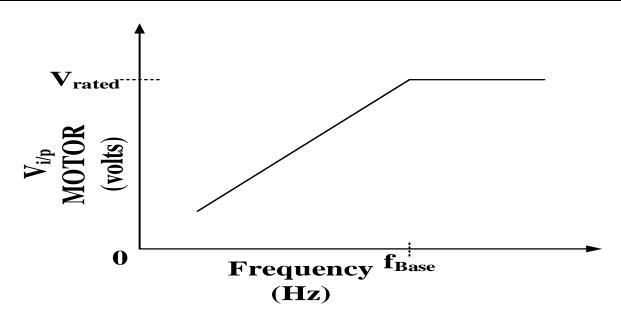
यहां डीसी मशीन का उपयोग पीएमएस मोटर को लोड करने के लिए जनरेटर के रूप में किया जाता है। यह लोड के विभिन्न मूल्यों पर पीएमएसएम की गतिशील विशेषताओं का विश्लेषण करने के लिए परिवर्तनीय प्रतिरोधी लैंप लोड को डीसी पावर की आपूर्ति करता है।

• गति नियंत्रण -

अर्धचालक उपकरणों के माध्यम से गति नियंत्रण की विभिन्न विधियाँ इस प्रकार हैं:

- 1. स्टेटर वोल्टेज नियंत्रण।
- 2. स्टेटर फ्रीक्वेंसी नियंत्रण
- 3. स्टेटर वोल्टेज और आवृत्ति नियंत्रण।
- 4. वोल्टेज, करंट और, आवृत्ति नियंत्रण।

इस प्रयोग में, परिवर्तनीय वोल्टेज परिवर्तनीय आवृत्ति (VVVF) नियंत्रण विधि का उपयोग किया गया है।


प्रक्रिया -

- 1. वायरिंग शेड्यूल के अनुसार कनेक्शन बनाएं।
- 2. संबंधित मशीनों के बीच उचित युग्मन सुनिश्चित करें
- 3. अब जांचें कि जनरेटर से जुड़ा डीसी वोल्टमीटर कोई रीडिंग दिखा रहा है या नहीं। यदि विक्षेपण विपरीत दिशा में हो तो मीटर की ध्रुवीयता को बदलने की आवश्यकता हो सकती है।
- 4. डीसी वोल्टमीटर और एमीटर पर उत्पन्न डीसी वोल्टेज का निरीक्षण करें। लोड लैंप भी चमक सकते हैं।
- 5. अधिकतम लोड करंट रेटेड मोटर/जनरेटर एम्पीयर से अधिक नहीं होना चाहिए।
- 6. मीटर में वोल्टेज और लोड करंट का निरीक्षण करें।
- 7. आवृत्ति बदलें और स्थिर लोड पर रीडिंग नोट करें
- 8. भार बढ़ाएँ और चरण 7 दोहराएँ
- 9. निम्नलिखित तालिका के अनुसार रीडिंग नोट करें।

प्रेक्षण तालिका -

	٠ ،		T	- 		-}	
क्र.सं.	आवृत्ति (हर्ट्ज)	V_{PMSM}	I _{PMSM}	गति	लोड ्वोल्टेज	लोड करंट	लोड (वाट)
		(वोल्ट)	(एम्प्स)	(आरपीए	(वोल्ट)	(एम्प्स)	
		, ,		퓌)			
1.	f ₁						लोड 1
2.	f ₂						लोड 1
3.	f ₃						लोड 1
4.	f ₁						लोड 2
5.	f ₂						लोड 2
6.	f ₃						लोड 2
7.	f ₁						लोड 3
8.	f ₂						लोड 3
9.	f ₃						लोड 3

<u>गणना</u> : लोड के प्रत्येक मान पर वी/एफ अनुपात की गणना करें और विभिन्न आवृत्तियों पर मोटर के वोल्टेज और आवृत्ति के बीच एक ग्राफ बनाएं।

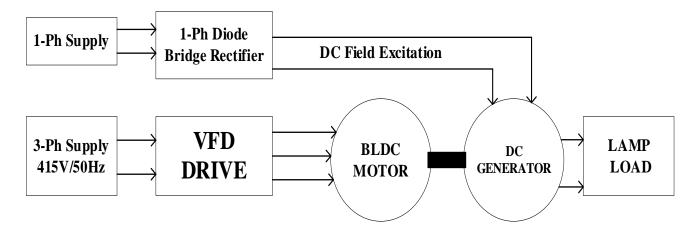
निष्कर्ष -

वी/एफ विधि का उपयोग करके पीएमएस मोटर का गति नियंत्रण भार के विभिन्न मूल्यों पर किया जाता है, स्थिर वी/एफ अनुपात की गणना की जाती है और वोल्टेज और आवृत्ति के बीच एक ग्राफ बनाया जाता है।

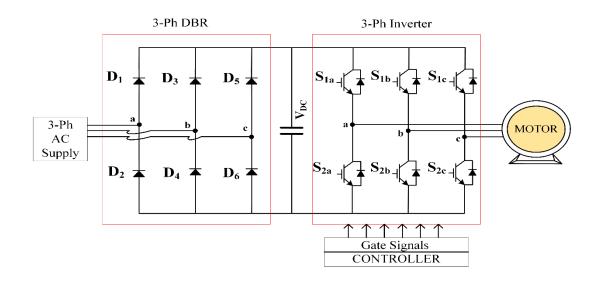
<u>सावधानी</u> -

चूंकि प्रयोग में 220V डीसी और 415 वोल्ट 3 चरण की आपूर्ति शामिल है, छात्रों को संभावित घातक बिजली के झटके के खतरों से बचने के लिए सभी कनेक्शनों से पूरी तरह परिचित होना चाहिए।

- 1) ऐसे जूते पहनें जो पैरों को ढकें।
- 2) ढीले कपड़े न पहनें.
- 3) कार्यस्थल को किताबों, कागजों और कपड़ों जैसी बाहरी सामग्री से दूर रखें।
- 4) टूटे हुए कनेक्टिंग तारों का उपयोग न करें।
- 5) कनेक्शन करने से पहले उपकरण का पावर स्विच बंद कर दें।
- 6) मोटर इनपुट करंट उसके रेटेड मूल्य से अधिक नहीं होना चाहिए।


Experiment no. 3

Objective: Speed control of brushless DC motor drive


Apparatus required:

S no	Apparatus name	Qty	Ratings
1	BLDC motor	1	2.3kw/3hp, 415v/4a, 1500 rpm
2	DC shunt motor	1	5 hp, 220v/17a, 1500 rpm
3	Voltmeter	3	0-500v(ac), 0-300v(DC), 0-300v(DC)
4	Ammeter	3	0-5a(ac), 0-5a(DC), 0-5a(DC)
5	BLDC controller/ drive	1	Delta ms300
6	Resistive load	1	440v/20a

Block diagram:

Components of VFD:

Theory:

• BLDC motor -

As their name implies, brushless DC motors do not use brushes. With brushed motors, the brushes deliver current through the commutator into the coils on the rotor. Because the coils are not located on the rotor. Instead, the rotor is a permanent magnet; the coils do not rotate but are instead fixed in place on the stator. Because the coils do not move, there is no need for brushes and a commutator.

With a BLDC motor, it is the permanent magnet that rotates; rotation is achieved by changing the direction of the magnetic fields generated by the surrounding stationary coils. To control the rotation, you adjust the magnitude and direction of the current into these coils. The speed change is achieved by changing the frequency. The BLDC motor with (p) number of poles and frequency (f) rotates at synchronous speed (n_s)

$$N_S = \frac{120f}{P}$$

• DC motor -

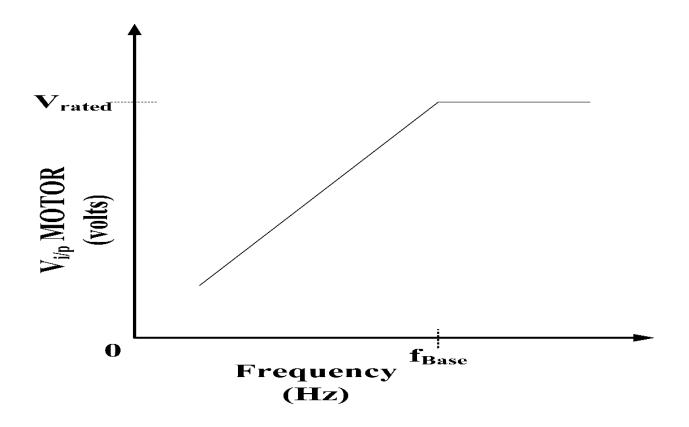
Here DC machine is used as a generator for loading the BLDC motor. It supplies the DC power to variable resistive lamp load to analyse the dynamic characteristics of BLDC motors at different values of loads.

• Speed control-

The various methods of speed control through semiconductor devices are as under:

- 1. Stator voltage control.
- 2. Stator frequency control
- 3. Stator voltage and frequency control.
- 4. Stator current control.
- 5. Rotor voltage control.
- 6. Voltage, current and, frequency control.

In this experiment, the variable voltage variable frequency (vvvf) control method is performed.


Procedure-

- 1. Make the connections as per the wiring schedule.
- 2. Ensure proper coupling between the respective machines
- 3. Now check whether DC voltmeter connected across the generator is showing any reading. It may be required to change the polarity of the meter if the deflection is in reverse direction.
- 4. Observe DC voltage generated on DC voltmeter and ammeter. Load lamps may also glow.
- 5. Maximum load current should not exceed rated motor/generator amperes.
- 6. Observe the voltage, and load current on meters.
- 7. Change the frequency and note down the readings at a constant load
- 8. Increase the load and repeat the step 7
- 9. Note down the readings as per the following table.

Observation table-

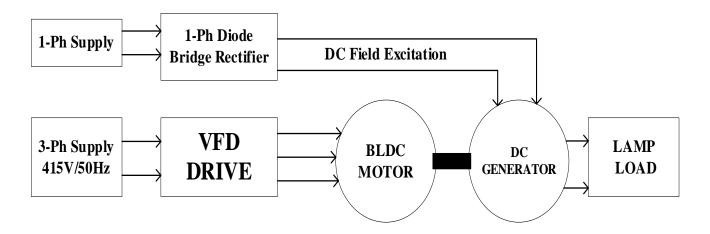
S.no.	Frequency (hz)	V _{BLDC} (volts)	I _{BLDC} (amps)	Speed (rpm)	Load voltage (volts)	Load current (amps)	Load (watts)
1.	F_1						Load 1
2.	F_2						Load 1
3.	F ₃						Load 1
4.	F ₁						Load 2
5.	F_2						Load 2
6.	F ₃						Load 2
7.	F ₁						Load 3
8.	F_2						Load 3
9.	F ₃						Load 3

Calculations: calculate v/f ratio at each value of load and draw a graph between the voltage and frequency of motor at different frequencies.

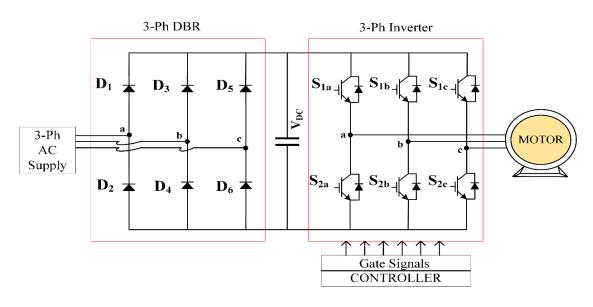
Conclusion-

The speed control of BLDC motor using the v/f method is done at different values of loads, the constant v/f ratio is calculated, and a graph is plotted between voltage and frequency.

Precaution-
As the experiment involves 220v DC, and 415 volts 3 phase supply, students should become thoroughly familiar with all the connections to avoid possible fatal electric shock hazards
1) Wear shoes that cover the feet.
2) Don't wear loose clothes.
3) Maintain a workspace clear of extraneous material such as books, papers, and clothes.
4) Don't use broken connecting wires.
5) Turn off the power switch to equipment before making connections.
6) The motor input current should not exceed its rated value.


प्रयोग क्र. 3

उद्देश्य : ब्रशलेस डीसी मोटर ड्राइव का गति नियंत्रण |


आवश्यक उपकरण:

क्रमांक	उपकरण का नाम	मात्रा	रेटिंग		
1	बीएलडीसी मोटर	1	2.3KW/3HP, 415V/4A, 1500 RPM		
2	डीसी शंट मोटर	1	5 एचपी, 220वी/17ए, 1500 आरपीएम		
3	वाल्टमीटर	3	0-500V(AC), 0-300V(DC), 0-300V(डीसी)		
4	एमीटर	3	0-5ए(एसी), 0-5ए(डीसी), 0-5ए(डीसी)		
5	बीएलडीसी नियंत्रक/ड्राइव	1	डेल्टा MS300		
6	प्रतिरोधक भार	1	440V/20A		

<u>ब्लॉक आरेख</u>:

वीएफडी के घटक :

लिखित:

<u>बीएलडीसी मोटर</u> -

जैसा कि उनके नाम से पता चलता है, ब्रशलेस डीसी मोटर ब्रश का उपयोग नहीं करते हैं। ब्रश मोटर के साथ, ब्रश कम्यूटेटर के माध्यम से रोटर पर कॉइल में करंट पहुंचाते हैं। क्योंकि कॉइल्स रोटर पर स्थित नहीं हैं। इसके बजाय, रोटर एक स्थायी चुंबक है, कॉइल घूमते नहीं हैं बल्कि स्टेटर पर अपनी जगह पर स्थिर हो जाते हैं। चूँकि कुंडलियाँ हिलती नहीं हैं, इसलिए ब्रश और कम्यूटेटर की कोई आवश्यकता नहीं है।

बीएलडीसी मोटर के साथ, यह स्थायी चुंबक है जो घूमता है; आसपास के स्थिर कुंडलियों द्वारा उत्पन्न चुंबकीय क्षेत्र की दिशा को बदलकर घूर्णन प्राप्त किया जाता है। घूर्णन को नियंत्रित करने के लिए, आप इन कुंडलियों में धारा के परिमाण और दिशा को समायोजित करते हैं। गित में परिवर्तन आवृत्ति को बदलकर प्राप्त किया जाता है। (पी) धुवों की संख्या और आवृत्ति (f) के साथ बीएलडीसी मोटर समकालिक गित (N_S) पर घूमती है

$$N_S = \frac{120f}{P}$$

• डीसी यंत्र -

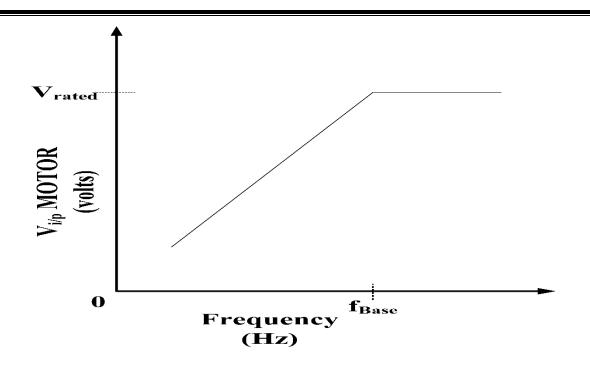
यहां डीसी मशीन का उपयोग बीएलडीसी मोटर को लोड करने के लिए जनरेटर के रूप में किया जाता है। यह लोड के विभिन्न मानों पर बीएलडीसी मोटर्स की गतिशील विशेषताओं का विश्लेषण करने के लिए परिवर्तनीय प्रतिरोधी लैंप लोड को डीसी पावर की आपूर्ति करता है।

गति नियंत्रण -

अर्धचालक उपकरणों के माध्यम से गति नियंत्रण की विभिन्न विधियाँ इस प्रकार हैं:

- 1. स्टेटर वोल्टेज नियंत्रण।
- 2. स्टेटर फ्रीक्वेंसी नियंत्रण
- 3. स्टेटर वोल्टेज और आवृत्ति नियंत्रण।
- 4. वोल्टेज, करंट और, आवृत्ति नियंत्रण।

इस प्रयोग में, परिवर्तनीय वोल्टेज परिवर्तनीय आवृत्ति (VVVF) नियंत्रण विधि का प्रदर्शन किया जाता है।


प्रक्रिया -

- 1. वायरिंग शेड्यूल के अन्सार कनेक्शन बनाएं।
- 2. संबंधित मशीनों के बीच उचित युग्मन सुनिश्चित करें
- 3. अब जांचें कि जनरेटर से जुड़ा डीसी वोल्टमीटर कोई रीडिंग दिखा रहा है या नहीं। यदि विक्षेपण विपरीत दिशा में हो तो मीटर की ध्वीयता को बदलने की आवश्यकता हो सकती है।
- 4. डीसी वोल्टमीटर और एमीटर पर उत्पन्न डीसी वोल्टेज का निरीक्षण करें। लोड लैंप भी चमक सकते हैं।
- 5. अधिकतम लोड करंट रेटेड मोटर/जनरेटर एम्पीयर से अधिक नहीं होना चाहिए।
- 6. मीटर में लोड करंट एवं वोल्टेज का निरीक्षण करें ।
- 7. आवृत्ति बदलें और स्थिर लोड पर रीडिंग नोट करें
- 8. भार बढ़ाएँ और चरण 7 दोहराएँ
- 9. निम्नलिखित तालिका के अनुसार रीडिंग नोट करें।

प्रेक्षण तालिका -

क्र.सं.	आवृत्ति (हर्ट्ज)	वी	मैं बीएलडीसी	गति	लोड वोल्टेज	लोड करंट	लोड (वाट)
		बीएलडीसी	(एम्प्स)	(आरपीए	(वोल्ट)	(एम्प्स)	
		(वोल्ट)		म)			
1.	च ₁						लोड 1
2.	핍 2						लोड 1
3.	च 3						लोड 1
4.	च ₁						लोड 2
5.	च 2						लोड 2
6.	च 3						लोड 2
7.	च ₁						लोड 3
8.	च 2						लोड 3
9.	च ₃						लोड 3

<u>गणना</u>: लोड के प्रत्येक मान पर वी/एफ अनुपात की गणना करें और विभिन्न आवृत्तियों पर मोटर के वोल्टेज और आवृत्ति के बीच एक ग्राफ बनाएं।

निष्कर्ष -

वी/एफ विधि का उपयोग करके बीएलडीसी मोटर का गित नियंत्रण भार के विभिन्न मूल्यों पर किया जाता है, स्थिर वी/एफ अनुपात की गणना की जाती है और वोल्टेज और आवृत्ति के बीच एक ग्राफ बनाया जाता है।

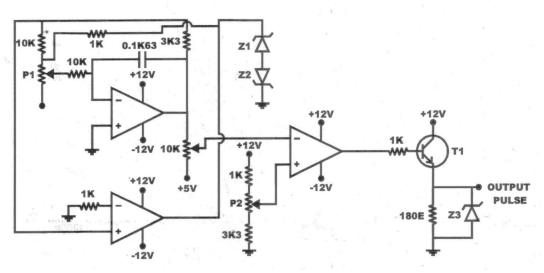
सावधानी -

चूंकि प्रयोग में 220V डीसी और 415 वोल्ट 3 चरण की आपूर्ति शामिल है, छात्रों को संभावित घातक बिजली के झटके के खतरों से बचने के लिए सभी कनेक्शनों से पूरी तरह परिचित होना चाहिए।

- 1) ऐसे जूते पहनें जो पैरों को ढकें।
- 2) ढीले कपड़े न पहनें.
- 3) कार्यस्थल को किताबों, कागजों और कपड़ों जैसी बाहरी सामग्री से दूर रखें।
- 4) टूटे ह्ए कनेक्टिंग तारों का उपयोग न करें।
- 5) कनेक्शन करने से पहले उपकरण का पावर स्विच बंद कर दें।
- 6) मोटर इनपुट करंट उसके रेटेड मूल्य से अधिक नहीं होना चाहिए।

Experiment no. 4

Objective: Speed control of DC motor using Step-up Chopper.


'Step up Chopper' to study its working & observe the effect of change in duty cycle of the pulse at the gate of MOSFET on the output voltage.

The instrument comprises of the following built in parts:

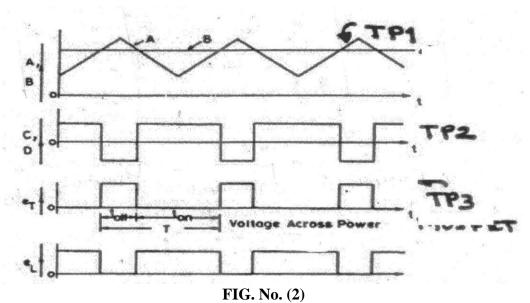
- 1. One unregulated power supply of +20VDC.
- 2. IC based regulated power supplies of +12VDC, -12VDC and +5VDC for the driving circuit.
- 3. MOSFET IRFP 250N.
- 4. Op-amp.(OP 07) and power transistor (2N 6292) based driver circuit.
- 5. frequency and duty cycle controls.
- 6. Brass Lamp holder with lamp as a load (230V/40W).
- 7. Circuit diagram printed on front panel for better understanding.

Theory

Bipolar junction transistors are current controlled devices. Field effect transistors on the other hand do not normally require any input current and are unipolar devices. They involve a single conducting channel, which can be of either N or P type material. The FET advantages in switching service since they do not suffer the delays associated with minority carrier storage. Because they also demand no input current, they are easier to drive. They are also less temperature sensitive and less susceptible to second breakdown in high power applications. All JFETS are operated with reverse bias on their gate leads to prevent gate current. However, a large input signal may momentarily overcome the reverse bias and turn on gate diodes drawing appreciable current from the channel with a thin layer of silicon dioxide (Metallic Oxide). Those FET's that use this technique are known as metallic oxide semiconductor field effect transistors or MOSFETs. MOSFETs are operated in depletion mode as do JFET, with negative voltage on the gate terminal for N channel devices. Depletion mode operated devices are normally in condition. The MOSFET may also be operated in the enhancement mode. In the mode the device is normally in off condition and a sufficiently large positive voltage on the gate terminal can turn on the device. Generally, power enhancement MOSFETs are used in power electronic circuits its structure with normal biasing of N channel enhancement MOSFET as shown in Fig. (1) with the circuit symbol a metallic gate is deposited on the thin layer of metal oxide (insulator) which is deposited on the channel opposite to the substrate due to insulated gate negligible gate current flows.

Driver Circuit for Step up Chopper FIG. No.(1)

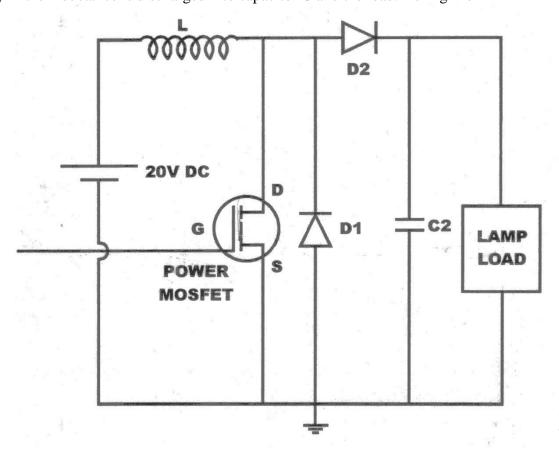
The power enhancement MOSFET has an antiparallel fast turn on diode which permits reverse current of the same magnitude as that of main MOSFET so that drain substrate junction will not be damaged when drain and source has reverse biasing.

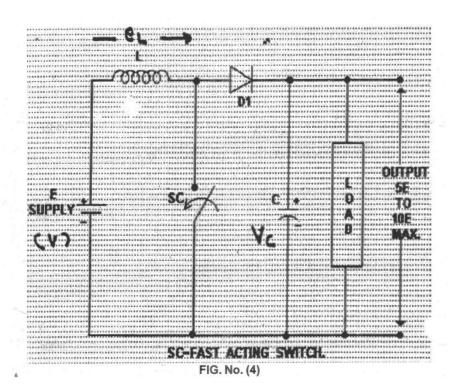

Applications

The enhancement MOSFET is used as a switch in power electronics by keeping sufficient gate to source voltage (Vgs) so that it conducts in the constant resistance region. The conduction loss of the MOSFET is high due to large value of device resistance in the on state the MOSFET can be triggered directly from the CMOS or other gates due to high input impedance. Switching times (turn on and turn off) are very low and hence switching loss is almost nil. The gate drive power is also negligible. They have large gains and simple and cheaper triggering circuits. It has only one disadvantage i.e. Higher conclusion drop generally five times more than the power transistor of the same rating.

Description of the step-up chopper

A power transformer steps down the input line voltage from 230Volts a.c. To 15VAC. Then AC voltage is rectified, filtered and converted to a variable DC voltage up to a maximum of around 180 Volts DC driving a 40-watt 230 volt lamp. The frequency of the chopping is also controlled. Hence, the points A & B may be used to observe waveform on C.R.O. for the output voltage which is attenuated. A small step-down transformer is used to get regulated power supplies of +12 volts for the operation of the control circuit.


This circuit which is a voltage-controlled oscillator is used to get a variable frequency control signal. The triangular output of this circuit is compared against a DC potential to get a variable on time control. The potentiometer P1 is used to give a variable frequency output. The potentiometer P2 is used to change the on-time of the control signal thereby changing the magnitude of the output voltage. This potentiometer P2 works as the control for the output voltage for a given frequency of the control signal only is not useful in changing the magnitude of the chopper. A 20 volts Zener diode 3Z20 is used for limiting the gate to source voltage (VGS) of the MOSFET. A small resistance of 180 ohms 2 watts is used in the gate circuit for quick discharge of the input stray capacitance of the device. Zener diode offers protection for the MOSFET and ensures gate voltage below the safe limits. Refer Fig. (1) & (2) for the detailed circuit diagram and typical waveform at various points.


Waveforms at different points of the circuit i.e. TP1, TP2 and TP3 with respect to ground

Principle of set up chopper (boost chopper)

The basic step-up chopper is shown in Fig. (3) & (4). The energy stored in the inductor in the ON period of the switch Sc. The current flows in the inductor L through the switch during Ton period and the voltage el across the inductor is equal to V. When switch Sc is opened, the stored energy in the inductance is discharged into capacitor C and the load. During T off

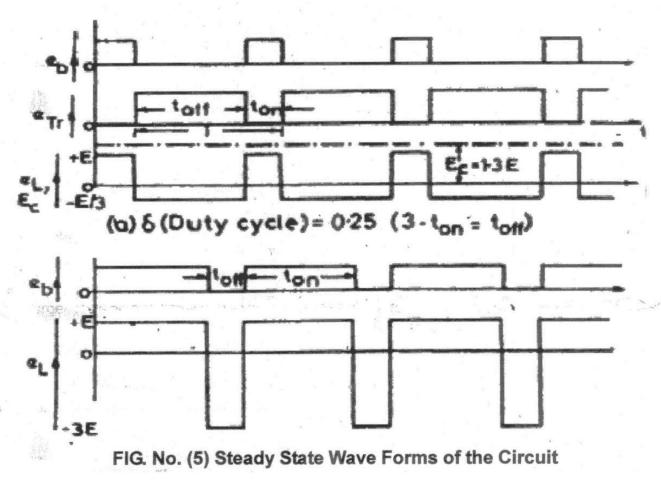
STEP UP CHOPPER CIRCUIT FIG. (3) BASIC CIRCUIT

Period, the inductor voltage is el = Vc - V. Under steady state operation, the voltage across the capacitor is assumed constant due to a large value of capacitors. And also for steady operation, there must be zero average voltage across L during the time period

$$T = Ton + Toff.$$

$$Vc = \frac{V(t_{onn} + t_{off})}{t_{off}} = \frac{VT}{t_{off}}$$

And duty cycle $\delta = 1 - toff/T$


So we get
$$V_c = \frac{V}{1-\delta}$$

If duty cycle approaches zero, then we have.

Vc = V if delta approaches unity, we have Vc = V/0 = infinity

Thus theoretically the output voltage can be varied from V to infinity as delta is changed from zero to one. In practice delta is varied from 0 to 0.7.

The waveforms across different components are shown in the Fig. (5). In the chopper circuit, Diode D2 protects the MOSFET against the negative surge voltage and the capacitor C protects it against a positive voltage surge. Thus, no additional protection circuit is required for operating MOSFET as a switch in the step up chopper. Note that the chopper is operated at the highest possible frequency in order to minimize the size of the filter.

Note: Ignore the humming noise on switching ON the Apparatus and on rotation of pots P1 & P2 as it is due to inductance L.

Procedure

- 1. Study the step-up chopper circuit Diagram and try to identify the various circuit elements
- 2. Ensure the frequency potentiometers marked as "FREQUENCY CONTROL" and "Duty Cycle Control "is fully in the extremely anticlockwise position (i.e. Minimum position).
- 3. Turn on the main supply. The mains LED will glow. Ensure a DC motor is connected across the terminal TP6 & TP7.
- 4. By controlling the duty cycle control knob, observe that the speed of motor can be controlled i.e. With an increase in duty cycle the output voltage increases.
- 5. The pulse input to the gate of MOSFET can be observed across TP3 & ground and also observe the change in duty cycle.
- 6. We can change the frequency by varying potentiometer P1 & see the change in frequency on CRO.
- 7. Observe the waveforms at TP1, TP2, TP3 with respect to ground, as shown in Fig. (2).
- 8. You may observe the waveforms across the choke carefully and see the effect of changing Ton and Toff periods of the MOSFET at a particular frequency.
- 9. The output voltage across the terminal TP6 & TP7 can be observed through a multimeter.

Observation Table:

Sl.no.	I/P voltage	O/P	Practical	Theoretical	Speed of DC	% Error
		voltage	Duty cycle	Duty cycle	motor	
					(in rpm)	

$$\% \; Error = \; \frac{D_{Theoretcial} - D_{Practical}}{D_{Theoretcial}} \; X \; 100$$

Avg % Error =
$$\frac{\text{Sum of errors}}{\text{No. Of readings}}$$

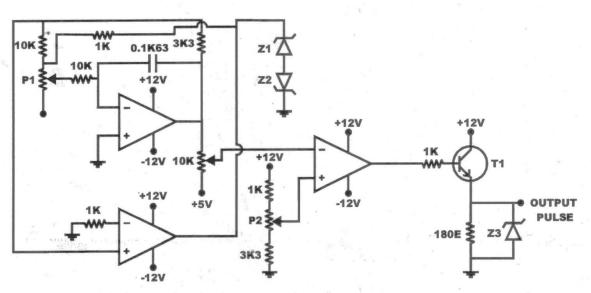
Precautions

- 1. Do not short the testpoints.
- 2. Do not rotate the pots P1 and P2 very fast. Operate them in a gentle manner.
- 3. Limit the duty cycle to a maximum of 90%. Total drawn from the power supply must be monitored and should be within current rating of the power supply (i.e.5 amps).

प्रयोग क्र. 4

उद्देश्य: स्टेप-अप चॉपर का उपयोग करके डीसी मोटर की गति नियंत्रण।

'स्टेप अप चॉपर' का उपयोग करके इसकी कार्यप्रणाली का अध्ययन किया गया तथा MOSFET के गेट पर पल्स के ड्यूटी चक्र में परिवर्तन के कारण आउटपुट वोल्टेज पर पड़ने वाले प्रभाव का अवलोकन किया गया।


उपकरण में निम्नलिखित अंतर्निर्मित भाग शामिल हैं:

- 1. +20VDC की एक अनियमित विद्युत आपूर्ति।
- 2. ड्राइविंग सर्किट के लिए +12VDC, -12VDC और +5VDC की IC आधारित विनियमित विद्युत आपूर्ति।
- 3. एमओएसएफईटी आईआरएफपी 250एन.
- 4. ऑप- एम्प.(ओपी 07) और पावर ट्रांजिस्टर (2एन 6292) आधारित ड्राइवर सर्किट।
- 5. आवृत्ति और कर्तव्य चक्र नियंत्रण.
- 6. पीतल का लैंप होल्डर, जिसमें लोड के रूप में लैंप है (230V/40W)।
- 7. बेहतर समझ के लिए सर्किट आरेख सामने पैनल पर मुद्रित किया गया है।

लिखित

द्विध्वी जंक्शन ट्रांजिस्टर करंट नियंत्रित डिवाइस हैं। दूसरी ओर, फील्ड इफ़ेक्ट ट्रांजिस्टर को आम तौर पर किसी इनपुट करंट की आवश्यकता नहीं होती है और ये एकध्रवीय डिवाइस होते हैं। इनमें एक एकल कंडिक्टंग चैनल शामिल होता है, जो N या P प्रकार की सामग्री का हो सकता है। FET स्विचिंग सेवा में लाभ उठाता है क्योंकि वे अल्पसंख्यक वाहक भंडारण से जुड़ी देरी से पीड़ित नहीं होते हैं। क्योंकि वे इनपुट करंट की भी मांग नहीं करते हैं, इसलिए उन्हें चलाना आसान होता है। वे तापमान के प्रति कम संवेदनशील होते हैं और उच्च शक्ति अन्प्रयोगों में दूसरे ब्रेकडाउन के लिए कम संवेदनशील होते हैं। सभी JFETS को गेट करंट को रोकने के लिए उनके गेट लीड पर रिवर्स बायस के साथ संचालित किया जाता है। हालाँकि, एक बड़ा इनपुट सिग्नल क्षण भर के लिए रिवर्स बायस को दूर कर सकता है और सिलिकॉन डाइऑक्साइड (मेटालिक ऑक्साइड) की एक पतली परत के साथ चैनल से सराहनीय करंट खींचने वाले गेट डायोड को चालू कर सकता है। वे FET जो इस तकनीक का उपयोग करते हैं उन्हें मेटालिक ऑक्साइड सेमीकंडक्टर फील्ड इफ़ेक्ट ट्रांजिस्टर या MOSFETs के रूप में जाना जाता है। MOSFETs को JFET की तरह ही डेप्लिशन मोड में संचालित किया जाता है , N चैनल डिवाइस के लिए गेट टर्मिनल पर नेगेटिव वोल्टेज के साथ । डेप्लिशन मोड संचालित डिवाइस सामान्य रूप

से कंडीशन में होते हैं। MOSFET को एन्हांसमेंट मोड में भी संचालित किया जा सकता है। मोड में डिवाइस सामान्य रूप से बंद स्थिति में होती है और गेट टर्मिनल पर पर्याप्त रूप से बड़ा सकारात्मक वोल्टेज डिवाइस को चालू कर सकता है। आम तौर पर पावर एन्हांसमेंट MOSFET का उपयोग पावर इलेक्ट्रॉनिक सर्किट में किया जाता है, इसकी संरचना N चैनल एन्हांसमेंट MOSFET के सामान्य बायिसंग के साथ होती है जैसा कि चित्र (1) में दिखाया गया है, सर्किट प्रतीक के साथ एक धातु गेट धातु ऑक्साइड (इन्सुलेटर) की पतली परत पर जमा होता है जो इंसुलेटेड गेट के कारण सब्सट्रेट के विपरीत चैनल पर जमा होता है, नगण्य गेट करंट प्रवाहित होता है।

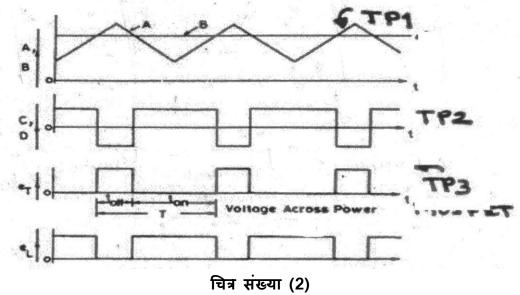
स्टेप अप चॉपर के लिए ड्राइवर सर्किट चित्र संख्या (1)

पावर संवर्द्धन MOSFET में एक एंटीपैरलल फास्ट टर्न ऑन डायोड होता है, जो मुख्य MOSFET के समान परिमाण के रिवर्स करंट की अनुमति देता है, तािक ड्रेन और स्रोत के रिवर्स बायसिंग होने पर ड्रेन सब्सट्रेट जंक्शन क्षतिग्रस्त न हो।

अनुप्रयोग

एन्हांसमेंट MOSFET का उपयोग पावर इलेक्ट्रॉनिक्स में एक स्विच के रूप में पर्याप्त गेट टू सोर्स वोल्टेज (Vgs) रखकर किया जाता है तािक यह निरंतर प्रतिरोध क्षेत्र में संचािलत हो। MOSFET का चालन नुकसान अधिक होता है क्यों कि चालू स्थित में डिवाइस प्रतिरोध का मान बड़ा होता है, MOSFET को उच्च इनपुट प्रतिबाधा के कारण CMOS या अन्य गेट से सीधे ट्रिगर किया जा सकता है। स्विचिंग समय (चालू और बंद करना) बहुत कम है और इसलिए स्विचिंग नुकसान

लगभग शून्य है। गेट ड्राइव पावर भी नगण्य है। उनके पास बड़े लाभ और सरल और सस्ते ट्रिगरिंग सर्किट हैं। इसका केवल एक नुकसान है यानी उच्च निष्कर्ष ड्रॉप आमतौर पर समान रेटिंग के पावर ट्रांजिस्टर की तुलना में पांच गुना अधिक होता है।


स्टेप-अप चॉपर का विवरण

एक पावर ट्रांसफॉर्मर इनपुट लाइन वोल्टेज को 230 वोल्ट एसी से 15VAC तक कम करता है। फिर एसी वोल्टेज को सुधारा जाता है, फ़िल्टर किया जाता है और 40-वाट 230 वोल्ट लैंप को चलाने वाले अधिकतम 180 वोल्ट डीसी तक एक परिवर्तनीय डीसी वोल्टेज में परिवर्तित किया जाता है। चॉपिंग की आवृत्ति भी नियंत्रित की जाती है।

हने

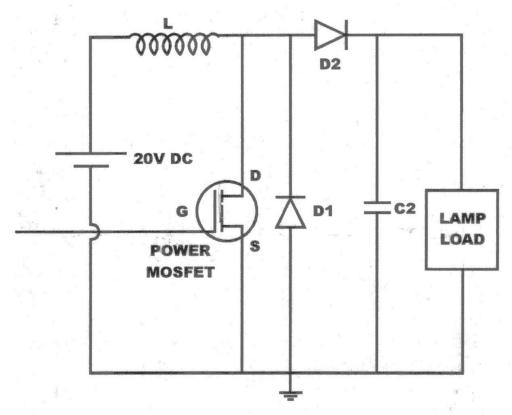
आउटपुट वोल्टेज के लिए CRO पर तरंगरूप को देखने के लिए बिंदु A और B का उपयोग किया जा सकता है, जो क्षीण हो जाता है। नियंत्रण सर्किट के संचालन के लिए +12 वोल्ट की विनियमित बिजली आपूर्ति प्राप्त करने के लिए एक छोटे स्टेप- डाउन ट्रांसफार्मर का उपयोग किया जाता है।

यह सिर्कट जो वोल्टेज-नियंत्रित ऑसिलेटर है, का उपयोग एक चर आवृत्ति नियंत्रण संकेत प्राप्त करने के लिए किया जाता है। इस सिर्कट के त्रिकोणीय आउटपुट की तुलना एक डीसी क्षमता के साथ की जाती है तािक एक चर चालू समय नियंत्रण प्राप्त किया जा सके। पोटेंशियोमीटर P1 का उपयोग एक चर आवृत्ति आउटपुट देने के लिए किया जाता है। पोटेंशियोमीटर P2 का उपयोग नियंत्रण सिग्नल के चालू समय को बदलने के लिए किया जाता है जिससे आउटपुट वोल्टेज की परिमाण बदल जाती है। यह पोटेंशियोमीटर P2 केवल नियंत्रण सिग्नल की दी गई आवृत्ति के लिए आउटपुट वोल्टेज के लिए नियंत्रण के रूप में काम करता है, चाँपर की परिमाण को बदलने में उपयोगी नहीं है। MOSFET के गेट टू सोर्स वोल्टेज (VGS) को सीमित करने के लिए 20 वोल्ट जेनर डायोड 3Z20 का उपयोग किया जाता है। डिवाइस के इनपुट स्ट्रे कैपेसिटेंस के त्वरित निर्वहन के लिए गेट सर्किट में 180 ओम 2 वाट का एक छोटा प्रतिरोध उपयोग किया जाता है। जेनर डायोड MOSFET के लिए सुरक्षा प्रदान करता है और सुरक्षित सीमाओं के नीचे गेट वोल्टेज सुनिश्चित करता है। विस्तृत सर्किट आरेख और विभिन्न बिंदुओं पर विशिष्ट तरंग के लिए चित्र (1) और (2) देखें।

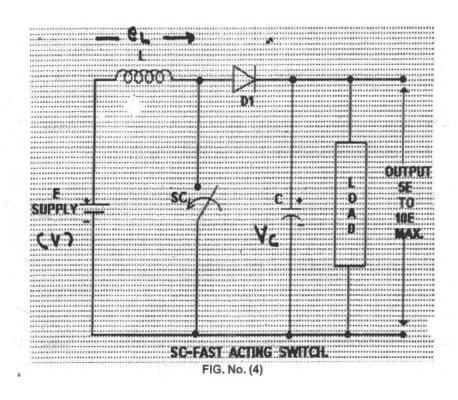
ग्राउंड के संबंध में सर्किट के विभिन्न बिंदुओं यानी टीपी1, टीपी2 और टीपी3 पर तरंगरूप

चॉपर (बूस्ट चॉपर) स्थापित करने का सिद्धांत

बुनियादी स्टेप-अप चॉपर को चित्र (3) और (4) में दिखाया गया है। स्विच Sc के चालू रहने की अविध में प्रेरक में संग्रहित ऊर्जा। स्विच के दौरान प्रेरक L में प्रवाहित धारा

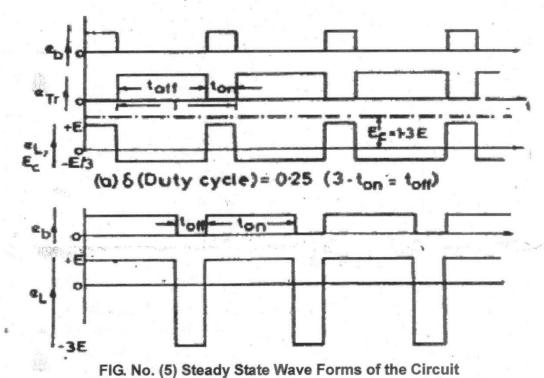

टन अविध और प्रेरक के पार वोल्टेज एल V के बराबर है। जब स्विच Sc खोला जाता है, प्रेरकत्व में संग्रहीत ऊर्जा संधारित्र C और लोड में छुट्टी दे दी जाती है। T बंद के दौरान अविध, प्रेरक वोल्टेज el = Vc - V है। स्थिर अवस्था संचालन के तहत, संधारित्र के पार वोल्टेज को संधारित्रों के बड़े मान के कारण स्थिर माना जाता है। और स्थिर संचालन के लिए, समय अविध के दौरान L पर शून्य औसत वोल्टेज होना चाहिए |

$$T = Ton+Toff$$


$$Vc = \frac{V(t_{onn} + t_{off})}{t_{off}} = \frac{VT}{t_{off}}$$

और ड्यूटी चक्र $\delta = 1 - toff/T$

तो हमें मिलता है $V_c = \frac{V}{1-\delta}$



स्टेप अप चॉपर सर्किट चित्र (3) मूल सर्किट

यदि कर्तव्य चक्र शून्य के करीब पहुंचता है, तो हमारे पास है। Vc = V यदि डेल्टा एकता के निकट पहुंचता है, तो हमारे पास Vc = V/0 = अनंत है इस प्रकार सैद्धांतिक रूप से आउटपुट वोल्टेज को V से अनंत तक बदला जा सकता है क्योंकि डेल्टा को शून्य से एक में बदला जाता है। व्यवहार में डेल्टा को 0 से 0.7 तक बदला जाता है।

विभिन्न घटकों में तरंगों को चित्र (5) में दिखाया गया है। चॉपर सर्किट में, डायोड D2 MOSFET को नेगेटिव सर्ज वोल्टेज से बचाता है और कैपेसिटर C इसे पॉजिटिव वोल्टेज सर्ज से बचाता है। इस प्रकार, स्टेप अप चॉपर में स्विच के रूप में MOSFET को संचालित करने के लिए किसी अतिरिक्त सुरक्षा सर्किट की आवश्यकता नहीं होती है। ध्यान दें कि फ़िल्टर के आकार को कम करने के लिए चॉपर को उच्चतम संभव आवृत्ति पर संचालित किया जाता है।

नोट : उपकरण को चालू करने पर तथा पॉट P1 एवं P2 के घूमने पर होने वाली गुनगुनाहट की आवाज को नजरअंदाज करें क्योंकि यह प्रेरकत्व L के कारण होती है।

प्रक्रिया

- स्टेप-अप चॉपर सर्किट आरेख का अध्ययन करें और विभिन्न सर्किट तत्वों की पहचान करने का प्रयास करें
- 2. सुनिश्चित करें कि "आवृत्ति नियंत्रण" और "ड्यूटी साइकिल नियंत्रण" के रूप में चिहिनत आवृत्ति पोटेंशियोमीटर पूरी तरह से अत्यंत वामावर्त स्थिति (अर्थात न्यूनतम स्थिति) में है।
- 3. मुख्य सप्लाई चालू करें। मेन एलईडी चमकेगी। सुनिश्चित करें कि टर्मिनल TP6 और TP7 में DC मोटर कनेक्ट है।

- 4. ड्यूटी साइकिल नियंत्रण घुंडी को नियंत्रित करके, देखें कि मोटर की गति को नियंत्रित किया जा सकता है अर्थात ड्यूटी साइकिल में वृद्धि के साथ आउटपुट वोल्टेज बढ़ता है।
- 5. MOSFET के गेट पर पल्स इनपुट को TP3 और ग्राउंड के पार भी देखा जा सकता है कर्तव्य चक्र में परिवर्तन का निरीक्षण करें ।
- 6. हम पोटेंशियोमीटर P1 में परिवर्तन करके आवृत्ति को बदल सकते हैं और CRO पर आवृत्ति में परिवर्तन देख सकते हैं।
- 7. जमीन के संबंध में TP1, TP2, TP3 पर तरंगों का निरीक्षण करें, जैसा कि चित्र (2) में दिखाया गया है।
- 8. आप चोक पर तरंगों का ध्यानपूर्वक निरीक्षण कर सकते हैं और एक विशेष आवृत्ति पर MOSFET के टन और टॉफ अविधयों के परिवर्तन के प्रभाव को देख सकते हैं।
- 9. टर्मिनल TP6 और TP7 पर आउटपुट वोल्टेज को मल्टीमीटर के माध्यम से देखा जा सकता है।

अवलोकन तालिका:

क्र.सं.	आई/पी	ओ/पी	व्यावहारिक	सैद्धांतिक	डीसी मोटर	%
	वोल्टेज	वोल्टेज	ड्यूटी चक्र	ड्यूटी चक्र	की गति	गलती
					(आरपीएम	
					में)	

% Error =
$$\frac{D_{Theoretcial} - D_{Practical}}{D_{Theoretcial}} \times 100$$

Avg % Error =
$$\frac{\text{Sum of errors}}{\text{No. Of readings}}$$

सावधानियां

- 1. टेस्टपॉइंट को छोटा न करें .
- 2. पॉट P1 और P2 को बहुत तेज़ी से न घुमाएँ। उन्हें आराम से चलाएँ।
- 3. ड्यूटी साइकिल को अधिकतम 90% तक सीमित रखें। बिजली आपूर्ति से खींची गई कुल बिजली की निगरानी की जानी चाहिए और यह बिजली आपूर्ति की वर्तमान रेटिंग (यानी 5 एम्प्स) के भीतर होनी चाहिए।

Experiment no. 5

Objective: Speed control of DC motor using step-down chopper.

This unit consists of two parts:

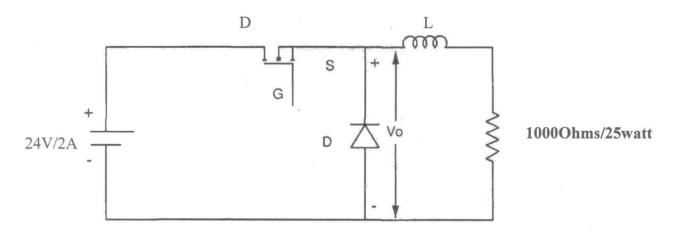
- Control Circuit
- Power Circuit
- a. **Control Circuit:** This Unit generates pulse Width modulated (PWM)based gate drive for the POWER MOSFET. Frequency of the chopper can be varied from 200Hz to 1KHz approximately. Duty cycle of the chopper can be varied from 0% to 80%. ON/OFF switch is provided for output with soft start feature.
- b. **Power Circuit:** This unit consist of a POWER MOSEFET mounted on a proper heat sink protected by snubber circuit for dv/dt protection. A fuse is provided for short circuit protection. And also consists of two diodes, one inductor and one electrolytic capacitor.

Front Panel Details: -

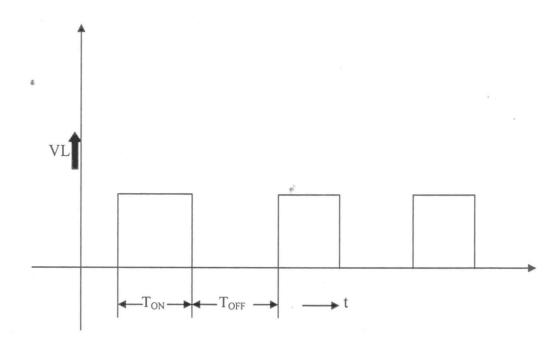
- 1. **Frequency:** Potentiometer to vary the frequency from 100Hz to 500Hz approximately.
- 2. **Duty Cycle :** Potentiometer to vary the Duty Cycle fro 0% to 80% approximately.
- 3. **ON/OFF**: Switch for driver output pulse with soft start.
- 4. +,-: Driver output to connect base and emitter of POWER MOSEFET.
- 5. G, D, S: Gate, Drain & Source terminals of POWER MOSFET. IRF 740-10A/400V.
- 6. **D1, D2**: Diodes 6A
- 7. **Power:** Mains switch for control circuit.
- 8. **VDC IN**: DC Power supply
- 9. **ON**: Switch for DC Supply to the Power Circuit.
- 10. L: Inductor 40mH/2Amps.
- 11. **C**: Capacitor-470μf/200V.
- 12. R: Load Resistor- 2200ohms/25 Watts

MOSFET Based Step Down Chopper:

A Chopper is a high speed on/off semiconductor switch. It connects source to load and disconnects the load from source at a fast speed. A step down chopper using MOSFET is shown in fig. During TON chopper is ON and load voltage is equal to source voltage Vs.. During the interval Toff, chopper is off, load current flows through freewheeling diode and load voltage is zero during Toff.. In this manner chopper load voltage is produced at the load terminals. In Buck converter the average output voltage Vo is less than the Input voltage Vs.


Hence the name "BUCK" a popular converter. The circuit diagram using POWER MOSFET is shown in fig. and this is like a step-down converter.

The step down chopper requires only one MOSFET, is simple and has high efficiency greater than 90%. The di/dt of the load current is limited by inductor L. How ever, the input current is discontinuous and a smoothing input filter is normally required. It provides one polarity of output voltage and unidirectional output current.


Procedure for MOSFET based step down chopper: -

- 1. Switch on the mains supply for control circuit. And observe the Driver output by Varying the frequency, and duty cycle potentiometer
- 2. Make the step-down chopper circuit as shown in figure.
- 3. Then connect the driver Output to Gate and Source of POWER MOSFET as shown in figure. Connect DC motor in place of R-Load of 25W Resistor provided in the unit.
- 4. Connect DC input
- 5. Check all the connections and confirm connections made are correct before switching on the equipment.
- 6. Switch ON the input switch in series with the DC input.
- 7. Apply driver output pulses to MOSFET and observe the load voltage waveform by varying frequency and duty cycle.
- 8. Output voltage & Current can be measured using DC voltmeter or digital multimeter across Load points and DC ammeter or digital multi meter in series with load points.

POWER MOSFET STEPDOWN CHOPPER

CIRCUIT DIAGRAM:-

OUTPUT WAVEFORM

Tabular Column F= Hz

Sl. No.	$V_{DC}IN$	VL	T _{ON} msec	T_{OFF} msec	Duty cycle %	Speed of motor In rpm

Duty cycle=
$$\frac{T_{ON}}{T_{ON} + T_{OFF}} X 100$$

Vo = D.cycle X Vs

For I/P 30V, if duty cycle is 50% Vo=0.5 X 30 =15 V

Precautions

- 1. Do not short the testpoints.
- 2. Do not rotate the pots P1 and P2 very fast. Operate them in a gentle manner.
- 3. Limit the duty cycle to a maximum of 90%. Total drawn from the power supply must be monitored and should be within current rating of the power supply (i.e.5 amps).

प्रयोग क्र. 5

उद्देश्य: स्टेप-डाउन चॉपर का उपयोग करके डीसी मोटर की गति नियंत्रण।

इस इकाई में दो भाग हैं:

- नियंत्रण सर्किट
- पावर सर्किट
- a. नियंत्रण सर्किट: यह यूनिट पावर MOSFET के लिए पल्स विड्थ मॉड्यूलेटेड (PWM) आधारित गेट ड्राइव उत्पन्न करता है। चॉपर की आवृत्ति लगभग 200Hz से 1KHz तक भिन्न हो सकती है। चॉपर का ड्यूटी साइकिल 0% से 80% तक भिन्न हो सकता है। सॉफ्ट स्टार्ट फीचर के साथ आउटप्ट के लिए ON/OFF स्विच दिया गया है।
- b. पावर सर्किट: इस यूनिट में एक पावर मोसेफ़ेट होता है जो डीवी/डीटी सुरक्षा के लिए स्नबर सर्किट द्वारा संरक्षित एक उचित हीट सिंक पर लगा होता है। शॉर्ट सर्किट सुरक्षा के लिए एक फ़्यूज़ प्रदान किया जाता है। और इसमें दो डायोड, एक इंडक्टर और एक इलेक्ट्रोलाइटिक कैपेसिटर भी होता है।

फ्रंट पैनल विवरण: -

- 1. आवृत्तिः पोटेंशियोमीटर, आवृत्ति को लगभग 100Hz से 500Hz तक परिवर्तित करने के लिए।
- 2. ड्यूटी साइकिल: ड्यूटी साइकिल को लगभग 0% से 80% तक बदलने के लिए पोटेंशियोमीटर ।
- 3. चालू/ बंद: सॉफ्ट स्टार्ट के साथ ड्राइवर आउटपुट पल्स के लिए स्विच।
- 4. +,- : पावर मोसेफ़ेट के बेस और एमिटर को जोड़ने के लिए ड्राइवर आउटप्ट।
- 5. G, D, S: पावर MOSFET के गेट, ड्रेन और सोर्स टर्मिनल। IRF 740-10A/400V.
- 6. D1, D 2 : डायोड 6A
- 7. पावर: नियंत्रण सर्किट के लिए मुख्य स्विच।
- 8. वीडीसी इन: डीसी पावर सप्लाई
- 9. चालू : पावर सर्किट को डीसी आपूर्ति के लिए स्विच।

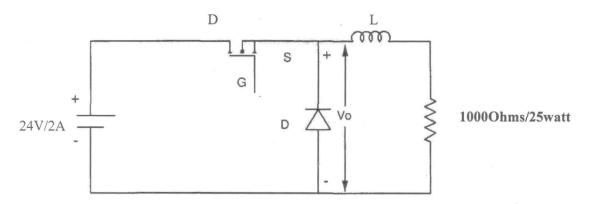
10.एल : प्रेरक - 40mH/2Amps.

11.सी : संधारित्र-470µf/200V.

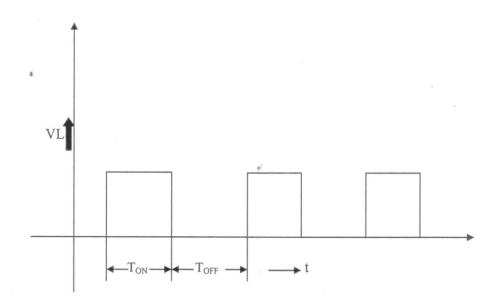
12.आर : लोड रेजिस्टर- 2200ohms/25 वाट

मोसफेट आधारित स्टेप डाउन चॉपर: -

चॉपर एक हाई स्पीड ऑन/ऑफ सेमीकंडक्टर स्विच है। यह स्रोत को लोड से जोड़ता है और तेज़ गित से लोड को स्रोत से डिस्कनेक्ट करता है। MOSFET का उपयोग करने वाला एक स्टेप डाउन चॉपर चित्र में दिखाया गया है। TON के दौरान चॉपर चालू रहता है और लोड वोल्टेज स्रोत वोल्टेज Vs के बराबर होता है। Toff अंतराल के दौरान, चॉपर बंद रहता है, लोड करंट फ़ीव्हीलिंग डायोड से बहता है और Toff के दौरान लोड वोल्टेज शून्य होता है। इस तरह से लोड टिर्मिनलों पर चॉपर लोड वोल्टेज उत्पन्न होता है। बक कनवर्टर में औसत आउटपुट वोल्टेज Vo इनपुट वोल्टेज Vs से कम होता है।


इसिलए इसका नाम "बक" रखा गया जो एक लोकप्रिय कनवर्टर है। पावर MOSFET का उपयोग करने वाला सर्किट आरेख चित्र में दिखाया गया है और यह एक स्टेप-डाउन कनवर्टर की तरह है।

स्टेप डाउन चॉपर को केवल एक MOSFET की आवश्यकता होती है, यह सरल है और इसकी उच्च दक्षता 90% से अधिक है। लोड करंट का di/dt इंडक्टर L द्वारा सीमित है। हालाँकि , इनपुट करंट असंतत है और एक स्मूथिंग इनपुट फ़िल्टर की सामान्य रूप से आवश्यकता होती है। यह आउटपुट वोल्टेज की एक ध्रुवता और एकदिशात्मक आउटपुट करंट प्रदान करता है। मोसफेट आधारित स्टेप डाउन चॉपर की प्रक्रिया: -


- 1. नियंत्रण सर्किट के लिए मुख्य आपूर्ति चालू करें। और आवृत्ति और इ्यूटी साइकिल पोटेंशियोमीटर को बदलकर ड्राइवर आउटपुट का निरीक्षण करें
- 2. चित्र में दिखाए अनुसार स्टेप-डाउन चॉपर सर्किट बनाएं।

- 3. फिर ड्राइवर आउटपुट को गेट और पॉवर MOSFET के स्रोत से कनेक्ट करें जैसा कि चित्र में दिखाया गया है। यूनिट में दिए गए 25W रेसिस्टर के R-लोड के स्थान पर DC मोटर को कनेक्ट करें।
- 4. डीसी इनपुट कनेक्ट करें
- 5. उपकरण चालू करने से पहले सभी कनेक्शनों की जांच कर लें तथा पुष्टि कर लें कि किए गए कनेक्शन सही हैं।
- 6. डीसी इनपुट के साथ शृंखला में इनपुट स्विच चालू करें।
- 7. MOSFET पर ड्राइवर आउटपुट पल्स लागू करें और आवृत्ति और ड्यूटी चक्र को बदलकर लोड वोल्टेज तरंग का निरीक्षण करें।
- 8. आउटपुट वोल्टेज और करंट को लोड बिंदुओं पर डीसी वोल्टमीटर या डिजिटल मल्टीमीटर और लोड बिंदुओं के साथ श्रृंखला में डीसी अमीटर या डिजिटल मल्टीमीटर का उपयोग करके मापा जा सकता है।

POWER MOSFET STEPDOWN CHOPPER

CIRCUIT DIAGRAM:-

OUTPUT WAVEFORM

सारणीबद्ध स्तम्भ F= हर्ट्ज

क्रम	$V_{DC}IN$	VL	T_{ON}	T_{OFF}	ड्यूटी साइकिल	मोटर की गति आरपीएम में
सं.			msec	msec	%	आरपीएम में

ड्यूटी साइकिल =
$$\frac{T_{ON}}{T_{ON} + T_{OFF}} X 100$$

Vo = ड्यूटी साइकिल X Vs

I/P 30V के लिए, यदि ड्यूटी साइकिल 50% Vo =0.5 X 30 =15 V है

सावधानियां: -

- 1. लोड वोल्टेज और इनपुट वोल्टेज को एक साथ देखने का प्रयास न करें, यदि ऐसा होता है तो इनपुट वोल्टेज टर्मिनल सीधे लोड टर्मिनल से जुड़ा होता है क्योंकि CRO के दोनों चैनल अलग-थलग नहीं होते हैं। CRO पर दोहरे चैनल का उपयोग करते समय स्निश्चित करें कि दोनों ग्राउंड टर्मिनल एक ही बिंदु से जुड़े होने चाहिए।
- 2. जब विद्यार्थी प्रयोग कर रहे हों तो बिजली के झटके से बचने के लिए कम एसी/डीसी वोल्टेज का उपयोग करने की सिफारिश की जाती है।

Experiment no. 6

Objective: Speed control of DC motor using 3-phase half-controlled bridge Rectifier

Equipment Required: -

a) Control Circuit : 3-phase converter firing circuit

b) Power Circuit : 3-phase half and fully controlled converter power circuit -24V/2A

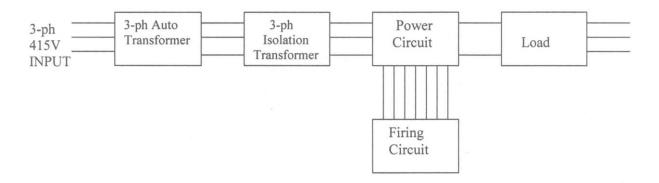
c) Source : 3-phase isolation Transformer -24V/2A

d) Load : DC motor.

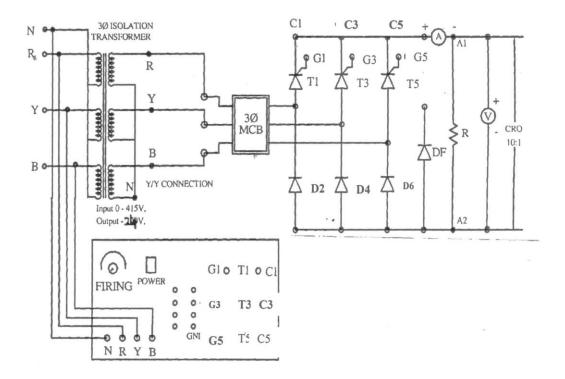
Three phase half-controlled bridge converter

Theory:

Three phase half-controlled bridge converter is the combination of a power module and a firing unit. The power module consists of three SCR's, three diodes and a freewheeling diode. Six fuses for thyristors & diode protection. The thyristors are mounted on individual heat sinks and protected by fast fuses. A well-designed snubber circuit is provided for dv/dt protection. All the terminals of the power module are brought out to front panel through BTI-15 terminals for connection purposes.


The firing unit generates three-line synchronized firing pulses to trigger three SCRs of three phase half-controlled bridge power circuit. Firing circuit is based on ramp generator, comparator, pulse generator, pulse amplification & pulse triggering method. Gate pulses are taken out through isolation pulse transformer. Load Voltage can be varied from Vmin to Vmax using firing angle knob. Firing circuit testing points are taken out to front panels. All the terminals are brought out to front panel with BTI-15 terminals.

Devices of the power module internally connected to form three phase half-controlled bridge converter power circuit. Gate pulses must be given to gate and cathode of respective SCRs from firing unit & firing angle must be varied from the knob to get variable load voltage. AC inputs must be given externally through isolation transformer while conducting experiment. External load must be connected while doing experiment. This unit can be used with resistance, resistance and inductance, motor loads.


Procedure:

- a) Testing of Firing circuit: -
 - 1) Connect 3-phase / 415 mains supply to the RYB 3ph in terminals provided in the front panel.
 - 2) Connect 3-phase neutral point to the green terminal provided in the back panel. Connect 3 pin mains cable to the unit.
 - 3) Switch ON the mains supply to the unit. Switch ON 3-phase supply for synchronization.
 - 4) Now check R Y B signals with respect to ground. If the proper neutral point is connected to the back panel we can observe clear R Y B signals with 15V amplitude.
 - 5) Check the trigger o/ps with their phase sequence. Compare this with the theoretical one.
 - 6) The trigger o/p pulse width is 6m sec fixed and fixed position moves as we vary the firing angle potentiometer.
 - 7) Make sure that the trigger o/ps and their phase sequence are correct before connecting the trigger pulses to the power circuit.

b) Interconnections: -

- 1. Connections are made as shown in circuit diagram for three phase half-controlled converter using three SCRS and three diodes.
- 2. Connect Firing pulses T1, T3, T5, in the firing circuit to the respective SCR's gate and cathode provided for firing pulse connection.
- 3. Connect a DC motor in place of R-load 100 ohms/2amp rheostat at the output terminals of the bridge rectifier.
- 4. Connect 3-phase AC input to the power circuit preferably through 3-ph Isolation Transformer provided (24V/2A).
- 5. Connect this to R Y B 3-ph IN terminals provided in the front panel of the power circuit. Connect primary and secondary of Isolation Transformer in star star configuration.
- 6. Use same R Y B sequence to both firing circuit and power circuit.
- 7. Switch ON the 3-phase firing circuit trigger pulse in OFF condition and firing angle at 180°.
- 8. Next switch ON the 3-phase supply to the power circuit.
- 9. Switch ON the three phase ON/OFF switch.
- 10. Switch ON the firing pulse ON/OFF switch.
- 11. Vary the firing angle by varying the Firing angle potentiometer. and observe the output voltage and speed of DC motor.
- 12. If output is not varying by varying firing angle or sudden change in output Voltage, Change trigger pulses from T1 to T2,T3 to T4,&T5 to T6..
- 13. If the bridge output is coming properly, tabulate the reading as given in the Tabular column.
- 14. Bring the firing angle knob to minimum (anticlockwise) position.
- 15. Switch on three pole switch, firing unit & three phase AC mains...

Connection diagram for Three phase half-controlled converter

Observation Table:

Sl. No	Input Voltage Vin	Firing Angle	Output voltage	Output current Io	Speed of DC
	AC volts		Vo	DC Amps	motor in rpm
			DC Volts		

Precautions: -

- Do not attempt to observe load voltage and input voltage simultaneously, if does so input voltage
 terminal directly connected to load terminals due to the no isolation of both channels of the CRO.
 While using dual channels on the CRO ensure that both the ground terminals must be connected to
 the same point.
- 2. It is recommended to use low AC voltage when students are doing experiments to eliminate electric shock.

प्रयोग क्र. 6

उद्देश्य: 3-फेज अर्ध-नियंत्रित ब्रिज रेक्टिफायर का उपयोग करके डीसी मोटर का गति नियंत्रण आवश्यक उपकरण:-

क) नियंत्रण सर्किट : 3-फेस कनवर्टर फायरिंग सर्किट

बी) पावर सर्किट : 3-फेस आधा और पूरी तरह से नियंत्रित कनवर्टर पावर सर्किट -24V/2A

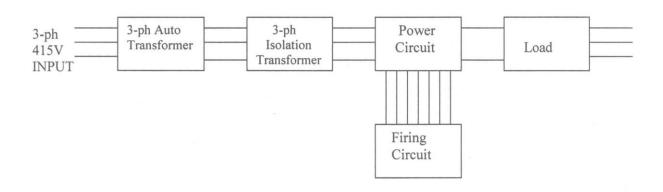
c) स्रोत : 3-फेस अलगाव ट्रांसफार्मर -24V/2A

घ) लोड : डीसी मोटर.

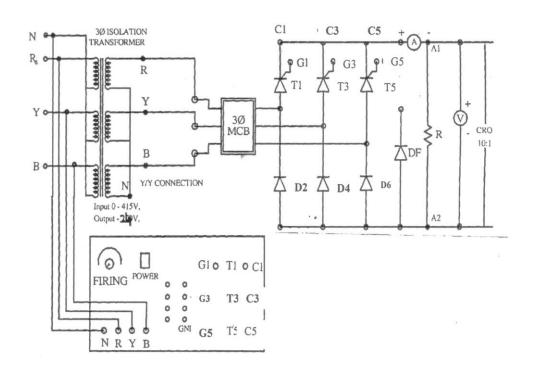
तीन फेस अर्ध-नियंत्रित ब्रिज कनवर्टर

लिखित:

तीन फेस अर्ध-नियंत्रित ब्रिज कनवर्टर एक पावर मॉड्यूल और एक फायरिंग यूनिट का संयोजन है। पावर मॉड्यूल में तीन एससीआर, तीन डायोड और एक फ्रीव्हीलिंग डायोड शामिल हैं। थाइरिस्टर और डायोड सुरक्षा के लिए छह फ़्यूज़। थाइरिस्टर अलग-अलग हीट सिंक पर लगे होते हैं और तेज़ फ़्यूज़ द्वारा सुरक्षित होते हैं। डीवी/डीटी सुरक्षा के लिए एक अच्छी तरह से डिज़ाइन किया गया स्नबर सर्किट प्रदान किया गया है। पावर मॉड्यूल के सभी टर्मिनल कनेक्शन उद्देश्यों के लिए BTI-15 टर्मिनलों के माध्यम से फ्रंट पैनल पर लाए जाते हैं।


फायरिंग यूनिट तीन-फेस अर्ध-नियंत्रित ब्रिज पावर सर्किट के तीन एससीआर को ट्रिगर करने के लिए तीन-लाइन सिंक्रोनाइज्ड फायरिंग पल्स उत्पन्न करती है। फायरिंग सर्किट रैंप जनरेटर, तुलिनत्र, पल्स जनरेटर, पल्स एम्पलीफिकेशन और पल्स ट्रिगरिंग विधि पर आधारित है। गेट पल्स को आइसोलेशन पल्स ट्रांसफॉर्मर के माध्यम से निकाला जाता है। फायरिंग एंगल नॉब का उपयोग करके लोड वोल्टेज को Vmin से Vmax तक बदला जा सकता है। फायरिंग सर्किट परीक्षण बिंदुओं को फ्रंट पैनल पर ले जाया जाता है। सभी टर्मिनलों को BTI-15 टर्मिनलों के साथ फ्रंट पैनल पर लाया जाता है।

पावर मॉड्यूल के उपकरण आंतरिक रूप से जुड़े हुए हैं ताकि तीन फेस अर्ध-नियंत्रित ब्रिज कनवर्टर पावर सर्किट बनाया जा सके। फायरिंग यूनिट से संबंधित एससीआर के गेट और कैथोड को गेट पल्स दिए जाने चाहिए और वेरिएबल लोड वोल्टेज प्राप्त करने के लिए फायरिंग एंगल को नॉब से अलग-अलग किया जाना चाहिए। प्रयोग करते समय एसी इनपुट को आइसोलेशन ट्रांसफॉर्मर के माध्यम से बाहरी रूप से दिया जाना चाहिए। प्रयोग करते समय बाहरी लोड को जोड़ा जाना चाहिए। इस यूनिट का उपयोग प्रतिरोध, प्रतिरोध और प्रेरण, मोटर लोड के साथ किया जा सकता है।


प्रक्रिया:

- a) फायरिंग सर्किट का परीक्षण: -
 - 1) 3-फेज/415 मेन सप्लाई को फ्रंट पैनल में दिए गए टर्मिनलों में RYB 3ph से कनेक्ट करें।
 - 2) 3- फ़ेज़ न्यूट्रल पॉइंट को बैक पैनल में दिए गए हरे टर्मिनल से कनेक्ट करें । 3 पिन मेन केबल को यूनिट से कनेक्ट करें।
 - 3) यूनिट की मुख्य आपूर्ति चालू करें। सिंक्रोनाइजेशन के लिए 3-फेज आपूर्ति चालू करें।
 - 4) ग्राउंड के संबंध में RYB सिग्नल की जाँच करें । यदि उचित न्यूट्रल पॉइंट बैक पैनल से जुड़ा हुआ है तो हम 15V आयाम के साथ स्पष्ट RYB सिग्नल देख सकते हैं।
 - 5) ट्रिगर ओ/ पी को उनके फेस अनुक्रम के साथ जांचें। इसकी तुलना सैद्धांतिक अन्क्रम से करें।
 - 6) ट्रिगर ओ/पी पल्स की चौड़ाई 6 मीटर सेकंड निर्धारित है और निश्चित स्थिति तब बदलती है जब हम फायरिंग कोण पोटेंशियोमीटर बदलते हैं।
 - 7) ट्रिगर पल्स को पावर सर्किट से जोड़ने से पहले सुनिश्चित करें कि ट्रिगर ऑपरेटिंग सिस्टम और उनका फेस अनुक्रम सही है।

b) अंतर्संबंध:-

- तीन एससीआरएस और तीन डायोड का उपयोग करके तीन फेस अर्ध-नियंत्रित कनवर्टर के लिए सर्किट आरेख में दिखाए अन्सार कनेक्शन बनाए जाते हैं।
- 2. फायरिंग सर्किट में फायरिंग पल्स T1, T3, T5 को फायरिंग पल्स कनेक्शन के लिए प्रदान किए गए संबंधित SCR के गेट और कैथोड़ से कनेक्ट करें।
- ब्रिज रेक्टिफायर के आउटपुट टर्मिनलों पर आर-लोड 100 ओम/2 एम्पियर रिओस्टेट के स्थान पर डीसी मोटर कनेक्ट करें।
- 4. 3-फेज एसी इनपुट को पावर सर्किट से अधिमानतः 3-पीएच आइसोलेशन ट्रांसफार्मर (24V/2A) के माध्यम से कनेक्ट करें।
- 5. इसे पावर सर्किट के फ्रंट पैनल में दिए गए RYB 3-ph IN टर्मिनल से कनेक्ट करें। आइसोलेशन ट्रांसफॉर्मर के प्राइमरी और सेकेंडरी को स्टार-स्टार कॉन्फ़िगरेशन में कनेक्ट करें।
- 6. फायरिंग सर्किट और पावर सर्किट दोनों के लिए समान RYB अन्क्रम का उपयोग करें
- 3-फेस फायरिंग सर्किट ट्रिगर पल्स को ऑफ स्थिति में तथा फायरिंग कोण 180° पर स्विच ऑन करें।
- इसके बाद पावर सर्किट में 3-फेज आपूर्ति चालू करें।
- 9. तीन चरणीय ON/OFF स्विच को चालू करें।
- 10. फायरिंग पल्स ON/OFF स्विच को चालू करें।
- 11. फायरिंग कोण पोटेंशियोमीटर को बदलकर फायरिंग कोण में परिवर्तन करें और डीसी मोटर के आउटपुट वोल्टेज और गति का निरीक्षण करें।
- 12. यदि फायरिंग कोण में परिवर्तन या आउटपुट वोल्टेज में अचानक परिवर्तन के कारण आउटपुट में परिवर्तन नहीं हो रहा है, तो ट्रिगर पल्स को T1 से T 2, T 3 से T4, और T5 से T6 में बदलें।
- 13. यदि ब्रिज आउटपुट ठीक से आ रहा है, तो सारणीबद्ध कॉलम में दिए अनुसार रीडिंग को सारणीबद्ध करें।
- 14. फायरिंग कोण घुंडी को न्यूनतम (वामावर्त) स्थिति में लाएं।
- 15. तीन पोल स्विच, फायरिंग यूनिट और तीन फेस एसी मेन का स्विच चालू करे|

तीन फेस अर्ध-नियंत्रित कनवर्टर के लिए कनेक्शन आरेख

अवलोकन तालिका:

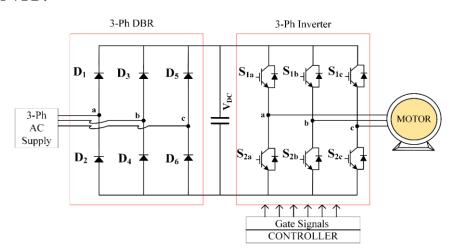
क्रम	इनपुट वोल्टेज Vin	फायरिंग	आउटपुट	आउटपुट करंट	DC मोटर की
सं.	एसी वोल्ट	कोण	वोल्टेज Vo	lo DC एम्प्स	गति
			डीसी वोल्ट		आरपीएम में

सावधानियां: -

- 1. लोड वोल्टेज और इनपुट वोल्टेज को एक साथ देखने का प्रयास न करें, यदि ऐसा होता है तो इनपुट वोल्टेज टर्मिनल सीधे लोड टर्मिनल से जुड़ा होता है क्योंकि CRO के दोनों चैनल अलग-थलग नहीं होते हैं। CRO पर दोहरे चैनल का उपयोग करते समय सुनिश्चित करें कि दोनों ग्राउंड टर्मिनल एक ही बिंदु से जुड़े होने चाहिए।
- 2. जब विद्यार्थी प्रयोग कर रहे हों तो बिजली के झटके से बचने के लिए कम एसी वोल्टेज का उपयोग करने की सिफारिश की जाती है।

Experiment no. 7

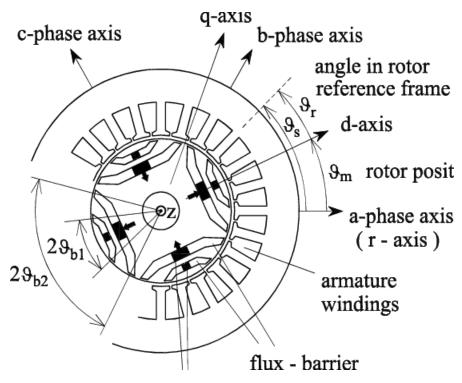
Objective: Speed control of synchronous reluctance motor using v/f control


Apparatus Required:

S No	Apparatus Name	Qty	Ratings
1	Synchronous reluctance Motor	1	3.7kW, 400V/8.1A, 1500 RPM
2	Separately Excited DC Motor	1	5 HP, 220V/19A, 1500 RPM
3	Multimeter	1	
4	Ammeter	1	0-5A(AC & DC)
5	VVF AC Drive	1	CG Emotron

Block Diagram:

Components of VFD:



Theory:

A synchronous reluctance motor works like a normal synchronous motor near its synchronous speed. It uses a three-phase winding system and has a solid laminated rotor constructed with salient poles. The poles are not wound but have flux barriers that provide reluctance torque like a synchronous motor.

It works initially as an induction motor below synchronous speed. Then it pulls into synchronism with the rotating stator magnetic field due to the reluctance torque produced by the saliency in the rotor. Synchronous reluctance motors are used where low starting torque can be tolerated.

Synchronous reluctance motor is one kind of synchronous electric motor, where the torque of this motor is because of the disparity of magnetic conductivities through the rotor's direct axes as well as quadrature, which doesn't have permanent magnets otherwise field windings. At present, this type of motor is becoming very popular by becoming an option for electric as well as hybrid vehicles because of its easy & strong construction. The main benefit of this motor mainly depends on the nonexistence of the losses of rotor cage by allowing a permanent torque that is higher as compared to the torque of an IM (Induction Motor) with the same size.

Sketch of a synchronous reluctance motor

The main features of synchronous reluctance motor mainly include the following

- As compared to induction motor drives, the control algorithm based on the field is simple
- The exact torque can be suitable that doesn't affect the temperature of the rotor.
- The rotor of this motor is low cost as compared to other motors like induction and permanent magnet.

DC Motor -

Here the DC machine is used as a generator for loading the PMS motor. It supplies the DC power to variable resistive lamp load to analyze the dynamic characteristics of PMSM at different values of loads.

Procedure-

- 1. Make the connections as per the wiring schedule.
- 2. Ensure proper coupling between the respective machines
- 3. Now check whether DC voltmeter connected across the generator is showing any reading. It may be required to change the polarity of the meter if the deflection is in reverse direction.
- 4. Observe DC voltage generated on DC voltmeter and ammeter. Load lamps may also glow.
- 5. Maximum load current should not exceed rated motor/generator amperes.
- 6. Observe the voltage, and load current on meters.
- 7. Change the frequency and note down the readings at a constant load
- 8. Increase the load and repeat the step 7
- 9. Note down the readings as per the following table.

OBSERVATION TABLE-

S.NO.	Frequenc	V_{SRM}	I _{SRM}	Speed	Load Voltage	Load	Load
	y (Hz)	(volts)	(Amps)	(rpm)	(Volts)	Current	(Watts)
						(Amps)	
1.	f_1						Load 1=
2.	f_2						Load 1=
3.	f_3						Load 1=
4.	f_1						Load 2=
5.	f_2						Load 2=
6.	f ₃						Load 2=

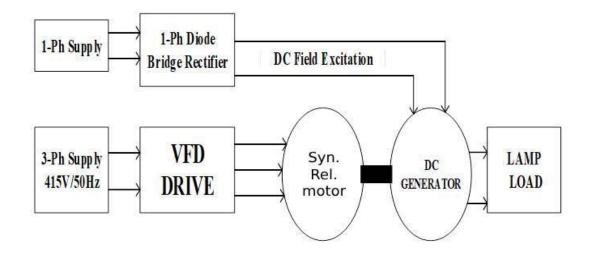
Calculations: Calculate v/f ratio at each value of load and draw a graph between the voltage and frequency of the motor at different frequencies.

Conclusion-

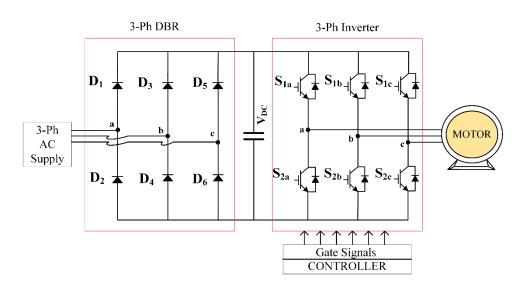
The Speed Control of the PMS motor using the V/f method is done at different values of loads, the constant v/f ratio is calculated, and a graph is plotted between voltage and frequency.

Precaution-

- 1. As the experiment involves 220V DC, and 415 volts 3 phase supply, students should become thoroughly familiar with all the connections to avoid possible fatal electric shock hazards
- 2. Wear shoes that cover the feet.
- 3. Don't wear loose clothes.
- 4. Maintain a workspace clear of extraneous material such as books, papers, and clothes.
- 5. Don't use broken connecting wires.
- 6. Turn off the power switch to equipment before making connections.
- 7. The motor input current should not exceed its rated value.


प्रयोग क्र. 7

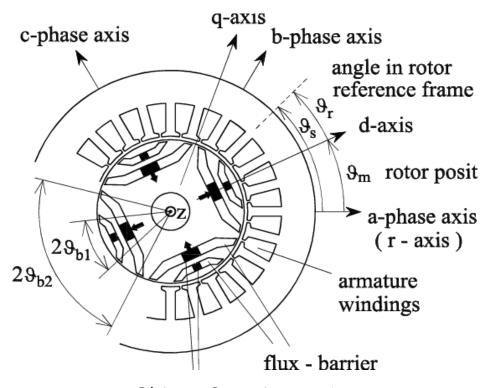
उद्देश्य : v/f नियंत्रण का उपयोग करके सिंक्रोनस रिलक्टेन्स मोटर की गति नियंत्रण


<u>आवश्यक उपकरण</u>:

क्र. सं.	उपकरण का नाम	मात्रा	रेटिंग
1	सिंक्रोनस रिलक्टेन्स मोटर	1	3.7 किलोवाट, 400V/8.1A, 1500 आरपीएम
2	अलग से उत्तेजित डीसी मोटर	1	5 एचपी, 220V/19A, 1500 आरपीएम
3	मल्टीमीटर	1	
4	एम्मिटर	1	0-5ए(एसी)
5	वीवीएफ एसी ड्राइव	1	सीजी इमोट्रॉन

<u>ब्लॉक आरेख</u>:

वीएफडी के घटक:



लिखित:

एक सिंक्रोनस रिलेक्टेंस मोटर अपनी सिंक्रोनस गित के करीब एक सामान्य सिंक्रोनस मोटर की तरह काम करती है। यह तीन-फेस वाइंडिंग सिस्टम का उपयोग करता है और इसमें एक ठोस लेमिनेटेड रोटर होता है जो मुख्य धुवों के साथ बनाया जाता है। धुव घुमावदार नहीं होते हैं, लेकिन फ्लक्स अवरोधक जो एक सिंक्रोनस मोटर की तरह रिलक्टेन्स टॉर्क प्रदान करते हैं।

यह शुरू में सिंक्रोनस गित से नीचे एक इंडक्शन मोटर के रूप में काम करता है। फिर यह रोटर में सैलेंसी द्वारा उत्पादित रिलक्टेन्स टॉर्क के कारण घूमते हुए स्टेटर चुंबकीय क्षेत्र के साथ सिंक्रोनिज्म में खींचता है। सिंक्रोनस रिलक्टेन्स मोटर्स का उपयोग वहां किया जाता है जहां कम शुरुआती टॉर्क को सहन किया जा सकता है।

सिंक्रोनस रिलेक्टेंस मोटर एक तरह की सिंक्रोनस इलेक्ट्रिक मोटर है, जहाँ इस मोटर का टॉर्क रोटर के सीधे अक्षों के साथ-साथ चतुर्भुज के माध्यम से चुंबकीय चालकता की असमानता के कारण होता है, जिसमें स्थायी चुंबक नहीं होते हैं अन्यथा फ़ील्ड वाइंडिंग होती है। वर्तमान में, इस प्रकार की मोटर अपने आसान और मजबूत निर्माण के कारण इलेक्ट्रिक और हाइब्रिड वाहनों के लिए एक विकल्प बनकर बहुत लोकप्रिय हो रही है। इस मोटर का मुख्य लाभ मुख्य रूप से रोटर पिंजरे के नुकसान की अनुपस्थिति पर निर्भर करता है, जो एक स्थायी टॉर्क की अनुमित देता है जो समान आकार के IM (इंडक्शन मोटर) के टॉर्क की तुलना में अधिक होता है।

सिंक्रोनस प्रतिबल मोटर का स्केच

सिंक्रोनस रिलक्टेन्स मोटर की म्ख्य विशेषताओं में म्ख्य रूप से निम्नलिखित शामिल हैं

- इंडक्शन मोटर ड्राइव की तुलना में, क्षेत्र पर आधारित नियंत्रण एल्गोरिदम सरल है
- सटीक टॉर्क उपयुक्त हो सकता है जो रोटर के तापमान को प्रभावित नहीं करता है।
- इस मोटर का रोटर इंडक्शन और स्थायी चुंबक जैसी अन्य मोटरों की तुलना में कम लागत वाला है

डीसी मशीन -

लोड के विभिन्न मूल्यों पर PMSM की गतिशील विशेषताओं का विश्लेषण करने के लिए चर प्रतिरोधक लैंप लोड को DC पावर की आपूर्ति करता है ।

<u>प्रक्रिया</u> -

- 1. वायरिंग शेड्यूल के अन्सार कनेक्शन करें।
- 2. संबंधित मशीनों के बीच उचित युग्मन स्निश्चित करें
- 3. अब जाँच करें कि जनरेटर से जुड़ा डीसी वोल्टमीटर कोई रीडिंग दिखा रहा है या नहीं। यदि विक्षेपण विपरीत दिशा में है तो मीटर की ध्रुवता बदलने की आवश्यकता हो सकती है।
- 4. डीसी वोल्टमीटर और एमीटर पर उत्पन्न डीसी वोल्टेज का निरीक्षण करें। लोड लैंप भी चमक सकते हैं।
- 5. अधिकतम लोड धारा रेटेड मोटर/जनरेटर एम्पीयर से अधिक नहीं होनी चाहिए।
- 6. मीटर पर वोल्टेज और लोड करंट का निरीक्षण करें।
- 7. आवृत्ति बदलें और स्थिर लोड पर रीडिंग नोट करें
- 8. भार बढ़ाएँ और चरण-7 को दोहराएँ
- 9. निम्नलिखित तालिका के अनुसार रीडिंग नोट करें।

<u>अवलोकन तालिका</u> -

क्र.सं	आवृत्ति	वीएस एसआरएम	l _{एसआरएम}	गति	लोड वोल्टेज	लोड करंट	भार
	(हर्ट्ज)	(वोल्ट)	(एम्प्स)	(आरपीएम)	(वोल्ट)	(एम्प्स)	(वाट)
1.	एफ ₁						लोड 1
2.	एफ 2						लोड 1
3.	एफ 3						लोड 1
4.	एफ 1						लोड 2
5.	एफ 2						लोड 2
6.	एफ 3						लोड 2

गणना : लोड के प्रत्येक मान पर v/f अनुपात की गणना करें और विभिन्न आवृत्तियों पर मोटर की वोल्टेज और आवृत्ति के बीच एक ग्राफ बनाएं।

<u> निष्कर्ष</u> -

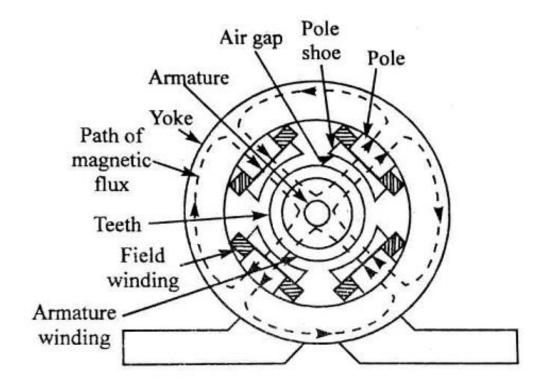
वी/एफ विधि का उपयोग करके पीएमएस मोटर का गित नियंत्रण भार के विभिन्न मूल्यों पर किया जाता है, स्थिर वी/एफ अनुपात की गणना की जाती है, और वोल्टेज और आवृत्ति के बीच एक ग्राफ तैयार किया जाता है।

सावधानी -

- 1. चूंकि प्रयोग में 220V डीसी और 415 वोल्ट 3 फेज आपूर्ति शामिल है, इसलिए छात्रों को संभावित घातक बिजली के झटके के खतरों से बचने के लिए सभी कनेक्शनों से अच्छी तरह परिचित होना चाहिए।
- 2. ऐसे जूते पहनें जो पैरों को ढकें।
- 3. ढीले कपड़े न पहनें.
- 4. कार्यस्थल को अनावश्यक सामग्री जैसे किताबें, कागज़ और कपड़े से मुक्त रखें।
- 5. टूटे हुए कनेक्टिंग तारों का उपयोग न करें।
- 6. कनेक्शन करने से पहले उपकरण का पावर स्विच बंद कर दें।
- 7. मोटर इनपुट धारा उसके निर्धारित मान से अधिक नहीं होनी चाहिए।

Experiment no. 9

Objective: Study and perform field weakening speed control of DC motor using single phase diode bridge rectifier.


Required instruments:

Sl.no.	Name of instrument	Quantity
1	Diode bridge rectifier	2 nos.
2	Single phase variac (220V, 5A)	2 nos.
3	Voltmeter (0-250 V- MC Type)	2 nos.
4	Separately excited DC motor (220V DC, 5 HP)	1 nos.

Theory-

DC Motor:

A DC motor is an electrical machine which converts electrical energy into mechanical energy. The basic working principle of the DC motor is that whenever a current carrying conductor places in the magnetic field, it experiences a mechanical force.

The armature of a motor is rotating, the conductors are also cutting the magnetic flux lines and hence according to the Faraday's law of electromagnetic induction, an emf induced in the armature conductors.

The direction of this induced emf is such that it opposes the armature current (Ia).

The back emf for a DC motor is given by,

Back emf,
$$E_b^{\blacksquare} = \frac{PN\phi Z}{60A}$$

The number of poles, P the armature conductors, Z and the number of parallel paths, A are constant for a particular machine.

If the back emf remains constant then the speed of DC motor is given by

$$N \propto \frac{1}{\phi}$$

Where N is speed of motor and ϕ is magnetic flux.

In this experiment, we are using a diode bridge rectifier for controlling the flux through the field winding of DC motor

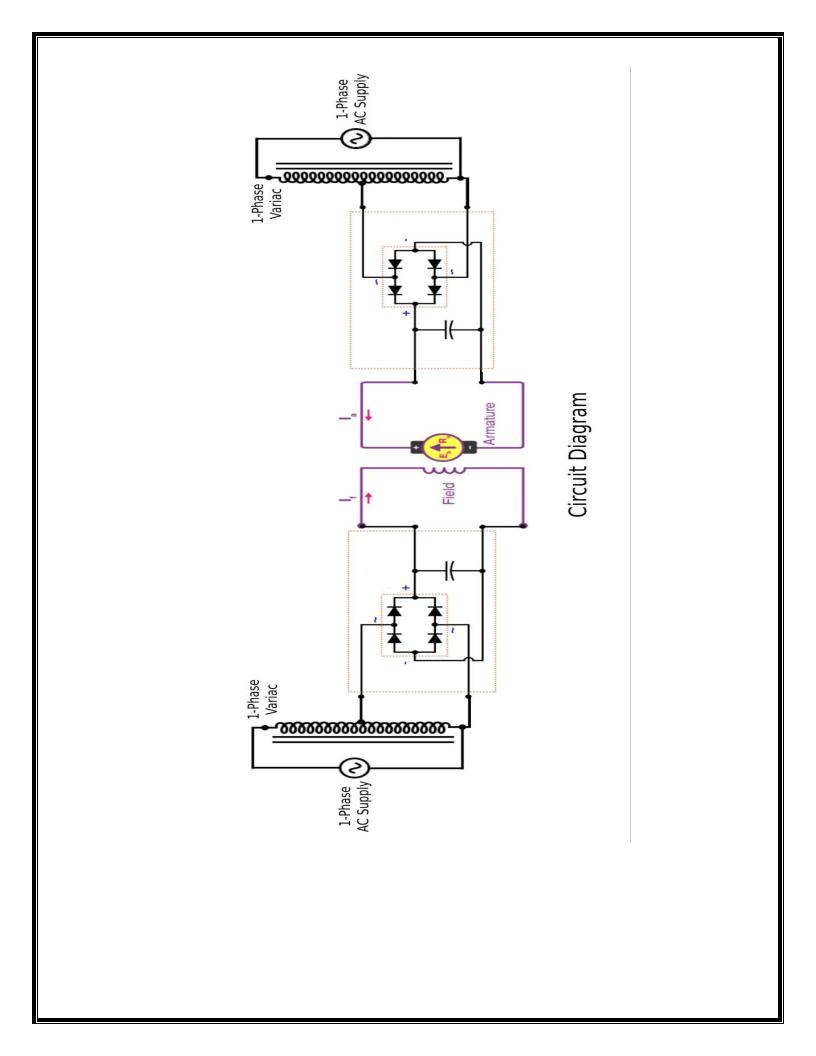
Diode Bridge Rectifier:

A diode rectifier or uncontrolled rectifier is the converter circuit that converts ac signal (an alternating signal) into dc signal (unidirectional signal). Uncontrolled rectifier circuits use diodes to convert ac power to dc power and are divided into two types, single-phase and three-phase. Again single-phase uncontrolled rectifiers are divided into two types, they are,

- Half-wave uncontrolled rectifier
- Full-wave uncontrolled rectifier
 - Center tapped rectifier
 - Bridge rectifier

Here, we are using a Bridge rectifier for controlling the speed of the motor.

The output voltage (V_{avg}) of Bridge rectifier is calculated by the formula $V_{avg} = 2\frac{V_m^{\blacksquare}}{\pi} = \frac{2\sqrt{2}}{\pi} \times V_{rms}^{\blacksquare}$


By the above formula it is cleared that if we decrease the input voltage (V_{rms}) to the rectifier then the output voltage (V_{avg}) supply to the field of the DC motor also decreases which results in the weakening of the magnetic flux of the field of the DC motor. So, we can increase the speed DC motor above its rated speed by using this method.

Procedure:

- 1. Connections are made as per the circuit diagram.
- 2. The starting output voltage of the rectifier connected to the field is kept at 220V so that the field of the motor generates maximum flux.
- 3. The starting output voltage of the rectifier connected to the armature is kept at minimum and increases gradually until the DC motor attends its rated speed i.e. 1500 RPM.
- 4. Now after the motor attends the speed of 1500 RPM, the output voltage of the rectifier connected to the field is gradually decreased by decreasing its input voltage through variac, by this the speed of the motor increases simultaneously.
- 5. Vary the speed by varying the voltage and note readings as per the observation table.

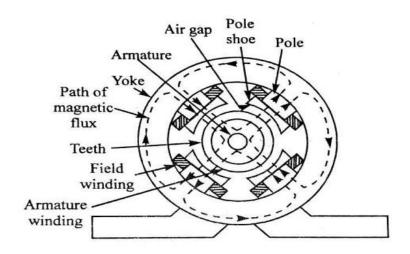
Observation Table:

Sl.no.	Input AC voltage (V_{rms})	Output DC voltage of DBR (V_{avg}^{\bullet})	Terminal Voltage of DC motor at field	Speed of DC motor
1				
2				
3				
4				

Calculations:
Conclusion:
Precautions:
1) Wear shoes that cover the feet.
2) Don't wear loose clothes.
3) Maintain a work space clear of extraneous material such as books, papers, and clothes.
4) Don't use broken connecting wires.
5) Turn off the power switch to equipment before making connections.
6) The motor input current should not exceed its rated value.

प्रयोग क्र. 9

उद्देश्य: एक फेस डायोड ब्रिज रेक्टिफायर का उपयोग करके डीसी मोटर के क्षेत्र क्षीणन द्वारा गति नियंत्रण करना।


आवश्यक उपकरणः

क्र.सं.	उपकरण का नाम	मात्रा
1	डायोड ब्रिज रेक्टिफायर	2 नग.
2	एक फेस वेरिएक (220V, 5A)	2 नग.
3	वोल्टमीटर (0-250 V- MC प्रकार)	2 नग.
4	पृथक रूप से उत्तेजित डीसी मोटर (220V डीसी, 5 एचपी)	1 नग.

लिखित -

डीसी यंत्र:

डीसी मोटर एक विद्युत मशीन है जो विद्युत ऊर्जा को यांत्रिक ऊर्जा में परिवर्तित करती है। डीसी मोटर का मूल कार्य सिद्धांत यह है कि जब भी कोई धारा ले जाने वाला कंडक्टर चुंबकीय क्षेत्र में आता है, तो उसे एक यांत्रिक बल का अनुभव होता है।

यदि मोटर का आर्मेचर घूम रहा है और कंडक्टर भी चुंबकीय फ्लक्स लाइनों को काट रहे हैं तो फैराडे के विद्युत चुम्बकीय प्रेरण के नियम के अनुसार , आर्मेचर कंडक्टरों में एक ईएमएफ प्रेरित होता है।

इस प्रेरित ईएमएफ की दिशा ऐसी होती है कि यह आर्मेचर धारा (la) का विरोध करती है।

डीसी मोटर के लिए बैक ईएमएफ इस प्रकार दिया जाता है,

बैक ईएमएफ,
$$E_b^{\blacksquare} = \frac{PN\phi Z}{60A}$$

किसी विशेष मशीन के लिए ध्रुवों की संख्या P (आर्मेचर कंडक्टर), Z तथा समान्तर पथों की संख्या A स्थिर होती है।

यदि पश्च ईएमएफ स्थिर रहता है तो डीसी मोटर की गति निम्न प्रकार दी जाती है

$$N \propto \frac{1}{\phi}$$

जहाँ N मोटर की गति तथा ϕ चुम्बकीय फ्लक्स है।

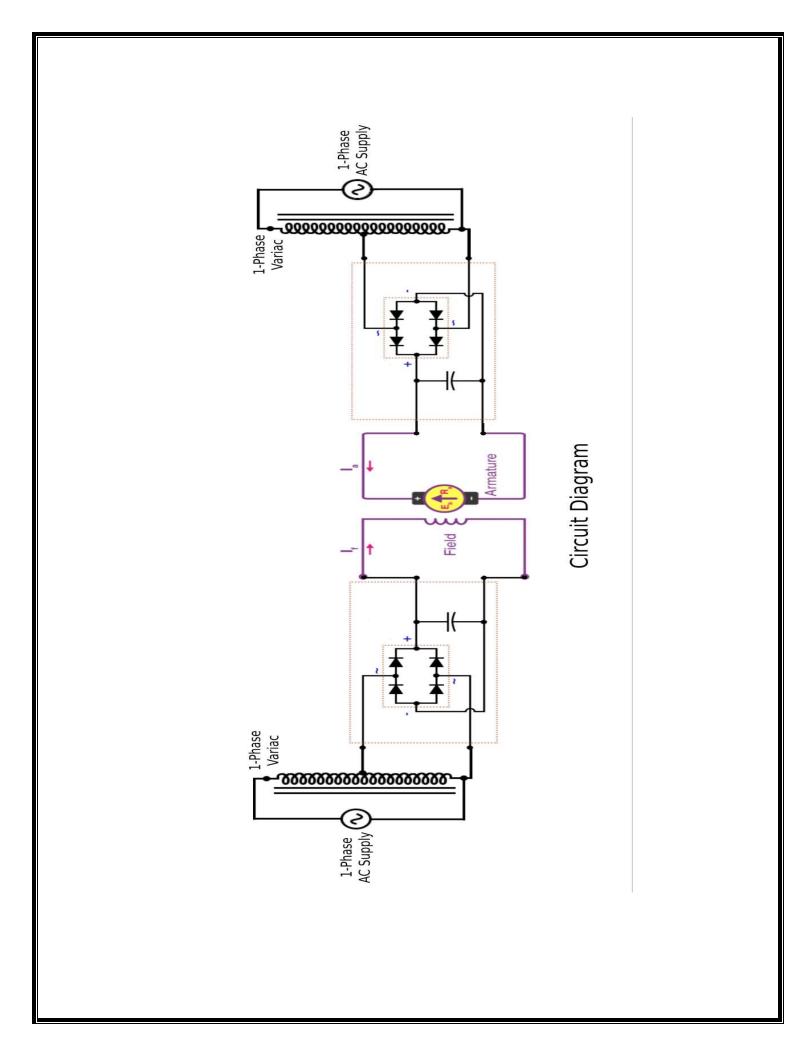
इस प्रयोग में, हम डीसी मोटर के फील्ड वाइंडिंग के माध्यम से फ्लक्स को नियंत्रित करने के लिए एक डायोड ब्रिज रेक्टिफायर का उपयोग कर रहे हैं

डायोड ब्रिज रेक्टिफायर: डायोड रेक्टिफायर या अनियंत्रित रेक्टिफायर एक कनवर्टर सर्किट है जो एसी सिग्नल (एक वैकल्पिक सिग्नल) को डीसी सिग्नल (एकतरफा सिग्नल) में परिवर्तित करता है। अनियंत्रित रेक्टिफायर सर्किट एसी पावर को डीसी पावर में बदलने के लिए डायोड का उपयोग करते हैं और इन्हें दो प्रकारों में विभाजित किया जाता है, सिंगल-फेज और थ्री-फेज। फिर से सिंगल-फेज अनियंत्रित रेक्टिफायर को दो प्रकारों में विभाजित किया जाता है, वे हैं,

- अर्ध-तरंग अनियंत्रित दिष्टकारी
- पूर्ण-तरंग अनियंत्रित दिष्टकारी
 - ० केंद्र टैप्ड रेक्टिफायर
 - ब्रिज रेक्टिफायर

यहां, हम मोटर की गति को नियंत्रित करने के लिए ब्रिज रेक्टिफायर का उपयोग कर रहे हैं।

आउटपुट वोल्टेज (V_{avg}^{\blacksquare}) की गणना सूत्र द्वारा की जाती है $V_{avg}=2\frac{V_m^{\blacksquare}}{\pi}=\frac{2\sqrt{2}}{\pi}\times\ V_{rms}^{\blacksquare}$


उपरोक्त सूत्र से यह स्पष्ट है कि यदि हम V_{rms}^{\blacksquare} रेक्टिफायर के लिए इनपुट वोल्टेज () को कम करते हैं तो V_{avg}^{\blacksquare}) डीसी मोटर के क्षेत्र में आपूर्ति की जाने वाली आउटपुट वोल्टेज () भी कम हो जाती है जिसके पिरणामस्वरूप डीसी मोटर के क्षेत्र का चुंबकीय प्रवाह कमजोर हो जाता है। इसलिए, हम इस विधि का उपयोग करके डीसी मोटर की गित को उसकी रेटेड गित से ऊपर बढ़ा सकते हैं।

प्रक्रिया:

- 1. कनेक्शन सर्किट आरेख के अनुसार बनाए।
- 2. क्षेत्र से जुड़े दिष्टकारी का प्रारंभिक आउटपुट वोल्टेज 220V पर रखा जाता है ताकि मोटर का क्षेत्र अधिकतम फ्लक्स उत्पन्न कर सके।
- 3. आर्मेचर से जुड़े रेक्टिफायर का प्रारंभिक आउटपुट वोल्टेज न्यूनतम रखा जाता है और धीरे-धीरे तब तक बढ़ाया जाता है जब तक डीसी मोटर अपनी निर्धारित गति अर्थात 1500 आर.पी.एम. तक नहीं पहंच जाती।
- 4. अब जब मोटर 1500 RPM की गित पर आ जाती है, तो क्षेत्र से जुड़े रेक्टिफायर के आउटपुट वोल्टेज को वेरिएक के माध्यम से धीरे-धीरे कम करके उसके इनपुट वोल्टेज को कम किया जाता है, इससे मोटर की गित बढ़ जाती है।
- वोल्टेज में परिवर्तन करके गति में परिवर्तन करें तथा प्रेक्षण तालिका के अनुसार रीडिंग नोट करें।

अवलोकन तालिका:

	इनपुट एसी वोल्टेज (V _{rms})	डीबीआर का आउटपुट डीसी वोल्टेज (Vavg)	क्षेत्र में डीसी मोटर का टर्मिनल वोल्टेज	डीसी मोटर की गति
1				
2				
3				

गणनाः
निष्कर्ष:
सावधानियां:
1) ऐसे जूते पहनें जो पैरों को ढकें।
2) ढीले कपड़े न पहनें।
3) कार्यस्थल को अनावश्यक सामग्री जैसे किताबें, कागज़ और कपड़े से मुक्त रखें।
4) टूटे हुए कनेक्टिंग तारों का उपयोग न करें।
5) कनेक्शन करने से पहले उपकरण का पावर स्विच बंद कर दें।
6) मोटर इनपुट धारा उसके निर्धारित मान से अधिक नहीं होनी चाहिए।