मौलाना आज़ाद राष्ट्रीय प्रौद्योगिकी संस्थान भोपाल (राष्ट्रीय महत्व का एक संस्थान)

रसायनिक अभियांत्रिकी विभाग

♦♦♦रासायनिक प्रक्रिया तकनीकी प्रयोगशाला ♦♦♦

(केमिकल प्रोसेस टेक्नोलॉजी लैब)

प्रयोगशाला प्रमुख डॉ. सुन्दर लाल पाल, सह - प्राध्यापक

प्रयोगशाला का उद्देश्य

यह प्रयोगशाला मैन्युअल रासायनिक प्रक्रिया प्रौद्योगिकी के विभिन्न पहलुओं को समझने के लिए डिज़ाइन किया गया है। इसमें औद्योगिक प्रक्रियाओं, यांत्रिकी, और रासायनिक प्रतिक्रियाओं के अभ्यास शामिल हैं, जो छात्रों को वास्तविक जीवन की समस्याओं को हल करने में सक्षम बनाते हैं।

प्रयोगशाला की सुरक्षा दिशा-निर्देश

- ${f 1.}$ सुरक्षित उपकरण का उपयोग करें सभी उपकरणों का उपयोग करते समय निर्देशों का पालन करें।
- 2. सुरक्षित कार्य क्षेत्र बनाए रखें प्रयोग करते समय सुनिश्चित करें कि कार्यक्षेत्र साफ और व्यवस्थित हो।
- 3. सुरक्षित बिजली कनेक्शन सभी इलेक्ट्रिक उपकरणों को सही तरीके से जोड़ें और सुनिश्चित करें कि सभी कनेक्शन सुरक्षित हैं।
- 4. व्यक्तिगत सुरक्षा उपकरण (PPE) पहनें प्रयोग करते समय सुरक्षात्मक दस्ताने, चश्मे, और अन्य PPE का उपयोग करें।

इस मैनुअल का उपयोग यह मैनुअल आपको प्रयोगों को समझने और ठीक से करने में मदद करेगा। प्रत्येक प्रयोग के लिए विधि, प्रयोगात्मक सेटअप, और आवश्यक उपकरणों का विवरण दिया गया है।

h	T	1	- 1
कार्यक्रम का नाम	रासायनिक अभियांत्रिकी में बी.टेक सेमेस्टर : चतुर्थ वर्ष : र्व		वर्ष : द्वितीय
Name of Program	B.Tech in Chemical Engineering	Semester : Fourth	Year : Second
पाठ्यक्रम का नाम	रासायनिक प्रक्रिया तकनीकी प्रयोगशाला		
Name of Course	Chemical Process Technology Lab		
पाठ्यक्रम कोड	सी.एच.ई. 227		
Course Code	CHE 227		
कोर/ऐच्छिक/अन्य	कोर		
Core/Elective/Other	Core		

	प्रयोग की सूची
	List of Experiment
क्र.	प्रयोग का नाम
S.No.	Name of Experiment
1	हरे तेल/तेल की अम्ल संख्या ज्ञात करें Determine Acid Number of Green Oil/Oil
2	नल के पानी की अम्लता और क्षारीयता का निर्धारण करें Determine Acidity and Alkalinity of tap water
3	यूरिया फॉर्मेल्डिहाइड रेजिन तैयार करें Prepare Urea Formaldehyde Resin
4	पेपर क्रोमैटोग्राफी का उपयोग करके आयनों का निर्धारण करें Determine lons Using Paper Chromatography
5	फिनोल फॉर्मेल्डिहाइड रेजिन तैयार करें Prepare Phenol Formaldehyde Resin
6	जैव प्लास्टिक का संश्लेषण और लक्षण वर्णन Synthesis of Bio Plastic And Characterization
7	गैस क्रोमैटोग्राफी मास स्पेक्ट्रोमीटर (जीसीएमएस) का अध्ययन Study of Gas Chromatography Mass Spectrometer (GCMS)
8	परमाणु अवशोषण स्पेक्ट्रोमीटर (ए.ए.एस) का अध्ययन Study of Atomic Absorption Spectrometer (AAS)
9	पेंट का संश्लेषण Synthesis of Paint
10	अधिशोषक का संश्लेषण Synthesis of Adsorbent
11	औद्योगिक अपशिष्ट का रासायनिक विश्लेषण Chemical Analysis of Industrial Effluent

तेल के अम्ल मान का निर्धारण

उद्देश्य

किसी दिए गए तेल नमूने का मानक पोटेशियम हाइड्रोक्साइड (KOH) विलयन के साथ अनुमापन द्वारा अम्ल मान निर्धारित करना।

सिद्धांत

एसिड वैल्यू को 1 ग्राम तेल में मौजूद मुक्त फैटी एसिड को बेअसर करने के लिए आवश्यक KOH की मिलीग्राम संख्या के रूप में परिभाषित किया जाता है। इसे एक कार्बनिक विलायक में तेल को घोलकर और एक संकेतक के रूप में फिनोलफथेलिन का उपयोग करके 0.1~N~KOH के साथ अनुमापन करके निर्धारित किया जाता है।

अम्ल मान $=56.1 \times V \times N/W$

कहाँ:

- ullet V= प्रयुक्त KOH विलयन की मात्रा (एमएल)
- N = KOH विलयन की सामान्यता (0.1 N)
- W = तेल के नमूने का वजन (ग्राम)
- 56.1 = KOH का आणविक भार

सामग्री की आवश्यकता

रसायन

- 1. तेल का नम्ना
- 2. निष्प्रभावी इथेनॉल-डाइएथिल ईथर मिश्रण (1:1 v/v)
- 3. फिनोलफथेलिन सूचक (इथेनॉल में 0.5%)
- 4. 0.1 एन पोटेशियम हाइड्रॉक्साइड (KOH) घोल

उपकरण

- 1. शंक्वाकार कुप्पी (250 एमएल)
- 2. बुरेट (50 एमएल)
- 3. पिपेट (10 एमएल)
- 4. वजन तराजू
- 5. मापने वाला सिलेंडर (50 एमएल)

प्रक्रिया

चरण 1: नमूना तैयार करना

- $1.\ \ 250$ मिली लीटर शंक्वाकार फ्लास्क में 1-2 ग्राम तेल के नमूने का वजन करें।
- 2. तेल को घोलने के लिए 50 एमएल इथेनॉल-डाइएथिल ईथर मिश्रण $(1:1\ v/v)$ मिलाएं।

चरण 2: संकेतक जोड़ना

1. घोल में फिनोलफथेलिन सूचक की 2-3 बूंदें डालें।

चरण 3: अनुमापन

- 1. ब्यूरेट को 0.1 N KOH विलयन से भरें।
- 2. फ्लास्क को लगातार घुमाते हुए धीरे-धीरे KOH के साथ तेल के घोल का अनुमापन करें।
- 3. तब तक अनुमापन जारी रखें जब तक कि हल्का गुलाबी रंग दिखाई न देने लगे (कम से कम 30 सेकंड तक)।
- 4. ब्यूरेट रीडिंग (प्रयुक्त KOH का $V\ mL$) रिकॉर्ड करें।

गणना

अम्ल मान $=56.1 \times V \times N / W$

कहाँ:

- V = KOH का आयतन (एमएल)
- N = KOH की सामान्यता (इस मामले में $0.1 \ N$)
- W = तेल के नमूने का वजन (ग्राम)

परिणाम

दिए गए तेल का अम्ल मान ____ मिलीग्राम KOH/ग्राम तेल है।

सावधानियां

- 1. एक उदासीन विलायक का प्रयोग करें (उपयोग से पहले इथेनॉल-ईथर मिश्रण को KOH के साथ पूर्व-टाइट्रेट करें)।
- 2. इथेनॉल और ईथर को सावधानी से संभालें क्योंकि वे ज्वलनशील हैं।
- 3. अनुमापन से पहले तेल और विलायक का उचित मिश्रण सुनिश्चित करें।
- 4. त्रुटियों से बचने के लिए ब्यूरेट रीडिंग को सटीक रूप से रिकॉर्ड करें।

दिए गए जल नम्ने की क्षारीयता निर्धारित करना।

उद्देश्य:- दिए गए जल नमूने की क्षारीयता निर्धारित करना।

आवश्यक उपकरण:- ब्यूरेट, पिपेट, शंक्वाकार फ्लास्क, बीकर, मापक फ्लास्क और ड्रॉपर।

रसायन:- एन/50एचसीएल घोल, फिनोलफथेलिन और मिथाइल ऑरंज सूचक।

सिद्धांत:- क्षारीयता अम्लों को बेअसर करने की पानी की क्षमता का माप है। पानी में क्षारीयता निम्नसिद्धांत आयनों की उपस्थिति के कारण होती है:-

- OH⁻
- CO²₃
- HCO₃⁻

जब मानक अम्लीय विलयन को क्षारीय जल में मिलाया जाता है तो निम्न अभिक्रिया

OH⁻ +H⁺
$$\longrightarrow$$
 H₂O
$$CO_3^{2-} + H^+ \longrightarrow$$
 HCO₃-
$$HCO_3^{-} + H^+ \longrightarrow$$
 H₂O+CO₂

इसिलए, पानी में क्षारीयता का पता लगाने के लिए, क्षारीय पानी को फिनोलफथेलिन और मिथाइल ऑरंज इंडिकेटर का उपयोग करके मानक एसिड समाधान के साथ अनुमापित किया जाता है। फिनोलफथेलिन OH - और CO 3 2- के प्रति संवेदनशील है जबिक मिथाइल ऑरंज सभी तीन आयनों के प्रति संवेदनशील है जैसा कि प्रतिक्रियाओं में संकेत दिया गया है।

इसके अलावा, हाइड्रॉक्साइड और बाइकार्बोनेट आयन निम्नसिद्धांत प्रतिक्रिया के कारण पानी में एक साथ मौजूद नहीं रह सकते हैं:-

$$OH^{-}+HCO_{3}^{-}$$
 $\longrightarrow H_{2}O + CO^{2-}_{3}$

सांद्रता के आधार पर जल में क्षारीयता की पांच संभावनाएं हैं, जैसा कि तालिका में दर्शाया गया है।

पानी में क्षारीयता के विभिन्न मामलों को दर्शाने वाली तालिका

अनुमापन परिणाम	OH के उदासीनीकरण के लिए प्रयुक्त अम्ल की मात्रा	CO ²⁻ 3 के उदासीनीकरण के लिए प्रयुक्त अम्ल की मात्रा	HCO3 _{के} उदासीनीकरण के लिए प्रयुक्त अम्ल की मात्रा ⁻
P= 0	Absent	Absent	M
P= M	P= M	Absent	Absent
P= ½ M	Absent	2Por M	Absent
P> ½ M	2P– M	2(M–P)	Absent
P< ½ M	Absent	2P	M-2P

यहाँ P = फिनोलफथेलिन अंत बिंदु

M = मिथाइल ऑरेंज अंत बिंदु

प्रक्रिया:-

- रंग प्राप्त करने के लिए दिए गए जल के नमूने की 25 मिलीलीटर मात्रा को शंक्वाकार फ्लास्क में डालें तथा फिनोलफथेलिन सूचक की कुछ बूंदें डालें।
- 2. परिणामी घोल को मानक N/50 HCI घोल के साथ गुलाबी रंग होने तक अनुमापित करें गायब हो जाता है.
- 3. रंग प्राप्त करने के लिए उसी शंक्वाकार फ्लास्क में मिथाइल ऑरेंज इंडिकेटर की कुछ बूंदें डालें ।
- 4. गुलाबी रंग होने तक मानक एचसीएल समाधान के साथ आगे अनुमापन करें प्रकट होता है।
- 5. तीन समरूप मान प्राप्त करने के लिए इन चरणों को दोहराएँ।

सावधानियां:-

- 1. ब्यूरेट, पिपेट और शंक्वाकार फ्लास्क को आसुत जल से धोया जाना चाहिए।
- 2. घोल से धोना चाहिए ।
- 3. अनुमापन के दौरान फनल को ब्यूरेट से हटा दिया जाना चाहिए ।

अवलोकन तालिका:-

एचसीएल के साथ जल के नमूने का अनुमापन समाधान

	िया गा उन	ब्यूरेट रीडिंग				
क्र. सं.	लिए गए जल के नमूने की	प्रारंभिक	P अंतिम बिंदु (y) तक पढ़ना	तक प्रयुक्त अम्ल की मात्रा (yx) = P	M अंतिम बिंदु (z) तक पढ़ना	M अंत बिंदु (zx) तक
	मात्रा	पठन (एक्स)		की मात्रा (yx) = P		प्रयुक्त अम्ल की
	(ml)		(ml)	(ml)	(ml)	मात्रा = M (ml)
		(ml)				,
1.						
2.						
3.						
सुसंगत प	प ठ न					

यहाँ	$P=$ फिनोलफथेलिन अंत बिंदु $=y_{-X}=$	ml
	M= मिथाइल ऑरेंज अंत बिंद् $= Z-x =$	-ml

गणना:-

क्षारीयता के प्रकारों का पता लगाने के बाद प्रत्येक आयन के लिए क्षारीयता की गणना के लिए निम्निसद्धांत समीकरणों का उपयोग करें। $N_1V_1=N_2V_2$

जहाँ

 N_{1} = OH^{-} आयनों $/CO^{2}$ $_{3}$ आयनों $/HCO_{3}^{-}$ आयनों की सामान्यता

 $V_{\rm I} =$ जल के नमूने का **आयतन** = 25 मिली

 $N_2 = मानक एचसीएल समाधान की सामान्यता = N/50$

 $V_2 = y$ त्येक आयन के लिए y पुक्त HCl का आयतन = ml

तब

 $N_1 = N_2 V_2 / V_1$

क्षारीयता = सामान्यता × CaCO 3 का समतुल्य भार (ग्राम/ली.)

 $=N1 \times 50$ ग्राम/ली. क्षारीयता = सामान्यता $\times 50 \times 1000$ (मिलीग्राम/लीटर या पीपीएम) $=N_1 \times 1000 \times 50$ पीपीएम

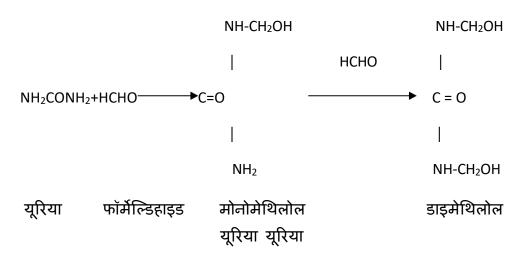
OH के कारण क्षारीयता - CaCO 3 के संदर्भ में = ------- पीपीएम 3 के संदर्भ में CO 2 के कारण क्षारीयता = -------- पीपीएम HCO3 के कारण क्षारीयता - CaCO3 के संदर्भ में = --ppm CaCO3 के संदर्भ में कुल क्षारीयता = पीपीएम

परिणाम:-

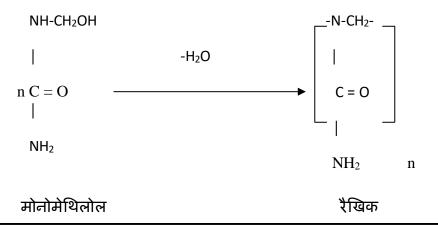
OH के कारण क्षारीयता - $CaCO_3$ के अन्तर से = ---------पीपीएम के सापेक्ष CO_2 - 3 के कारण क्षारीयता = --------पीपीएम 3 के कारण क्षारीयता - $CaCO_3$ के अन्तराल पर = ----पीपीएम CaC के संदर्भ में कुल क्षारीयता

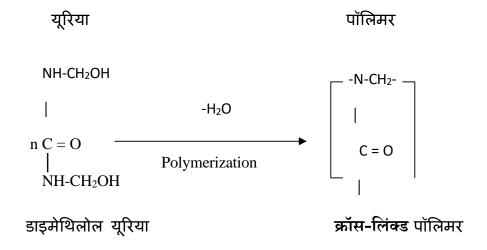
यूरिया फॉर्मेल्डिहाइड राल तैयार करना।

<u>उद्देश्यः-</u> यूरिया फॉर्मेल्डिहाइड राल तैयार करना।


<u>आवश्यक उपकरणः</u> बीकर, कांच की छड़, कीप, फिल्टर पेपर और रासायनिक संतुलन।

रसायन:- यूरिया, फॉर्मेल्डिहाइड सोल, सान्द्र H2SO4, आसुत जल ।


सिद्धात:- अमीनो रेजिन संघनन उत्पाद हैं जो नाइट्रोजन युक्त यौगिकों जैसे एनिलिन, एमाइड्स (उदाहरण : मेलामाइन फॉर्मेल्डिहाइड, यूरिया फॉर्मेल्डिहाइड आदि) के साथ फॉर्मेल्डिहाइड की प्रतिक्रिया से प्राप्त होते हैं।


यूरिया फॉर्मेल्डिहाइड अम्लीय या क्षारीय माध्यम में यूरिया और फॉर्मेल्डिहाइड के बीच संघनन प्रतिक्रिया द्वारा तैयार किया जाता है।

राल के निर्माण के दौरान बनने वाला पहला उत्पाद मोनोमेथिलोल और डाइमेथिलोल है यूरिया .

बहुलीकरण मोनो या डाइमेथिलोल यूरिया से या संभवतः दोनों के माध्यम से लंबी शृंखलाओं के निर्माण के साथ हो सकता है।

एक पूर्णतः क्रॉस-लिंक्ड यूरिया फॉर्मेल्डिहाइड रेजिन को इस प्रकार दर्शाया जा सकता है-

यूरिया फॉर्मेल्डिहाइड राल (क्रॉस-लिंक्ड पॉलिमर)

प्रक्रिया:-

- 1. बीकर में लगभग 5 मिलीलीटर 40% फॉर्मेल्डिहाइड घोल डालें।
- 2. संतृप्त घोल प्राप्त होने तक लगातार हिलाते हुए लगभग 2.5 ग्राम यूरिया मिलाएं।
- 3. लगातार हिलाते हुए सान्द्र H2SO4 की कुछ बूंदें डालें ।
- 4. में एक बड़ा सफेद ठोस द्रव्य दिखाई देता है।
- 5. पेपर की तहों में सुखा लें।
- 6. की उपज का वजन करें.

सावधानियां:-

- H₂SO₄ मिलाते समय बीकर से थोड़ी दूर रहना बेहतर होता है क्योंकि प्रतिक्रिया कभी-कभी तीव्र हो जाती है।
- 2. प्रतिक्रिया मिश्रण को लगातार हिलाया जाना चाहिए।

अवलोकन:-

```
बीकर का द्रव्यमान (W1) = ------ g. यूरिया फॉर्मेल्डिहाइड (W2) वाले बीकर का द्रव्यमान = ------- ग्राम. इसलिए यूरिया फॉर्मेल्डिहाइड का द्रव्यमान (W2-W1) = -- ग्राम.
```

परिणाम:- यूरिया फॉर्मेल्डिहाइड की उपज = --- ग्राम

पेपर क्रोमैटोग्राफी

<u> उद्देश्य</u>

आरोही पेपर क्रोमैटोग्राफी का उपयोग करके दिए गए धातु आयनों को अलग करना और पहचानना।

उपकरण और कांच के बने पदार्थ

- क्रोमेटोग्राफिक कक्ष
- वॉटमैन फिल्टर पेपर
- केशिका नलिकाएं
- शासक
- पेंसिल
- बीकर

रसायन

- विलायक प्रणाली : एन-ब्यूटेनॉल, एसिटिक एसिड और पानी (4:1:5 अनुपात)
- **दृश्य एजेंट** : अमोनियम सल्फाइड समाधान (सल्फाइड आयन का पता लगाने के लिए) या पोटेशियम आयोडाइड समाधान (चांदी आयनों के लिए)
- मानक संदर्भ : धातु आयनों के विलयन (जैसे, Pb2+, Ag+, Cu2+, Fe3+)

सिद्धांत

पेपर क्रोमैटोग्राफी दो चरणों के बीच पदार्थों के विभाजन पर आधारित है:

- 1. स्थिर प्रावस्था: फिल्टर पेपर के छिद्रों में अवशोषित जल।
- 2. गतिशील प्रावस्था : कार्बनिक विलायकों का मिश्रण जो स्थिर प्रावस्था पर गति करता है।

आयनों को स्थिर और गतिशील चरणों के लिए उनकी आत्मीयता के आधार पर अलग किया जाता है। **मंदता कारक (Rf) की** गणना इस प्रकार की जाती है:

Rf = विलेय द्वारा तय की गई दूरी / विलायक द्वारा तय की गई दूरी

समाधान की तैयारी

- 1. आसुत जल में ज्ञात धातु आयनों (Pb2+, Ag+, Cu2+, Fe3+) का मानक विलयन तैयार करें।
- 2. विश्लेषण के लिए आयनों का एक अज्ञात मिश्रण तैयार करें।

मोबाइल चरण की तैयारी

एक बीकर में 40 एमएल एन-ब्यूटेनॉल, 10 एमएल एसिटिक एसिड और 50 एमएल आसुत जल मिलाएं। मिश्रण को अच्छी तरह से हिलाएँ जब तक कि यह एकसार न हो जाए।

प्रक्रिया

ए. क्रोमैटोग्राफिक पेपर की तैयारी

- 1. क्रोमेटोग्राफिक कक्ष में फिट करने के लिए व्हाटमैन फिल्टर पेपर का एक टुकड़ा काटें।
- 2. एक पेंसिल का उपयोग करके नीचे के किनारे से लगभग 2 सेमी की दूरी पर एक आधार रेखा खींचें।
- 3. नमूने लगाने के लिए आधार रेखा के साथ समान दूरी वाले बिंदू (जैसे, 4 सेमी की दूरी पर) चिह्नित करें।

बी. नमूनों का अनुप्रयोग

- 1. चिह्नित बिंदुओं पर प्रत्येक धातु आयन विलयन की एक बूंद डालने के लिए केशिका ट्यूब का उपयोग करें।
- 2. उचित सांद्रता सुनिश्चित करने के लिए अगली परत लगाने से पहले धब्बे को पूरी तरह सूखने दें।

C. कोमैटोग्राम विकसित करना

- 1. तैयार कागज़ को मोबाइल चरण वाले क्रोमेटोग्राफ़िक कक्ष में लटकाएँ। सुनिश्चित करें कि बेसलाइन विलायक को न छुए।
- 2. कक्ष को बंद कर दें ताकि विलायक केशिका क्रिया द्वारा कागज पर ऊपर तक पहुंच सके।
- 3. जब विलायक अग्रभाग शीर्ष के निकट पहुंच जाए तो क्रोमैटोग्राम को हटा दें और विलायक अग्रभाग को तुरंत चिह्नित करें।

डी. दृश्यावलोकन

- 1. क्रोमैटोग्राम को सुखाएं.
- 2. क्रोमैटोग्राम पर उपयुक्त दृश्य एजेंट (जैसे, धातु आयनों के लिए अमोनियम सल्फाइड) का छिड़काव करें।
- 3. पहचान के लिए कागज़ को रंग विकसित होने दें।

अवलोकन और माप

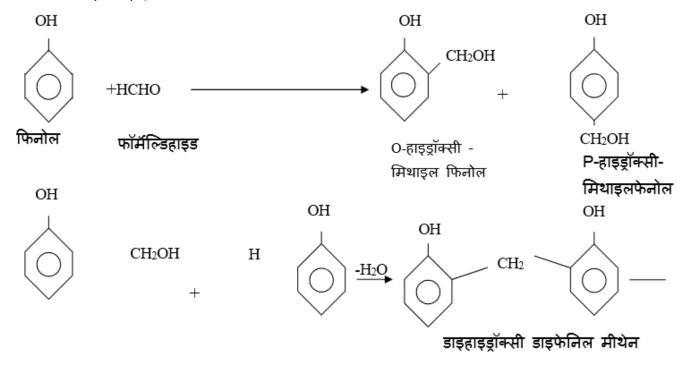
- प्रत्येक आयन स्पॉट द्वारा तय की गई दूरी (आधार रेखा से स्पॉट के केंद्र तक) मापें।
- विलायक अग्रभाग द्वारा तय की गई दूरी मापें।

<u>गणना</u>

प्रत्येक आयन के लिए, Rf मान की गणना करें या प्रत्येक आयन के लिए, सूत्र का उपयोग करके **Rf मान की गणना करें:**Rf = विलायक द्वारा तय की गई दूरी / आयन द्वारा तय की गई दूरी

<u>परिणाम</u>

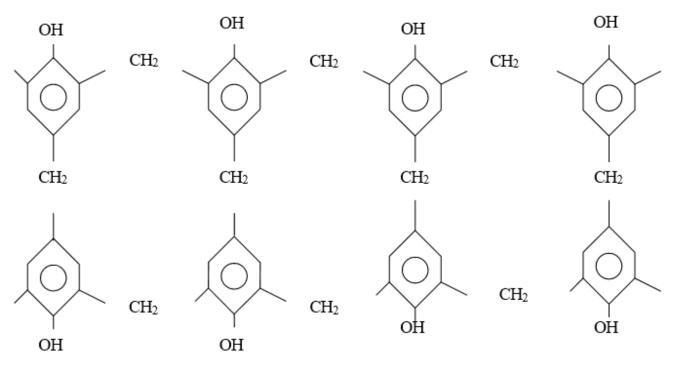
अज्ञात मिश्रण में आयनों के Rf मान निर्धारित किए जाते हैं और पहचान के लिए मानक संदर्भों के साथ मिलान किया जाता है।


<u> फिनोल फॉर्मेल्डिहाइड रेज़िन</u>

उद्देश्य:- फिनोल फॉर्मेल्डिहाइड रेज़िन तैयार करना।

उपकरण:- बीकर, कांच की छड़, कीप, फिल्टर पेपर और रासायनिक संतुलन।

रसायन:- फिनोल फॉर्मेल्डिहाइड, सान्द्र HCl, ग्लेशियल एसिटिक एसिड, आसुत जल।


सिद्धांत:- फेनोलिक रेजिन फेनोलिक ट्युत्पन्न (जैसे फिनोल, रेसोर्सिनॉल) का एल्डिहाइड (जैसे फॉर्मेल्डिहाइड, फुरफुरल) के साथ संघनन बहुलकीकरण है। इस वर्ग का सबसे महत्वपूर्ण सदस्य बैकलाइट या फिनोल फॉर्मेल्डिहाइड रेजिन है। फिनोल फॉर्मेल्डिहाइड को अम्लीय या क्षारीय उत्प्रेरक की उपस्थिति में फिनोल को फॉर्मेल्डिहाइड के साथ संघनित करके तैयार किया जाता है। प्रारंभिक प्रतिक्रिया के परिणामस्वरूप ओ- और पी - हाइड्रॉक्सीमेथिलफेनॉल का निर्माण होता है, जो

$$- CH_2 \longrightarrow CH_2$$

नोवोलैक

प्रतिक्रिया रैखिक बहुलक नवलैक बनाने के लिए । ढलाई हेक्सामेथिलीन टेट्रामाइन $[(CH2)_6N4]$ मिलाया जाता है जो गलने योग्य नोवलैक को कठोर , अगलने योग्य और क्रॉस-लिंक्ड संरचना वाले अघुलनशील ठोस में परिवर्तित कर देता है जिसे बैकेलाइट के रूप में जाना जाता है।

बेक्लाइट

प्रक्रिया:-

- 1. 100 मिलीलीटर बीकर में 5 मिलीलीटर ग्लेशियल एसिटिक एसिड और मिलीलीटर 40% फॉर्मेल्डिहाइड घोल डालें।
- 2. इसमें 2 ग्राम फिनोल मिलाएं।
- 3. मिश्रण में कुछ मिली सान्द्र HCI सावधानी से डालें और इसे हल्का गर्म करें।
- 4. रंग का प्लास्टिक का एक बड़ा पिंड निर्मित होता है ।
- 5. अवशेष को पानी से धोकर छान लिया जाता है।
- 6. उत्पाद को सुखाया जाता है और उपज का वजन किया जाता है।

सावधानियां:-

- 1. सान्द्र HCI मिलाते समय बीकर से थोड़ी दूर रहना बेहतर होता है क्योंकि प्रतिक्रिया कभी-कभी तीव्र हो जाती है।
- 2. प्रतिक्रिया मिश्रण को लगातार हिलाया जाना चाहिए।

अवलोकन:-

बीकर का द्रव्यमान (W1) = g.
फिनोल फॉर्मेल्डिहाइड (W2) वाले बीकर का द्रव्यमान = g.
इसलिए फिनोल फॉर्मेल्डिहाइड का द्रव्यमान $(W2-W1) =g$
परिणाम:- फिनोल फॉर्मेल्डिहाइड की उपज =g है

स्टार्च-आधारित बायोप्लास्टिक का संश्लेषण और लक्षण वर्णन

उद्देश्य:

स्टार्च से जैवनिम्नीकरणीय प्लास्टिक का संश्लेषण करना तथा इसके भौतिक और रासायनिक गुणों का मूल्यांकन करना।

सामग्री:

कच्चा माल:

- o कॉर्नस्टार्च या आलू स्टार्च (10 ग्राम)
- सिरका (एसिटिक एसिड, 5 एमएल)
- o ग्लिसरॉल (प्लास्टिसाइज़र, 3mL)
- o आसुत जल (100mL)

उपकरण:

- o बीकर (250mL)
- ० गर्म प्लेट या स्टोव
- क्रियाशीलता रॉड
- मापने का सिलेंडर
- पेट्री डिश या सपाट साँचा
- ओवन (तेजी से सुखाने के लिए वैकल्पिक)

प्रक्रिया:

चरण 1: बायोप्लास्टिक मिश्रण की तैयारी

- 1. 10 ग्राम स्टार्च मापें और इसे 250 एमएल बीकर में रखें।
- 2. 100 मिलीलीटर आसुत जल डालें और स्टार्च घुलने तक हिलाएं।
- 3. पीएच को समायोजित करने और घुलनशीलता में सुधार करने के लिए $5 \mathrm{mL}$ सिरका मिलाएं।
- 4.~~3mL ग्लिसरॉल मिलाएं (लचीलेपन के लिए समायोजित करें; अधिक ग्लिसरॉल = नरम प्लास्टिक)।
- 5. एकरूपता सुनिश्चित करने के लिए मिश्रण को अच्छी तरह हिलाएं।

चरण 2: गर्म करना और जिलेटिनाइज़ेशन

- 1. बीकर को गर्म प्लेट पर रखें और लगातार हिलाते हुए 75-90 डिग्री सेल्सियस पर गर्म करें।
- 2. जैसे-जैसे मिश्रण गर्म होगा, यह गाढ़ा हो जाएगा और पारभासी हो जाएगा (लगभग 5-10 मिनट लगते हैं)।
- 3. जब जेल जैसी स्थिरता प्राप्त हो जाए तो इसे आंच से उतार लें।

चरण 3: मोल्डिंग और सुखाना

- 1. गाढ़े मिश्रण को पेट्री डिश या सपाट सांचे में डालकर पतली परत बना लें।
- 2. इसे 24-48 घंटे तक हवा में सूखने दें या 3-5 घंटे के लिए 50-60 डिग्री सेल्सियस पर ओवन में रखें।
- 3. एक बार सूख जाने पर, विश्लेषण के लिए बायोप्लास्टिक शीट को सावधानीपूर्वक छील लें।

बायोप्लास्टिक का लक्षण वर्णन

1. भौतिक गुण

- स्वरूप: रंग, पारदर्शिता और बनावट का अवलोकन करें।
- लचीलापन परीक्षण: बायोप्लास्टिक को मोड़कर उसकी लचीलापन जांच लें।

2. जल अवशोषण परीक्षण

- ullet बायोप्लास्टिक के एक छोटे टुकड़े का वजन करें (प्रारंभिक वजन, W_0)।
- इसे 24 घंटे तक पानी में भिगोएं, फिर निकालें और पुनः वजन करें (W_1) ।
- जल अवशोषण प्रतिशत (WA%) की गणना करें

$$WA\% = W_1 - W_0 / W_0 *100$$

3. बायोडिग्रेडेबिलिटी टेस्ट

- एक नमूने को नम मिट्टी में दबा दें और 1-2 सप्ताह तक परिवर्तन देखें।
- समान परिस्थितियों में पारंपरिक प्लास्टिक नमूने के साथ तुलना करें।

अवलोकन एवं चर्चा

- 1. ग्लिसरॉल सांद्रता लचीलेपन को कैसे प्रभावित करती है?
- 2. बायोप्लास्टिक की मजबूती और जल प्रतिरोधिता की तुलना व्यावसायिक प्लास्टिक से किस प्रकार की जाती है?
- 3. बेहतर स्थायित्व के लिए क्या सुधार किए जा सकते हैं?

<u>निष्कर्ष</u>

यह प्रयोग स्टार्च आधारित बायोप्लास्टिक के संश्लेषण को सफलतापूर्वक प्रदर्शित करता है, तथा सिंथेटिक प्लास्टिक की तुलना में इसकी जैवनिम्नीकरणीयता और पर्यावरणीय लाभों पर प्रकाश डालता है।

सुरक्षा सावधानियां:

- 1. गर्म घोल को सावधानी से संभालें।
- 2. हीटिंग करते समय अच्छे हवादार क्षेत्र में काम करें।

गैस क्रोमैटोग्राफी-मास स्पेक्ट्रोमेट्री (जीसी-एमएस)

उद्देश्य:

गैस क्रोमैटोग्राफी-मास स्पेक्ट्रोमेट्री (जीसी-एमएस) के सिद्धांतों को समझना ।

सिद्धांत:

गैस क्रोमैटोग्राफी (जीसी):

- वाष्पशील और अर्ध-वाष्पशील यौगिकों का विश्लेषण करने के लिए प्रयुक्त एक पृथक्करण तकनीक।
- घटकों को उनके क्वथनांक और ध्रुवता के आधार पर अलग करता है।
- नमूने को स्थिर चरण (केशिका स्तंभ) के माध्यम से परिवहन करने के लिए एक निष्क्रिय वाहक गैस (जैसे, हीलियम या नाइट्रोजन) का उपयोग किया जाता है।

मास स्पेक्ट्रोमेट्री (एमएस):

- ullet यौगिकों को उनके द्रव्यमान-आवेश अनुपात (m/z) के आधार पर पहचानता है।
- जी.सी.-पृथक किए गए घटक आयनीकरण कक्ष में प्रवेश करते हैं, जहां वे आयनित और खंडित हो जाते हैं।
- द्रव्यमान विश्लेषक आयनों को छांटता है, और डिटेक्टर प्रत्येक आयन की प्रचुरता को रिकॉर्ड करके द्रव्यमान स्पेक्ट्रम उत्पन्न करता है।

जीसी-एमएस के अनुप्रयोग:

- पर्यावरण विज्ञान: प्रदूषकों (जैसे, कीटनाशक, हाइड्रोकार्बन) का पता लगाना।
- फोरेंसिक: दवाओं, विषाक्त पदार्थों या विस्फोटकों की पहचान करना।
- खाद्य उद्योग: संदूषकों, स्वाद यौगिकों और परिरक्षकों का पता लगाना।
- फार्मास्यूटिकल्स: दवाओं में सक्रिय अवयवों का विश्लेषण करना।

सामग्री और उपकरण:

- जीसी-एमएस उपकरण (शिमादज़्)
- विश्लेषण हेतु नमूना (आवश्यक तेल, वाष्पशील कार्बनिक यौगिक, या अज्ञात मिश्रण)
- नमूना तैयार करने के लिए विलायक (इथेनॉल, मेथनॉल, या हेक्सेन)
- माइक्रो-सिरिंज (1–10 μL)

प्रक्रिया:

चरण 1: नमूना तैयार करना

- 1. यदि तरल नमूना (जैसे, आवश्यक तेल या कार्बनिक विलायक अर्क) का उपयोग किया जा रहा है:
 - \circ नमूने के 1 भाग को 10 भाग विलायक (1:10 तनुकरण) के साथ पतला करें।
 - यदि आवश्यक हो तो फ़िल्टर करें.
- 2. यदि ठोस नमूना (जैसे, दवा या खाद्य पदार्थ का नमूना) उपयोग किया जा रहा है:
 - विलायक निष्कर्षण का उपयोग करके निकालें (इथेनॉल में भिगोएं, फिर छान लें)।

चरण 2: उपकरण सेटअप

- 1. सुनिश्चित करें कि वाहक गैस (हीलियम या नाइट्रोजन) सही ढंग से प्रवाहित हो रही है।
- 2. जीसी पैरामीटर (तापमान कार्यक्रम, प्रवाह दर, स्तंभ प्रकार) सेट करें।
- 3. एमएस आयनीकरण मोड (इलेक्ट्रॉन आयनीकरण ईआई, या रासायनिक आयनीकरण सीआई) चुनें।

चरण 3: नमूना इंजेक्शन और विश्लेषण

- 1. तैयार नम्ने के $1-2~\mu L$ को माइक्रो-िसिरंज का उपयोग करके GC इंजेक्टर में इंजेक्ट करें।
- 2. विभिन्न यौगिकों के अनुरूप चोटियों को दर्शाने वाले क्रोमैटोग्राम का अवलोकन करें।
- 3. यौगिकों की पहचान उनके द्रव्यमान स्पेक्ट्रा की तुलना संदर्भ डेटाबेस से करके करें।

डेटा विश्लेषण और व्याख्या:

1. क्रोमैटोग्राम विश्लेषण:

- प्रत्येक शिखर नमूने में एक यौगिक का प्रतिनिधित्व करता है।
- $_{\circ}$ अवधारण समय (RT): यह दर्शाता है कि प्रत्येक यौगिक को स्तंभ से गुजरने में कितना समय लगता है।

2. मास स्पेक्ट्रम व्याख्या:

- $_{\circ}$ यौगिक के आणविक भार के अनुरूप आणविक आयन शिखरों $(\mathbf{M}^{\scriptscriptstyle +})$ की पहचान करें।
- आणविक संरचना निर्धारित करने के लिए विखंडन पैटर्न का निरीक्षण करें।
- यौगिकों की पहचान के लिए NIST लाइब्रेरी डेटाबेस से तुलना करें।

परिणाम एवं चर्चा:

नमूने में मौजूद प्रमुख यौगिकों की पहचान करें।

निष्कर्ष:

- प्रयोग ने जीसी-एमएस की वाष्पशील यौगिकों को अलग करने, पहचानने और मात्रा निर्धारित करने की क्षमता को प्रदर्शित किया।
- सटीक यौगिक पहचान के लिए अवधारण समय, द्रव्यमान स्पेक्ट्रा और विखंडन पैटर्न को समझना आवश्यक है।

सुरक्षा सावधानियां:

- 1. वाष्पशील विलायकों को संभालते समय अच्छे हवादार क्षेत्र में काम करें।
- 2. नमूने तैयार करते और इंजेक्ट करते समय दस्ताने और सुरक्षा चश्मा पहनें।
- 3. संदूषण से बचने के लिए सुनिश्चित करें कि $GC ext{-}MS$ उपकरण का उचित रखरखाव किया गया है।

परमाणु अवशोषण स्पेक्ट्रोस्कोपी (एएएस)

<u> उद्देश्य</u>

परमाणु अवशोषण स्पेक्ट्रोस्कोपी (एएएस) के सिद्धांतों का अध्ययन और समझना तथा इसके अनुप्रयोगों का पता लगाना ।

<u>परिचय</u>

परमाणु अवशोषण स्पेक्ट्रोस्कोपी (AAS) एक शक्तिशाली विश्लेषणात्मक तकनीक है जिसका उपयोग विभिन्न नमूनों में धातु तत्वों की सांद्रता को मापने के लिए किया जाता है। स्पेक्ट्रोस्कोपी, सामान्य रूप से, इस बात का अध्ययन करती है कि विकिरणित ऊर्जा पदार्थ के साथ कैसे परस्पर क्रिया करती है। जब पदार्थ ऊर्जा को अवशोषित करता है, तो उसके परमाणु उत्तेजित अवस्था में चले जाते हैं, जिससे एक अद्वितीय अवशोषण स्पेक्ट्रम बनता है। यह स्पेक्ट्रम एक "फिंगरप्रिंट" के रूप में कार्य करता है, जिससे विभिन्न तत्वों की सटीक पहचान और मात्रा का पता लगाना संभव हो जाता है।

सिद्धांत

एएएस मुक्त परमाणुओं की प्रकाश की विशिष्ट तरंगदैर्घ्य को अवशोषित करने की क्षमता पर आधारित है। नमूने द्वारा अवशोषित प्रकाश की तुलना मानक प्रकाश से करके, नमूने में किसी विशेष तत्व की सांद्रता निर्धारित की जा सकती है। यह तकनीक अत्यधिक संवेदनशील और सटीक है, जो इसे ट्रेस मेटल विश्लेषण के लिए उपयुक्त बनाती है।

एएएस उपकरण के घटक

- विकिरण स्रोत: आमतौर पर एक खोखला कैथोड लैंप, जिसका डिजाइन विश्लेषण किये जाने वाले तत्व के लिए किया जाता है।
- 2. **एटमाइजर** : नमूने को मुक्त परमाणुओं में परिवर्तित करता है; आमतौर पर एक लौ या ग्रेफाइट भट्ठी का उपयोग करता है।
- 3. **सैम्पलर** : नमूने को एटमाइजर में डालता है।
- 4. तरंगदैर्घ्यं चयनकर्ताः रुचिकर तत्व द्वारा अवशोषित तरंगदैर्घ्यं को अलग करने के लिए प्रकाश को फ़िल्टर करता है।
- 5. **डिटेक्टर** : अवशोषित प्रकाश की तीव्रता को मापता है और उसे विद्युत संकेत में परिवर्तित करता है।
- 6. वायवीय नेबुलाइजर: तरल नमूने को एक महीन एरोसोल में परिवर्तित करता है।

7. एम्पलीफायर और सिग्नल प्रोसेसर: सटीक रीडिंग के लिए विद्युत संकेतों को संसाधित और प्रवर्धित करता है।

प्रक्रिया:-

- 1. तैयारी: सबसे पहले मानक घोलों का उपयोग करके प्रणाली को अंशांकित किया जाता है, तथा नमूना तैयार किया जाता है तथा किसी भी अशुद्धता को दूर करने के लिए उसे धोया जाता है।
- 2. <u>नम्ना परिचय</u>: नम्ना वायवीय नेबुलाइज़र में चूसा जाता है, जो एक महीन एरोसोल उत्पन्न करता है। इस एरोसोल को फिर फ्लेम गैस (जैसे, एसिटिलीन) के साथ मिलाया जाता है और लौ में डाला जाता है।
- 3. **परमाणुकरण:** एरोसोल को उच्च ज्वाला तापमान (~2800°C) के अधीन किया जाता है, जहाँ निम्नसिद्धांत चरण होते हैं:
 - 。 <u>उजाड</u>: विलायक वाष्पित हो जाता है।
 - o वाष्पीकरण: नमूना गैसीय अणुओं में परिवर्तित हो जाता है।
 - परमाणुकरणः अणु मुक्त परमाणुओं में टूट जाते हैं।
 - आयनीकरण: आयनीकरण क्षमता के आधार पर, परमाणु आयनों में परिवर्तित हो सकते हैं।
- 4. <u>पता लगाना</u>: एक खोखला कैथोड लैंप विशिष्ट तरंगदैर्घ्य पर प्रकाश उत्सर्जित करता है, जिसे नमूने के मुक्त परमाणुओं द्वारा अवशोषित कर लिया जाता है। अवशोषित प्रकाश की मात्रा को मापा जाता है और तत्व की सांद्रता से सहसंबंधित किया जाता है।

सिद्धांत

अवशोषण और सांद्रता के बीच संबंध को बीयर-लैम्बर्ट नियम द्वारा वर्णित किया गया है:

$$A = \varepsilon * l * c$$

कहाँ:

- A = नमूने की अवशोषण क्षमता.
- ε = मोलर क्षीणन गुणांक।
- । = ऑप्टिकल पथ लंबाई.
- c = विश्लेष्य की सांद्रता.

<u> उपकरण</u>

- <u>मॉडल</u>: शिमादज़् AA-700.
- **तरंगदैर्घ्य रेंज** : 185–200 एनएम.
- **ईंधन:** अधिकांश अनुप्रयोगों के लिए वायु-एसिटिलीन (C₂H₂) मिश्रण, तथा उच्च तापमान आवश्यकताओं के लिए नाइट्रस ऑक्साइड-एसिटिलीन (N₂O-C₂H₂) का उपयोग करने का विकल्प उपलब्ध है।
- सिस्टम: वास्तविक समय डेटा अधिग्रहण, विश्लेषण और परिणाम व्याख्या के लिए कंप्यूटर से जुड़ा ह्आ।

सावधानियां

- 1. भारी धातुओं को संभालते समय हमेशा नाइट्राइल रबर के दस्ताने पहनें, क्योंकि वे विषाक्त और कैंसरकारी होते हैं।
- 2. एसिटिलीन गैस को संभालते समय अत्यधिक सावधानी बरतें, क्योंकि यह अत्यधिक ज्वलनशील होती है।

परिणाम और अनुप्रयोग

- <u>परिणाम विश्लेषण:</u> धातुओं की सांद्रता इलेक्ट्रॉनिक संकेतों और प्लॉट किए गए ग्राफ़ का उपयोग करके निर्धारित की जाती है। डेटा अज्ञात नमूनों की सांद्रता का सटीक अनुमान लगाने की अनुमति देता है।
- <u>अनुप्रयोग</u>: AAS का व्यापक रूप से विष विज्ञान, पर्यावरण विश्लेषण, रासायनिक उद्योग और दवा अनुसंधान में पानी, जैविक नमूनों और औद्योगिक सॉल्वैंट्स में भारी धातुओं के ट्रेस स्तरों का पता लगाने के लिए उपयोग किया जाता है।

पेंट का संश्लेषण

उद्देश्य:

प्राकृतिक या कृत्रिम रंगद्रव्य और बाइंडर का उपयोग करके एक सरल जल-आधारित पेंट का संश्लेषण करना, तथा परिणामी पेंट के गुणों का अध्ययन करना।

सामग्री:

1. वर्णक:

- o प्राकृतिक: हल्दी (पीला), चारकोल (काला), चुकंदर पाउडर (लाल)
- o सिंथेटिक: टाइटेनियम डाइऑक्साइड (सफेद), आयरन ऑक्साइड (लाल/पीला)

बाइंडर:

o पॉलीविनाइल एसीटेट (PVA) गोंद या ऐक्रेलिक माध्यम

3. विलायक:

o पानी (पानी आधारित पेंट के लिए)

4. योजक:

- ग्लिसरीन (लचीलापन बढ़ाने के लिए)
- o बर्तन धोने का साबुन (प्रवाह सुधारने के लिए)
- ० परिरक्षक (वैकल्पिक, दीर्घायु के लिए)

उपकरण:

- मोर्टार और मूसल (रंगद्रव्य पीसने के लिए)
- o मापने वाले कप/चम्मच
- स्टिरिंग रॉड या स्पैटुला
- ० पेंट ब्रश
- नमूना सतहें (कागज़, कैनवास, लकड़ी)

प्रक्रिया:

1. वर्णक तैयारी:

- यदि प्राकृतिक रंगद्रव्य का उपयोग कर रहे हैं, तो सामग्री को ओखल और मूसल का उपयोग करके बारीक पीस लें।
- एक समान कण आकार प्राप्त करने के लिए पाउडर को छान लें।

2. बाइंडर तैयारी:

o बाइंडर बनाने के लिए पीवीए गोंद या ऐक्रेलिक माध्यम को पानी के साथ $1{:}1$ अनुपात में मिलाएं।

3. पेंट संश्लेषण:

- o वांछित रंग की तीव्रता प्राप्त होने तक धीरे-धीरे पिगमेंट को बाइंडर में मिलाते हुए लगातार हिलाते रहें।
- ० थोड़ी मात्रा में ग्लिसरीन मिलाएं तथा बेहतर प्रवाह के लिए बर्तन धोने का साबुन मिलाएं।
- एकरूपता सुनिश्चित करने के लिए अच्छी तरह मिलाएं।

4. अनुप्रयोग और परीक्षण:

- संश्लेषित पेंट को विभिन्न सतहों पर लगाएं।
- ० रंग की तीव्रता, आसंजन और लचीलेपन जैसे गुणों का निरीक्षण करें और रिकॉर्ड करें।

5. विश्लेषण और चर्चा:

- o पेंट में प्रत्येक घटक की भूमिका पर चर्चा करें।
- प्राकृतिक बनाम सिंथेटिक रंगों से बने पेंट के गुणों की तुलना करें।
- o पता लगाएं कि बाइंडर-टू-पिगमेंट अनुपात में परिवर्तन से पेंट के गुण कैसे प्रभावित होते हैं।

सावधानियां:

- 1. दस्ताने और सुरक्षा चश्मा पहनें।
- 2. साँस के द्वारा अंदर जाने से बचने के लिए रंगों को सावधानी से संभालें।

अधिशोषक का संश्लेषण

उद्देश्य:

बायोमास से सक्रिय कार्बन का संश्लेषण करना तथा जल शुद्धिकरण के लिए इसकी अवशोषण क्षमता का मूल्यांकन करना।

सामग्री:

1. कच्चा माल (शोषक के लिए अग्रदूत):

० नारियल के छिलके, चावल की भूसी, चूरा, या मकई का भुट्टा

2. सक्रियण के लिए रसायन (वैकल्पिक):

 $_{\circ}$ रासायनिक सक्रियण के लिए फॉस्फोरिक एसिड ($H_{3}PO_{4}$) या जिंक क्लोराइड ($ZnCl_{2}$)

3. अन्य सामग्री एवं उपकरण:

- मफल भट्टी या नियमित भट्टी
- o बीकर, चिमटे और क्रूसिबल
- आसुत जल
- ० पीएच मीटर
- सरगर्मी छड़ें
- ० फिल्टर पेपर
- मापने का सिलेंडर

प्रक्रिया:

चरण 1: बायोमास की तैयारी

- 1. गंदगी और अशुद्धियों को हटाने के लिए कच्चे माल को इकट्ठा करें और साफ करें।
- 2. सामग्री को सूर्य की रोशनी में या ओवन में $110^{\circ} C$ पर 2 घंटे तक सुखाएं।
- 3. सूखे पदार्थ को छोटे टुकड़ों या पाउडर में पीस लें।

चरण 2: कार्बनीकरण

- 1. सूखी सामग्री को एक क्रूसिबल में रखें।
- 2. इसे हवा की अनुपस्थिति में 2 घंटे के लिए 400-700 डिग्री सेल्सियस पर भट्टी में गर्म करें (पाइरोलिसिस)।

3. कार्बनीकृत पदार्थ को ठंडा करें और काले कार्बन अवशेष को एकत्र करें।

चरण 3: सक्रियण

- कार्बोनेटेड पदार्थ को फॉस्फोरिक एसिड (20-50% घोल) या जिंक क्लोराइड (10-30% घोल) के साथ मिलाएं और इसे 12-24 घंटे तक भिगो दें।
- 2. मिश्रण को पुनः $500-800^{\circ}$ C पर भट्ठी में 1 घंटे तक गर्म करें।
- 3. तटस्थ पीएच प्राप्त होने तक आसुत जल से धोएँ।
- 4. सिक्रय कार्बन को 110° C पर 2 घंटे तक ओवन में सुखाएं।

चरण 4: अवशोषण दक्षता का परीक्षण

- 1. दूषित जल का नमूना तैयार करें (प्रदूषक के रूप में रंगीन डाई, भारी धातु या गन्देपन का उपयोग करें)।
- 2. संश्लेषित अधिशोषक की ज्ञात मात्रा जल के नमूने में डालें और 30-60 मिनट तक हिलाएं।
- 3. पानी को छानें और विश्लेषण करें:
 - मैलापन में कमी: स्पष्टता से पहले/बाद में निरीक्षण करें और तुलना करें।
 - पीएच परिवर्तन: अवशोषण से पहले और बाद में पीएच मापें।
 - o रंग हटाना: रंग हटाने की दक्षता के लिए स्पेक्ट्रोफोटोमीटर का उपयोग करें।

विश्लेषण और चर्चा:

- 1. वाणिज्यिक सिक्रिय कार्बन के साथ अधिशोषक प्रदर्शन की तुलना करें।
- 2. चर्चा करें कि विभिन्न तापमान और सक्रियण विधियाँ अधिशोषण दक्षता को किस प्रकार प्रभावित करती हैं।
- 3. जल शुद्धिकरण के लिए वास्तविक दुनिया के अनुप्रयोगों का अन्वेषण करें।

सावधानियां:

- 1. एसिड को संभालते समय दस्ताने और सुरक्षा चश्मे का प्रयोग करें।
- 2. अच्छी तरह हवादार क्षेत्र या धुंआ हुड में हीटिंग का संचालन करें।