इलेक्ट्रॉनिक्स सर्किट प्रयोगशाला

Electronics Circuit Lab

(EC 217)

(बी टेक III सेमेस्टर / B Tech III Semester)

(प्रयोगशाला मैनुअल) Lab Manual

(2024-25)

इलेक्ट्रॉनिक्स एवं संचार अभियांत्रिकी विभाग

Department of Electronics and Communication Engineering

मौलाना आजाद राष्ट्रीय प्रौद्योगिकी संस्थान, भोपाल- ४६२००३

Maulana Azad National Institute of Technology Bhopal-462003

इलेक्ट्रॉनिक्स सर्किट प्रयोगशाला

Electronics Circuit Lab

(प्रयोगशाला मैनुअल)

Lab Manual

कार्यक्रम : प्रौद्योगिकी में स्नातक

Program : Bachelor of Technology

विशेषज्ञता : इतेक्ट्रॉनिक्स और संचार अभियांत्रिकी

Specialization : Electronics and Communication Engineering

सेमेस्टर : III

Semester : III

पाठ्यक्रम कोड : EC 217

Course Code : EC 217

डॉ. राहुल कुमार चौरसिया (प्रयोगशाला समन्वयक) द्वारा तैयार

Prepared by Dr. Rahul Kumar Chaurasiya (Laboratory Coordinator)

मौलाना आजाद राष्ट्रीय प्रौद्योगिकी संस्थान, भोपाल- ४६२००३

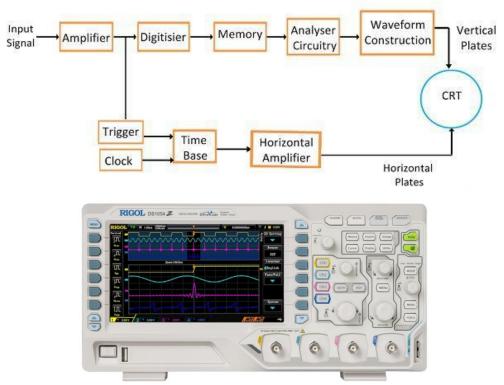
Maulana Azad National Institute of Technology Bhopal-462003

इलेक्ट्रॉनिक्स एवं संचार अभियांत्रिकी विभाग Department of Electronics and Communication Engineering इलेक्ट्रॉनिक सर्किट प्रयोगशाला (EC-217) Electronic Circuits Lab (EC-217) प्रयोगों की सूची List of Experiments

क्रमांक	प्रयोग	पृष्ठ
S.N.	Experiment	संख्या
		Page No.
1	मल्टी-मीटर, डीएसओ (DSO), फ़ंक्शन जनरेटर और विद्युत आपूर्ति जैसे विभिन्न इलेक्ट्रॉनिक	
	उपकरणों का अध्ययन	
	Study of various electronic instruments such as multi-meter, DSO, function generator and	
	power supply	
2	डीएसओ (DSO) पर साइन तरंग, वर्ग तरंग और त्रिकोणीय तरंग रूपों का निरीक्षण करना	
	और तरंग रूपों के आयाम और आवृत्ति को मापना	
	To observe sine wave, square wave and triangular waveforms on DSO and to measure	
	amplitude and frequency of the waveforms	
3	PN संगम डायोड की अग्रिम और प्रतिलोम विशेषताओं का अध्ययन करें और कट-इन विद्युत	
	दाब, ब्रेकडाउन विद्युत दाब और स्थैतिक प्रतिरोध तथा गतिशील प्रतिरोध का पता लगाएं	
	Study the forward and reverse characteristics of the PN junction diode and find cut-in,	
	voltage, breakdown voltage, and static and dynamic resistance	
4	अर्ध तरंग दिष्टकारी (हाफ-वेव रेक्टिफायर) परिपथ का अध्ययन करना और इसके तरंग	
	कारक और दक्षता की गणना करना	
	To study the half-wave rectifier circuit and calculate its ripple factor and efficiency	
5	पूर्ण तरंग दिष्टकारी (फुल वेव रेक्टिफायर) परिपथ का अध्ययन करना और इसके तरंग	
	कारक और दक्षता की गणना करना	
	To study the full wave rectifier circuit and calculate its ripple factor and efficiency	
6	जेनर डायोड की VI विशेषताएँ प्लॉट करें, तथा नीचे लिखे मापदंडों को मापें	
	(i) प्रतिलोम पूर्वाग्रह स्थितियों में ब्रेकडाउन विद्युत दाब	
	(ii) अग्रिम और प्रतिलोम पूर्वाग्रह स्थितियों में स्थैतिक प्रतिरोध और गतिशील प्रतिरोध की गणना करें	
	To plot VI characteristics of the Zener diode and determine	
	(i) Breakdown voltage in reverse biased condition	
	(ii) Calculate static resistance and dynamic resistance in both forward and	
7	reverse bias condition प्रयोविद्युत दाब नियामक के रूप में जेनर डायोड के संचालन का अध्ययन और निष्पादन करें	
/	9	
0	Study and perform the operation of the Zener Diode as a voltage Regulator कॉमन एमिटर और कॉमन बेस मोड में ट्रांजिस्टर प्रवर्धक का अध्ययन करें	
8	^	
9	Study of Transistor Amplifier in Common Emitter and Common Base mode विभिन्न पूर्वाग्रह तकनीक द्वारा बाइपोलर जंक्शन ट्रांजिस्टर (BJT) के विद्युत दाब के लाभ की	
9	ाताबठन त्रैताञ्चछ सक्तनाक शिंदा बाइताहार गतज्ञाच र्राएकडटर (R11) क सिर्वेस शृंब क द्राम्न का	

	गणना करें	
	Calculate the voltage gain of the Bipolar Junction Transistor (BJT) by different biasing	
	techniques	
10	प्रवर्धक के रूप में ट्रांजिस्टर की विशेषताओं का अध्ययन और प्रदर्शन करें	
	Study and perform the characteristics of a Transistor as an Amplifier	
11	फ़ील्ड इफ़ेक्ट ट्रांजिस्टर (FET) की विशेषताओं का अध्ययन और आलेखन करें	
	Study and plot the characteristics of the Field Effect Transistor	
12	फ़ील्ड इफ़ेक्ट ट्रांजिस्टर (FET) प्रवर्धक की विशेषताओं का अध्ययन और आलेखन करें	
	Study and plot the characteristics of the FET Amplifier	
13	धातु-ऑक्साइड-अर्धचालक क्षेत्र-प्रभाव ट्रांजिस्टर (MOSFET) की विशेषताओं का अध्ययन	
	और आलेखन करें	
	Study and plot the characteristics of MOSFET	

Additional Experiments Added


Ī	14	DC को AC में परिवर्तित करने के लिए MOSFET का उपयोग करके वोल्टेज इन्वर्टर को	
		डिज़ाइन और कार्यान्वित करें।	
		Design and implement a voltage inverter using a MOSFET to convert DC to AC.	
	15	MOSFET का उपयोग करके उद्ध-आवृत्ति आरएफ एम्पतीफायर का डिज़ाइन, निर्माण और	
		परीक्षण करें। इसके लाभ, बैंडविड्थ और स्थिरता विशेषताओं की जांच करें	
		Design, build, and test a high-frequency RF amplifier using a MOSFET. Investigate its gain, bandwidth, and stability characteristics	

The state of the s	प्रयोग 5		
विभाग	इतेक्ट्रॉनिक्स एवं संचार अभियांत्रिकी	स्रत्र	२०२३- २४
शिक्षक का नाम	डॉ. राहुत कुमार चौरसिया	कार्यक्रम	बी टेक
विषय	इलेक्ट्रॉनिक सर्किट प्रयोगशाला (EC-217)	सेमेस्टर	III

उद्देश्य: मल्टी-मीटर, डीएसओ (DSO), फंक्शन जनरेटर और विद्युत आपूर्ति जैसे विभिन्न इलेक्ट्रॉनिक उपकरणों का अध्ययन

डिजिटल स्टोरेज ऑसिलोस्कोप (डीएसओ)

डिजिटल स्टोरेज ऑशिलोस्कोप (डीएसओ) एक इलेक्ट्रॉनिक उपकरण हैं जिसका उपयोग विद्युत संकेतों को देखने और विश्लेषण करने के लिए किया जाता हैं। यह एनालॉग सिग्नल को कैप्चर करता हैं, उन्हें डिजिटल रूप में परिवर्तित करता हैं और उन्हें मेमोरी में संग्रह करता हैं, जिससे समय के साथ विस्तृत अवलोकन और माप की क्षमता मिलती हैं। एनालॉग ऑशिलोस्कोप के विपरीत, जो सिग्नल को प्रदर्शित करने के लिए कैथोड़ रे ट्यूब (सीआरटी) का उपयोग करता हैं, डीएसओ सिग्नल को एक डिजिटल स्क्रीन पर प्रदर्शित करता हैं, आमतौर पर उच्च रिज़ॉल्यूअन और अधिक उन्नत सुविधाओं के साथ।

कार्यक्षमता:

- **संकेत कैप्यर**: एनालॉग-टू-डिजिटल कन्वर्टर (ADC) का उपयोग करके एनालॉग सिग्नल को डिजिटल प्रतिनिधित्व में परिवर्तित करता हैं।
- **संकेत भंडारण**: बाद में देखने और विश्लेषण के लिए डिजिटल डेटा को अपनी मेमोरी में संग्रह करता है।
- **अंकेत प्रदर्शन**ः समय और वोल्टेज के समायोज्य पैमाने के साथ डिजिटल स्क्रीन पर संब्रहित सिम्नल प्रस्तृत करता हैं।
- **माप**: सिग्नल के विभिन्न मापडंडों जैसे आयाम, आवृत्ति, पीक-टू-पीक वोल्टेज और उदय समय को मापने के लिए उपकरण प्रदान करता हैं।
- **द्रिगरिग**: पूर्वनिर्धारित मानदंडों जैसे किसी निश्चित वोल्टेज सीमा से अधिक होने पर सिग्नल के विशिष्ट भागों को कैप्चर करने की सुविधा देता हैं।
- **अतिरिक्त सुविधाएँ**: डीएसओ मॉडल के आधार पर विभिन्न उन्नत सुविधाएँ उपलब्ध हो सकती हैं, जैसे कि तरंगरूप तुलना, डेटा निर्यात और संचार क्षमताएं।

एनालॉग ऑसिलोस्कोप की तुलना में लाभ:

- उच्च रिज़ॉल्यूशनः स्पष्ट और अधिक विस्तृत सिग्नल विज़ुअलाइज़ेशन प्रदान करता है।
- वे**वफॉर्स स्टोरेज**: पावर ऑफ होने के बाद भी कैप्चर किए गए सिग्नलों की समीक्षा और विश्लेषण करने में सक्षम बनाता हैं।
- **उन्नत सुविधाएँ**: सटीक विश्लेषण और माप के लिए विभिन्न प्रकार की कार्यक्षमता प्रदान करता है।
- **डिजिटल डिस्प्ले**: विकृति के लिए कम प्रवण और साझा करने और निष्कर्षों का दस्तावेज़ीकरण करने में आसान।

डीएसओ का चयन:

उपयुक्त डीएसओ का चयन आपकी विशिष्ट आवश्यकताओं और बजट पर निर्भर करता हैं। विचार करने योग्य प्रमुख कारकों में शामिल हैं:

- बैंडविड्थ: अधिकतम आवृति जिसे डीएसओ सटीकता से कैप्चर कर सकता है।
- नमुना दर: वह दर जिस पर सिग्नल को डिजिटल किया जाता हैं, जो विवरण और सटीकता को प्रभावित करता है।
- चैंनतों की संख्या: एक साथ कई संकेतों को देखने की क्षमता।
- मेमोरी का आकार: सिग्नल की अवधि निर्धारित करता है जिसे कैप्चर और संग्रहीत किया जा सकता है

Components of a Digital Storage Oscilloscope:

डिजिटल स्टोरेज ऑसिलोस्कोप के घटक:

५ मुख्य घटक हैं:

(i) प्रदर्शन (मापने वाले विद्युत सिग्नल को देखने के लिए)

(ii) वर्टिकत इनपुट चैनत (सिग्नत के आयाम को मापने के तिए)

(iii) हॉरिजॉन्टल इनपुट चैनल (सिम्नल की आवृत्ति को मापने के लिए)

(iv) ट्रिगर (माप प्रक्रिया को शुरू और रोकने के लिए)

(v) एनालॉग टू डिजिटल कन्वर्टर

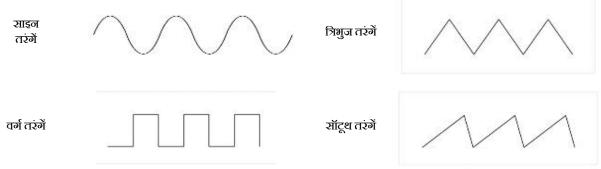
डीएसओ ऑपरेटिंग मोड:

डीएसओ के दो ऑपरेटिंग मोड हैं

- (i) सिंगत-शॉट (ऑसिलोस्कोप एक सिग्नल प्राप्त करता हैं और संग्रहीत करता हैं)
- (ii) दोहराव (ऑसिलोस्कोप लगातार सिग्नल प्राप्त करता है और संग्रहीत करता है)

डीएसओ अनुप्रयोग:

- इतेक्ट्रॉनिक्स डिज़ाइन और डिबगिंग: सर्किट व्यवहार का निरीक्षण और समस्या निवारण के तिए उपयोग किया जाता है।
- सिग्नल विश्लेषण: पावर इलेक्ट्रॉनिक्स, संचार और सिग्नल प्रोसेसिंग जैसे विभिन्न क्षेत्रों में कार्यरत।
- शैक्षिक और अनुसंधान प्रयोगशालाएँ: विद्युत घटनाओं को समझने और प्रदर्शित करने के लिए एक मूल्यवान उपकरण प्रदान करता है।


फ़ंक्शन जेनरेटर

फ़ंक्शन जनरेटर इलेक्ट्रॉनिक उपकरण का एक भाग हैं जिसका उपयोग आवृत्तियों की एक विस्तृत श्रृंखला पर विभिन्न प्रकार के विद्युत तरंगों को उत्पन्न करने के लिए किया जाता हैं। ये तरंगरूप सर्किट के परीक्षण, इलेक्ट्रॉनिक सिस्टम का विश्लेषण करने और उपकरणों को कैलिब्रेट करने के लिए आवश्यक हो सकते हैं।

फ़ंक्शन जनरेटर द्वारा उत्पन्न सामान्य तरंगों में शामिल हैं:

- साइन तरंगें: सहज, दोलन पैटर्न के साथ मौतिक तरंग रूप।
- वर्ग तरंगें: उच्च और निम्न वोल्टेज स्तरों के बीच अचानक परिवर्तन के साथ तरंग।
- त्रिभुज तरंगें: क्रिमक ढलानों के साथ रैंप जैसी तरंग।
- सॉटूथ तरंगें: त्रिकोण तरंगों के समान लेकिन प्रत्येक चक्र के अंत में तेज गिरावट के साथ।

फ्रंक्शन जेनरेटर क्षमताएं:

फ़ंक्शन जनरेटर समायोज्य आयाम, आवृत्ति और ऑफसेट जैसी विभिन्न सुविधाएं प्रदान करते हैं, जिससे उत्पन्न तरंगों पर अच्छा नियंत्रण मिलता हैं। कुछ उन्नत मॉडल अधिक जटिल तरंगरूप भी उत्पन्न कर सकते हैं या डिजिटल मॉड्यूलेशन क्षमताएं प्रदान कर सकते हैं

फ्रंवशन जेनरेटर अनुप्रयोग:

फ़ंक्शन जनरेटर आमतौर पर इलेक्ट्रॉनिक्स विकास विनिर्माण परीक्षण और सेवा विभाग के भीतर उपयोग किए जाते हैं।.

- सर्किट परीक्षण और डिबर्गिग: सर्किट कार्यक्षमता का परीक्षण करने और मुद्दों की पहचान करने के लिए विभिन्न संकेतों का अनुकरण करना।
- घटक लक्षण वर्णनः इलेक्ट्रॉनिक घटकों की आवृत्ति प्रतिक्रिया और लाभ जैसे मापदंडों को मापना।
- अंशांकन के तिए सिग्नत जनरेशन: अंशांकन उपकरणों और सेंसर के तिए संदर्भ संकेत प्रदान करना।
- प्रोटोटाइप विकास: प्रोटोटाइप सर्किट और सिस्टम का परीक्षण करने के लिए वास्तविक दुनिया के संकेतों का अनुकरण करना

बिजली आपूर्ति इकाई

DC बिजली आपूर्ति इकाई एक प्रयोगशाला उपकरण हैं जो मुख्य धारा से प्रत्यावर्ती धारा (एसी) को स्थिर प्रत्यक्ष धारा (DC) वोल्टेज में परिवर्तित करती हैं। यह इलेक्ट्रॉनिक सर्किट और उपकरणों को विनियमित और समायोज्य DC पावर प्रदान करता हैं, जो इलेक्ट्रिकल और इलेक्ट्रॉनिक्स प्रयोगशालाओं में परीक्षण, प्रोटोटाइप और विभिन्न उपकरणों को बिजली देने के लिए आवश्यक हैं।

कार्य:

- वोल्टेज रूपांतरण: एसी वोल्टेज को मेन (आमतौर पर 120V या 230V) से वांछित DC वोल्टेज स्तर में परिवर्तित करता है।
- वोल्टेज विनियमनः इनपुट वोल्टेज में उतार-चढ़ाव या लोड करंट में बदलाव के बावजूद आउटपुट वोल्टेज को स्थिर स्तर पर बनाए रखता हैं। यह संचालित उपकरणों का स्थिर संचालन सुनिश्चित करता हैं।
- करंट लिमिटिंग: उपकरणों को अत्यधिक करंट स्वींचने से क्षितिग्रस्त होने से बचाने के लिए एडजस्टेबल करंट लिमिटिंग प्रदान करता हैं।
- मीटरिग: अधिकांश DC बिजली आपूर्ति में आउटपुट वोल्टेज और करंट की निगरानी के लिए डिस्प्ले या मीटर होते हैं, जो प्रदर्शन के सटीक समायोजन और निगरानी को सक्षम करते हैं।

बिजली आपूर्ति इकाई के प्रकार:

DC बिजली की आपूर्ति -

- (i) रैरिवक विद्युत आपूर्ति
- (ii) स्विच्ड-मोड बिजली आपूर्ति
- (iii) कैंपेसिटिव बिजली आपूर्ति
- (iv) रैरिवक नियामक

एसी बिजली की आपूर्ति-

- (i) एसी एडाप्टर
- (ii) प्रोग्रामयोग्य बिजली आपूर्ति
- (iii) निर्बाध विद्युत आपूर्ति
- (iv) उच्च वोल्टेज बिजली की आपूर्ति
- (v) द्विधुवी विद्युत आपूर्ति

डिजिटल मल्टीमीटर (डी एम एम)

डिजिटल मल्टीमीटर (DMM) एक बहुमुखी उपकरण है जिसका उपयोग डायरेक्ट करंट (DC) और अल्टरनेटिंग करंट (एसी) सर्किट दोनों में विभिन्न विद्युत गुणों को मापने के लिए किया जाता है। यह वोल्टमीटर, एमीटर और ओममीटर जैसे कई अलग-अलग उपकरणों के कार्यों को एक एकल, कॉम्पेक्ट इकाई में जोड़ता है। अपने एनालॉग समकक्ष के विपरीत, DMM बेहतर सटीकता और पठनीयता प्रदान करते हुए माप को डिजिटल रूप से प्रदर्शित करता है।

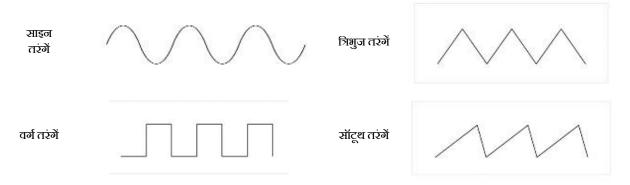
बुनियादी कार्योः

- वोल्टेज माप: सर्किट में दो बिंदुओं के बीच संभावित अंतर (वोल्टेज) को मापता हैं, जो वोल्ट (वी) जैसी इकाइयों में प्रदर्शित होता है।
- वर्तमान माप: एक कंडक्टर के माध्यम से विद्युत आवेश (करंट) के प्रवाह को मापता है, जिसे एम्पीयर (ए) जैसी इकाइयों में प्रदर्शित किया जाता हैं।
- प्रतिरोध माप: किसी कंडक्टर में धारा प्रवाह के विरोध को मापता हैं, जो ओम (Ω) जैसी इकाइयों में प्रदर्शित होता हैं।
- आवृत्ति माप: हर्ट्ज़ (हर्ट्ज) जैसी इकाइयों में प्रदर्शित आवधिक विद्युत सिम्नल के परिवर्तन की दर को मापता है।
- कैपेंसिटेंस माप: विद्युत चार्ज को संब्रहीत करने के लिए एक घटक की क्षमता को मापता हैं, जिसे फैराड (एफ) जैसी इकाइयों में प्रदर्शित किया जाता हैं।
- डायोड परीक्षण: यह निर्धारित करता हैं कि एक डायोड अपने आगे और रिवर्स वोल्टेज विशेषताओं की जांच करके ठीक से काम कर रहा हैं या नहीं।
- निरंतरता परीक्षण: दो बिंदुओं के बीच पूर्ण विद्युत मार्ग की जांच करता है।
- तापमान माप: कुछ DMM उपयुक्त जांच के साथ तापमान माप की पेशकश करते हैं।

DMM का उपयोग करने के लाभ:

- बहुम्र्यी प्रतिभाः एक उपकरण से कई विद्युत गूणों को मापता है।
- सटीकता: एनालॉग मीटर की तलना में अधिक सटीकता के साथ डिजिटल रीडिंग प्रदान करता है।
- उपयोग में आसानी: रपष्ट डिरप्ले और सहज नियंत्रण के साथ संचातित करना आसान।
- पोर्टेबिलिटी: कॉम्पैक्ट आकार इसे विभिन्न अनुप्रयोगों के लिए सुविधाजनक बनाता है।

DMM के अनुप्रयोग:


- इलेक्ट्रॉनिक्स मरम्मत और समस्या निवारण: वोल्टेज, धारा और प्रतिरोध को मापकर सर्किट में समस्याओं की पहचान करना। उचित वायरिग और घटक कार्यक्षमता का सत्यापन करना
- हॉबी प्रोजेक्ट और DIY: इलेक्ट्रॉनिक सर्किट का निर्माण और परीक्षण।
- शैक्षिक और अनुसंधान उद्देश्य: प्रयोगशालाओं और प्रयोगों में माप करना।
- औद्योगिक अनुप्रयोग: विभिन्न उद्योगों में उपकरणों का परीक्षण और रस्वरस्वाव।

Then of your	प्रयोग 2		
विभाग	इलेक्ट्रॉनिक्स एवं संचार अभियांत्रिकी	सत्र	२०२३- २४
शिक्षक का नाम	डॉ. राहुत कुमार चौरिसेया	कार्यक्रम	बी टेक
विषय	इलेक्ट्रॉनिक सर्किट प्रयोगशाला (EC-217)	सेमेस्टर	III

उद्देश्य: डीएसओ (DSO) पर साइन तरंग, वर्ग तरंग और त्रिकोणीय तरंग रूपों का निरीक्षण करना और तरंग रूपों के आयाम और आवृत्ति को मापना

आवश्यक घटक और उपकरण:

- ा. डीएसओ
- 2. फंक्शन जेनरेटर
- 3. बीएनसी लीड्स

उपकरणों का सेटअप:

- फ़ंक्शन जनरेटर और डीएसओ दोनों को चालू करें।
- उपयुक्त केबल और जांच (बीएनसी लीड्स) का उपयोग करके फंक्शन जनरेटर के आउटपुट को डीएसओ के इनपुट से कनेक्ट करें। उचित ग्राउंडिंग कनेक्टिविटी सुनिश्चित करें। (उपलब्ध कार्यक्षेत्र में आंतरिक ग्राउंडिंग हैं)
- फ़ंक्शन जनरेटर के आउटपुट प्रतिबाधा से मेल खाने के लिए डीएसओं के इनपुट प्रतिबाधा को सेट करें। (उपलब्ध कार्यक्षेत्र का प्रतिबाधा आंतरिक रूप से पहले से ही मेल खाता हैं)

फ्रंवशन जेनरेटर सेटिंग्स:

- वांछित तरंगरूप चुनें: साइन, वर्ग, त्रिकोण, सॉटूथ, या मनमाना।
- आवृत्ति सेट करें: मध्यम आवृत्ति (उदाहरण के तिए, 1 kHz) से प्रारंभ करें और बाद में समायोजित करें।
- आयाम सेट करें: अपने डीएसओ की इनपुट रेंज (उदाहरण के लिए, 1VPP) के लिए उपयुक्त वोल्टेज स्तर चुनें।
- DC ऑफरेट को समायोजित करें: शुरुआत में इसे 0V पर सेट करें जब तक कि विशिष्ट अनुप्रयोगों के लिए इसकी जरूरत न हो।
- समानता को समायोजित करें: रैंप सेटिंग्स से त्रिकोणीय और सॉट्थ तरंग प्राप्त करने के लिए इसके मृत्य को अलग-अलग करें।

डीएसओ सेटिंग्स:

- समय आधार सेट करें: तरंगरूप के एकाधिक चक्रों को स्पष्ट रूप से प्रदर्शित करने के लिए समयमान समायोजित करें। धीमी स्वीप गित (उदाहरण के लिए, 1ms/div) से प्रारंभ करें और आवश्यकतानुसार समायोजित करें
- उर्ध्वाधर रकेल सेट करें: डिस्प्ले के भीतर तरंग रूप को स्पष्ट रूप से देखने के लिए वोल्टेज रकेल को समायोजित करें। व्यापक पैमाने से प्रारंभ करें और बाद में जूम इन करें।
- ट्रिगरिंग: स्थिर तरंगरूप डिस्प्ले कैंप्चर करने के लिए ट्रिगर मोड सेट करें। सामान्य मोड सिग्नल के बढ़ते या गिरते किनारे पर स्वचालित या एज ट्रिगर होते हैं।

अवलोकन और समायोजन:

डीएसओ डिस्प्ले पर तरंगरूप का निरीक्षण करें।

- फंक्शन जनरेटर सेटिंग्स (आवृत्ति, आयाम, ऑफसेट) समायोजित करें और डीएसओ पर परिवर्तनों का निरीक्षण करें। स्पष्ट विज्ञुअलाइज़ेशन बनाए रखने के लिए आवश्यकतानुसार डीएसओ सेटिंग्स (समय आधार, लंबवत रकेल) समायोजित करें।
- आवृत्ति भिन्नताः धीरे-धीरे आवृत्ति को संशोधित करें और देखें कि तरंग रूप कैसे बदलता हैं (अवधि, चरण बदलाव, आदि)।
- आयाम भिन्नता: आयाम को समायोजित करें और देखें कि यह डीएसओ पर सिम्नत की शक्ति को कैसे प्रभावित करता है।
- कर्तव्य चक्र भिन्नता (वर्ग तरंगों के लिए): यदि आपके फ़ंक्शन जनरेटर पर उपलब्ध हैं, तो कर्तव्य चक्र को समायोजित करें और देखें कि अविध के सापेक्ष पत्स की चौंड़ाई कैसे बदलती हैं।

	इनपुट पैरामीटर									द्धता %)	
कार्य	(वोल्ट/आवृत्ति) कर्तन्य चक्र/समानता सूचकांक)	स्वड़ा विभाजन (A)	वोल्ट/डिव (B)	आयाम V _{PP} (a*b)	क्षैतिज विभाजन (c)	समय/डिव (d)	समय T (c*d)	आवृ ति f (1/T)	V_{pp}	f	टिप्पणी
साइन तरंग											
वर्ग तरंग											
त्रिभुज तरंग											
सॉटूथ तरंग											

निष्कर्ष: (छात्र द्वारा तिस्वा जाना है)

लैब में फंक्शन जेनरेटर और डीएसओ का उपयोग करते समय सावधानियां:

प्रयोगशाला सेटिंग में फ़ंक्शन जनस्टर और डिजिटल स्टोरेज ऑसिलोस्कोप (डीएसओ) के साथ काम करते समय याद रखने योग्य कुछ आवश्यक सावधानियां

- बिजली के झटके को रोकने के लिए उचित ग्राउंडिंग प्रक्रियाओं को पहचानें और उनका पालन करें।
- अपने उपकरण की वोल्टेज और करंट सीमाओं से अवगत रहें और उन्हें (अधिकतम आउटपुट वोल्टेज और करंट सहित) पार न करें।
- · कनेक्टेड डिवाइसों के लिए आउटपुट आयाम और ऑफसेट को सुरक्षित सीमा के भीतर सेट करें।
- उपकरण चातू होने पर कभी भी खुँले विद्युत घटकों (फ़ंक्शन जनरेटर के आउटपुट टर्मिनल या डीएसओ जांच) को न छुएं।
- जब उपकरण चालू हो तो जांच को कनेक्ट या डिस्कनेक्ट न करें।
- दुर्घटनाओं को रोकने के लिए कार्य क्षेत्र को साफ और व्यवस्थित रखें और किसी भी खतरे या खराबी की सूचना तुरंत अपने प्रशिक्षक को दें।

The state of the s	प्रयोग 3		
विभाग	इतेक्ट्रॉनिक्स एवं संचार अभियांत्रिकी	सत्र	२०२३- २४
शिक्षक का नाम	डॉ. राढुल कुमार चौरिसिया	कार्यक्रम	बी टेक
विषय	इतेक्ट्रॉनिक सर्किट प्रयोगशाला (EC-217)	सेमेस्टर	III

उद्देश्य: PN संगम डायोड की अग्रिम और प्रतिलोम विशेषताओं का अध्ययन करें और कट-इन विद्युत दाब, ब्रेकडाउन विद्युत दाब और स्थैतिक प्रतिरोध तथा गतिशील प्रतिरोध का पता लगाएं

आवश्यक घटक और उपकरण:

- 1. परिवर्तनीय वोल्टेज आउटपुट (0-30V) के साथ DC बिजली की आपूर्ति
- 2. डिजिटल मल्टीमीटर (DMM)
- 3. पीएन जंक्शन डायोड (जैसे, 1N4001)
- ४. अवरोधक (जैसे, 1kΩ, एकाधिक मान)
- 5. ब्रेडबोर्ड और कनेविटंग तार

डायोड और विशेषता वक्र:

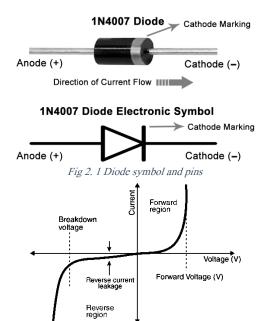


Fig 2. 2 Forward and Reverse Characteristics of the P-N Junction Diode

प्रक्रिया:

अग्र अभिनति:

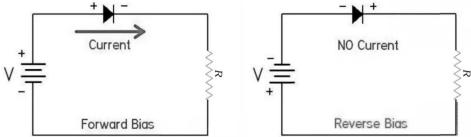


Fig 2. 3 Forward and Reverse Bias Circuits for the P-N Junction Diode

1. बिजली आपूर्ति के सकारात्मक टर्मिनल को डायोड के एनोड से कनेक्ट करें (आमतौर पर डायोड पर एक बैंड द्वारा पहचाना जाता है)।

- 2. डायोड के कैथोड को अवरोधक के माध्यम से DMM के सकारात्मक टर्मिनल से कनेवट करें।
- DMM के नकारात्मक टर्मिनल और बिजली आपूर्ति के नकारात्मक टर्मिनल को जमीन (सामान्य कनेक्शन बिंदु) से कनेक्ट करें।
- 4. बिजली आपूर्ति वोल्टेज को 0V पर सेट करें और इसे धीरे-धीरे 0.1V के चरणों में बढ़ाएं।
- 5. प्रत्येक वोल्टेज चरण के लिए DMM का उपयोग करके लोड रेसिस्टर $R(V_{\scriptscriptstyle R})$ पर वोल्टेज रिकॉर्ड करें।
- 6. डायोड पर वोल्टेज ड्रॉप की गणना करें $V_D = V V_R$
- 7. अोम के नियम का उपयोग करके डायोड के माध्यम से धारा की गणना करें: $I_p = V_p / R$.
- $V_{\rm D}$ रिकॉर्ड करना और $I_{\rm D}$ की गणना करना तब तक जारी रखें जब तक कि करंट अधिकतम निर्दिष्ट डायोड करंट रेटिंग के करीब न पहुंच जाए

उलटा पूर्वाग्रह:

- डायोड के कनेक्शन को उल्टा करें, एनोड को बिजली आपूर्ति के नकारात्मक टर्मिनल से और कैथोड को DMM के सकारात्मक टर्मिनल से जोड़ें।
- 2. बिजली आपूर्ति वोल्टेज को 0V पर सेट करें और धीरे-धीरे इसे 0.1V के चरणों में बढ़ाएं, लेकिन ब्रेकडाउन वोल्टेज (आमतौर पर डायोड डेटाशीट में इंगित) तक पहुंचने से पहले अच्छी तरह से रोकें।
- 3. प्रत्येक वोल्टेज चरण के लिए DMM का उपयोग करके डायोड $({
 m V}_{
 m D})$ में वोल्टेज रिकॉर्ड करें।
- रिवर्स बायस में डायोड के माध्यम से धारा बहुत छोटी और आमतौर पर नगण्य होती है.

अवलोकन और गणना:

ग्राफ़ पेपर पर ग्राफ़िकल प्रतिनिधित्व तैयार करें

- 1. एक्स-अक्ष पर वोल्टेज (V) और वाई-अक्ष पर करंट (1) के साथ डायोड की आगे और पीछे की I-V विशेषताओं को प्लॉट करें।
- 2. आगे की विशेषता से कट-इन वोल्टेज (V_{ant-in}) को उस वोल्टेज के रूप में निर्धारित करें जहां करंट काफी बढ़ने लगता हैं
- 3. रिवर्स विशेषता से ब्रेकडाउन वोल्टेज (V_{beek}) को उस वोल्टेज के रूप में पहचानें जहां करंट तेजी से बढ़ने लगता हैं
- 5. Calculate the dynamic resistance (R_d) in the forward bias region at a specific voltage (e.g., 1V) by calculating the slope of the I-V curve. Use graphical methods to calculate the slope $R_d = \Delta V/\Delta I$.
- 6. I-V वक्र की ढलान की गणना करके एक विशिष्ट वोल्टेज (उदाहरण के लिए, 1V) पर आगे के पूर्वाग्रह क्षेत्र में गतिशील प्रतिरोध (Rd) की गणना करें। Rd = ∆V/∆I की गणना करने के लिए ग्राफिकल तरीकों का उपयोग करें

प्रतिरोध (R): प्रयुक्त प्रतिरोध का मान नोट करें (लगभग $1 \mathrm{k}\Omega$)।

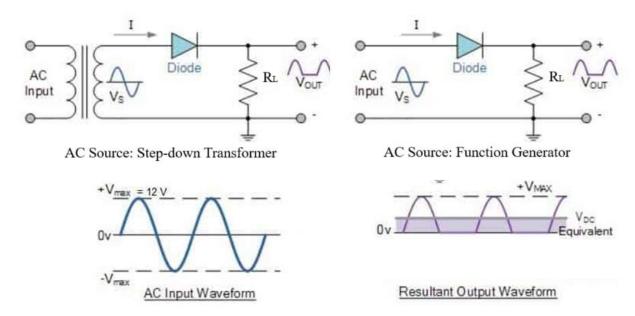
S.No.	V _{in}	V_R	$V_D = V_{in} - V_R$	$I_D = V_D / R$	$R_S = V_D / I_D$	$R_d = \Delta V / \Delta I$

निष्कर्ष: (छात्र द्वारा लिखा जाना है)

विद्युत उपकरणों के साथ काम करते समय सावधानियां

विद्युत उपकरणों के साथ काम करते समय याद रखने के लिए कुछ आवश्यक सावधानियां

- शाखा प्रक्रियाओं की पहचान करें और उनका पालन करें: बिजली के झटके को रोकने के लिए उचित ग्राउंडिंग प्रक्रियाओं का पालन करें।
- कनेक्ट न करें, डिस्कनेक्ट करें प्रोन्स या एक्सपोज्ड विद्युत घटकों (कनेक्टिंग तार या डीएसओ प्रोन्स) को स्पर्श करें जबिक उपकरण चातू हैं।
- डायोड डेटाशीट का परामर्श तें: इसकी अधिकतम अग्र और प्रतिवर्ती वोल्टेज और वर्तंट रेटिंग जानें।
- थर्मल अपन्यय पर विचार करें: लंबे समय तक धारा का संचालन करते समय डायोड गर्म हो सकते हैं।
- ध्रुवता से सावधान रहें: डायोड को सही तरीके से कनेक्ट करें। रिवर्स कनेक्शन डायोड को नुकसान पहुंचा सकता है।
- कम मूल्यों से शुरू करें: शुरू में, परिपथ को कम वोल्टेज के साथ पावर करें और धारा और तापमान की निगरानी करते हुए धीरे-धीरे बढ़ाएं।
- दोषों के मामले में जल्दी से बिजली डिस्कनेक्ट करें: अत्यधिक धारा, धुआं या असामान्य व्यवहार देखे जाने पर जल्दी से प्रतिक्रिया करने और बिजली डिस्कनेक्ट करने के लिए तैयार रहें।
- कार्य क्षेत्र को साफ और व्यवस्थित रखें ताकि दुर्घटनाओं को रोका जा सके और किसी भी देखे गए खतरों या खराबी के बारे में तुरंत अपने इंस्ट्रक्टर को सूचित करें।.


Sur ut you	प्रयोग 4		
विभाग	इतेक्ट्रॉनिक्स एवं संचार अभियांत्रिकी	सत्र	२०२३- २४
शिक्षक का नाम	डॉ. राहुल कुमार चौरिसया	कार्यक्रम	बी टेक
विषय	इलेक्ट्रॉनिक सर्किट प्रयोगशाला (EC-217)	सेमेस्टर	III

उद्देश्य: PN अर्ध तरंग दिष्टकारी (हाफ-वेव रेविटफायर) परिपथ का अध्ययन करना और इसके तरंग कारक और दक्षता की गणना करना

आवश्यक घटक और उपकरण:

- 1. ट्रांसफार्मर (वांछित आउटपुट के लिए उपयुक्त वोल्टेज और शक्ति रेटिंग)
- 2. डिजिटल मल्टीमीटर (DMM)
- 3. डिजिटल स्टोरेज ऑसिलोस्कोप (डीएसओ)
- 4. पीएन जंक्शन डायोड (1N4007)
- 5. प्रतिरोधक (उदाहरण के लिए, $1k\Omega$, कई मान)
- 6. ब्रेडबोर्ड और कनेविटंग तार
- 7. ग्राफ पेपर प्लॉटिंग के लिए

सर्किट आरेख:

प्रक्रिया:

- 1. ट्रांसफार्मर के प्राथमिक पक्ष को एसी मेन सप्ताई से कनेवट करें।
- 2. द्वितीयक पक्ष पर, ट्रांसफार्मर आउटपुट को रोकनेवाला के साथ श्रृंखला में डायोड से, या फंक्शन जेनरेटर से कनेक्ट करें। सही डायोड ध्रुवता सुनिश्चित करें (एनोड से ट्रांसफार्मर आउटपुट, कैथोड से रोकनेवाला) |
- 3. अवरोधक के दूसरे सिरे को जमीन से कनेक्ट करें।
- 4. DMM का उपयोग करके अवरोधक पर DC वोल्टेज को मापें। मान रिकार्ड करें.
- . आउटपूट वेवफॉर्म पर रिपल वोल्टेज के पीक-टू-पीक मान को मापने के लिए डीएसओ का उपयोग करें.

अवलोकन और गणना:

ग्राफ पेपर पर डीएसओ रक्रीन से ग्राफिकल प्रतिनिधित्व का पता लगाएं और मूल्यों को रिकॉर्ड करने के लिए माप फंक्शन का उपयोग करें.

- 1. DC वोल्टेज: DMM का उपयोग करके प्रतिरोधक (V_{ac}) पर DC वोल्टेज को मापें। मान रिकार्ड करें
- 2. रिपल फैक्टर: आउटपुट वेवफॉर्म पर रिपल वोल्टेज (Vrms) के पीक-टू-पीक मान को मापने के लिए डीएसओ का उपयोग करें
- 3. 3. सूत्र का उपयोग करके तरंग कारक ($R_{\rm F}$)की गणना करें: $R_{\rm F} = \sqrt{(rac{Vrms}{Vdc})^2 1}$ ट्रांसफार्मर का उपयोग करते समय

- 4. DMM का उपयोग करके ट्रांसफार्मर के द्वितीयक टर्मिनलों (V sc) पर एसी वोल्टेज को मापें
- 6. सूत्र का उपयोग करके आउटपुट पावर (P_{ou}) की गणना करें: $: P_{out} = (V_{dc} ^2) / R_L$, जहां R_L लोड अवरोधक मान हैं।
- 7. सूत्र का उपयोग करके दक्षता (η) की गणना करें: $\eta = (Pout / Pin) * 100%.$
- 8. विभिन्न तोड अवरोधक मानों के तिए चरण २ और ३ को दोहराएं।

S.No.	$R_{\rm L}$	R _T	V_{dc}	V _{ms}	V _{ac}	P _{in}	P _{out}	η	R _F

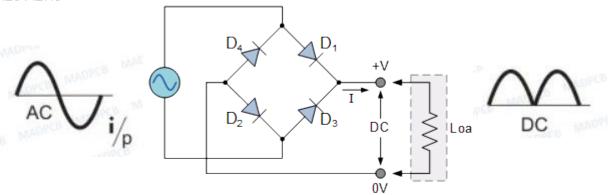
निष्कर्ष: (छात्र द्वारा लिखा जाना है)

ग्राफ़ पेपर पर डीएसओ रक्रीन से एसी इनपुट और मापा DC वोल्टेज को ट्रेस करें

विद्युत उपकरणों के साथ काम करते समय सावधानियां

विद्युत उपकरणों के साथ काम करते समय याद रखने के लिए कुछ आवश्यक सावधानियां

- शाखा प्रक्रियाओं की पहचान करें और उनका पालन करें: बिजली के झटके को रोकने के लिए उचित ग्राउंडिंग प्रक्रियाओं का पालन करें।
- कनेक्ट न करें, डिस्कनेक्ट करें प्रोब्स या एक्सपोज्ड विद्युत घटकों (कनेक्टिंग तार या डीएसओ प्रोब्स) को स्पर्श करें जबिक उपकरण चालू हैं।
- डायोड डेटाशीट का परामर्श तें: इसकी अधिकतम अग्र और प्रतिवर्ती वोल्टेज और वर्तंट रेटिंग जानें।
- थर्मल अपन्यय पर विचार करें: लंबे समय तक धारा का संचालन करते समय डायोड गर्म हो सकते हैं।
- ध्रुवता से सावधान रहें: डायोड को सही तरीके से कनेक्ट करें। रिवर्स कनेक्शन डायोड को नुकसान पहुंचा सकता है।
- कम मूल्यों से शुरू करें: शुरू में, परिपथ को कम वोल्टेज के साथ पावर करें और धारा और तापमान की निगरानी करते हुए धीरे-धीरे बढाएं।
- दोषों के मामले में जल्दी से बिजली डिस्कनेक्ट करें: अत्यधिक धारा, धुआं या असामान्य व्यवहार देखे जाने पर जल्दी से प्रतिक्रिया करने और बिजली डिस्कनेक्ट करने के लिए तैयार रहें।
- कार्य क्षेत्र को साफ और व्यवस्थित रखें ताकि दुर्घटनाओं को रोका जा सके और किसी भी देखे गए खतरों या खराबी के बारे में तुरंत अपने इंस्ट्रक्टर को सूचित करें।.


Then of your	प्रयोग 5		
विभाग	इलेक्ट्रॉनिक्स एवं संचार अभियांत्रिकी	सत्र	२०२३- २४
शिक्षक का नाम	डॉ. राहुत कुमार चौरिसया	कार्यक्रम	बी टेक
विषय	इलेक्ट्रॉनिक सर्किट प्रयोगशाला (EC-217)	सेमेस्टर	III

उद्देश्य: पूर्ण तरंग दिष्टकारी (फूल वेव रेविटफायर) परिपथ का अध्ययन करना और इसके तरंग कारक और दक्षता की गणना करना

आवश्यक घटक और उपकरण:

- १. ट्रांसफार्मर (वांछित आउटपूट के लिए उपयुक्त वोल्टेज और पावर रेटिंग)
- 2. डिजिटल मल्टीमीटर (DMM)
- 3. डिजिटल स्टोरेज ऑसिलोस्कोप (डीएसओ)
- 4. पीएन जंक्शन डायोड (1N4007)
- ५. अवरोधक (जैसे, 1kΩ, एकाधिक मान)
- 6. ब्रेडबोर्ड और कनेविटंग तार
- ७. प्लॉटिंग के लिए ग्राफ़ पेपर

सर्किट आरेख

प्रकिया:

- 1. ट्रांसफार्मर के प्राथमिक पक्ष को एसी मेन सप्ताई से कनेवट करें।
- 2. द्वितीयक पक्ष पर, ट्रांसफार्मर आउटपुट को ब्रिज रेविटफायर मॉड्यूल के एसी टर्मिनलों से कनेक्ट करें।
- 3. ब्रिज रेविटफायर के DC आउटपुट टर्मिनलों को श्रृंखला में रेसिस्टर से कनेक्ट करें।
- 4. अवरोधक के दूसरे सिरे को जमीन से कनेक्ट करें।
- 5. DMM के पॉजिटिव टर्मिनल को ब्रिज रेविटफायर के साथ रेसिस्टर के जंक्शन से और नेगेटिव टर्मिनल को ग्राउंड से कनेवट करें। यह संशोधित आउटपुट वोल्टेज को मापता हैं।
- ६. आउटपूट तरंगरूप का निरीक्षण करने के लिए डीएसओ जांच को ब्रिज रेविटफायर और ब्राउंड के साथ अवरोधक के जंक्शन से कनेक्ट करें।

अवलोकन और गणना:

ग्राफ पेपर पर डीएसओ स्क्रीन से ग्राफिकत प्रतिनिधित्व का पता लगाएं |

- 1. $extbf{DC}$ वोल्टेज: DMM का उपयोग करके प्रतिरोधक (V_{DC}) पर DC वोल्टेज को मापें।
- 2. **रिपल फैक्टर**: आउटपुट वेवफॉर्म पर रिपल वोल्टेज (वीआरएम) के पीक-टू-पीक मान को मापने के लिए डीएसओ का उपयोग करें।
- 3. सूत्र का उपयोग करके तरंग कारक $(R_{\rm F})$ की गणना करें: $R_{\rm F} = \sqrt{\left(\frac{{\rm Vrms}}{{\rm Vdc}}\right)^2 1}$
- 4. DMM का उपयोग करके ट्रांसफार्मर के द्वितीयक टर्मिनतों (वैंक) पर एसी वोल्टेज को मापें।.
- 5. सूत्र का उपयोग करके इनपुट पावर (P_{in}) की गणना करें: P_{in} = (V_{ac}^2) / R, जहां R ट्रांसफार्मर का द्वितीयक पक्ष प्रतिरोध हैं।
- 7. सूत्र का उपयोग करके दक्षता (η) की गणना करें: $\eta = (P_{out}/P_{in})*100\%. = (V_{ac}/V_{dc})^2$
- विभिन्न तोड अवरोधक मानों के तिए चरण २ और ३ दोहराएँ.

क्र.सं.	R _L	R _T	V_{dc}	V _{ms}	V_{ac}	P _{in}	P _{out}	η	R _F

निष्कर्ष: (छात्र द्वारा लिखा जाना है)

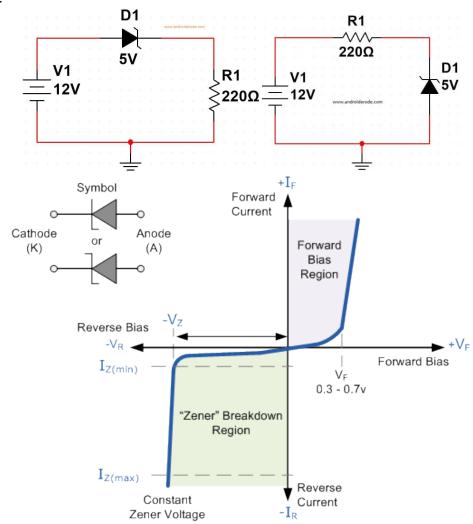
ग्राफ़ पेपर पर डीएसओ रक्रीन से एसी इनपुट और मापा DC वोल्टेज को ट्रेस करें

लैंब में विद्युत घटकों के साथ काम करते समय सावधानियां

विद्युत घटकों के साथ काम करते समय याद रखने योग्य कुछ आवश्यक सावधानियाँ

- बिजली के झटके को रोकने के लिए उचित ग्राउंडिंग प्रक्रियाओं को पहचानें और उनका पालन करें।
- उपकरण चालू होने पर कभी भी प्रोब को कनेक्ट, डिस्कनेक्ट न करें या खुले विद्युत घटकों (ट्रांसफार्मर, कनेक्टिंग तार या डीएसओ प्रोब) को न छुएं।
- विशिष्टताओं के लिए ट्रांसफार्मर और डायोड डेटाशीट से परामर्श लें: इसके अधिकतम फॉरवर्ड और रिवर्स वोल्टेज और वर्तमान रेटिंग को जानें।
- धर्मल अपन्यय पर विचार करें: लंबे समय तक करंट प्रवाहित करने पर ट्रांसफार्मर और डायोड गर्म हो सकते हैं।
- उपकरण की ध्रुवीयता से सावधान रहें|
- खराबी होने पर तुरंत बिजली काट दें: यदि अत्यधिक करंट, धुआं या असामान्य व्यवहार दिखाई दे तो तुरंत प्रतिक्रिया देने और बिजली काटने के लिए तैयार रहें।
- दुर्घटनाओं को रोकने के लिए कार्य क्षेत्र को साफ और व्यवस्थित रखें और किसी भी खतरे या खराबी की सूचना तुरंत अपने प्रशिक्षक को दें।

From ve you	प्रयोग 6		
विभाग	इतेक्ट्रॉनिक्स एवं संचार अभियांत्रिकी	सत्र	२०२३- २४
शिक्षक का नाम	डॉ. राहुल कुमार चौरिसिया	कार्यक्रम	बी टेक
विषय	इलेक्ट्रॉनिक सर्किट प्रयोगशाला (EC-217)	सेमेस्टर	III


उद्देश्य: जेनर डायोड की VI विशेषताएँ प्लॉट करें, तथा नीचे लिखे मापदंडों को मापें

- (i) प्रतिलोम पूर्वाग्रह रिथतियों में ब्रेकडाउन विद्युत दाब |
- (ii) अब्रिम और प्रतिलोम पूर्वाब्रह रिथतियों में स्थैतिक प्रतिरोध और गतिशील प्रतिरोध की गणना करें

आवश्यक घटक और उपकरण:

- 1. जेनर डायोड
- 2. परिवर्तनीय वोल्टेज आउटपुट के साथ DC बिजली की आपूर्ति
- 3. मल्टीमीटर
- ४. अवरोधक (वर्तमान को सीमित करने के लिए बहुत छोटा मूल्य)
- ५. ब्रेडबोर्ड और कनेविटंग तार
- 6. प्लॉटिंग के लिए ग्राफ़ पेपर

सर्किट आरेख:

प्रकिया:

अग्र अभिनाति (Forward Bias):

- ।. जेनर डायोड को ब्रेडबोर्ड पर फॉरवर्ड बायस (एनोड से पॉजिटिव टर्मिनल, कैथोड से नेगेटिव टर्मिनल) में कनेक्ट करें।
- 2. करंट को सीमित करने के लिए जेनर डायोड के साथ एक श्रृंखला अवरोधक को कनेक्ट करें।
- 3. रेसिस्टर-डायोड संयोजन को DC बिजली आपूर्ति से सकारात्मक टर्मिनल के साथ एनोड और नकारात्मक टर्मिनल को कैथोड से कनेक्ट करें।
- 4. बिजली आपूर्ति वोल्टेज को 0V पर सेट करें और इसे धीरे-धीरे 0.1V के चरणों में बढ़ाएं।
- 5. प्रत्येक वोल्टेज चरण पर, मल्टीमीटर का उपयोग करके डायोड (V_D) में वोल्टेज और सर्किट (आई) के माध्यम से करंट को मापें और तालिका में टिकॉर्ड करें।
- 6. चरण ४-६ को तब तक दोहराएँ जब तक कि करंट पूर्व निर्धारित शीमा (उदाहरण के लिए, 20mA) तक न पहुँच जाए।

उताटा पूर्वाग्रह (Reverse Bias):

- ... ब्रेडबोर्ड पर जेनर डायोड के कनेक्शन को उल्टा करें (एनोड से नकारात्मक टर्मिनल, कैथोड से सकारात्मक टर्मिनल)।
- 2. बिजली आपूर्ति वोल्टेज को 0V पर सेट करें और इसे धीरे-धीरे 0.1V के चरणों में बढ़ाएं।
- वोल्टेज को तब तक बढ़ाना जारी रखें जब तक कि सर्किट के माध्यम से करंट तेजी से न बढ़ने लगे, जो ब्रेकडाउन का संकेत देता है।
- 4. जिस वोल्टेज पर ब्रेकडाउन होता है उसे ब्रेकडाउन वोल्टेज (V₂) के रूप में रिकॉर्ड करें।
- 5. रिवर्स बायस के दौरान जेनर डायोड की वर्तमान रेटिंग से अधिक न हो।

अवलोकन और गणना:

ग्राफ पेपर पर डीएसओ रक्रीन से ग्राफिकल प्रतिनिधित्व का पता लगाएं

- 1. एक ग्राफ़ पर आगे और पीछे के पूर्वाग्रह के लिए मापा गया $V_{\rm D}$ और आई मान प्लॉट करें (एक्स-अक्ष पर $V_{\rm D}$, वाई-अक्ष पर I).
- 2. सूत्र का उपयोग करके आगे के पूर्वाग्रह क्षेत्र में स्थिर प्रतिरोध (R_s) की गणना करें: ग्राफ़ पर कई बिंदुओं के लिए $R_s = V_D / I_D$.
- 3. सूत्र का उपयोग करके रिवर्स बायस क्षेत्र में गतिशील प्रतिरोध (R_d) की गणना करें: ब्रेकडाउन वोल्टेंज के पास ब्राफ के एक छोटे से खंड के लिए $R_d = \Delta V_D / \Delta I$.
- 4. विभिन्न जेनर डायोड की विशेषताओं की तूलना करने के लिए उनके साथ प्रयोग दोहराएं.

क्र.सं.	V _D	V _{RL}	$I = V_{RL} *$ R_{L}	$R_S = V_D / I_D$	$R_d = \Delta V_D / \Delta I$
*दोनों पूर्वाग्रह स्थितियों के लिए अलग-अलग अवलोकन तालिका बनाई जाएगी					

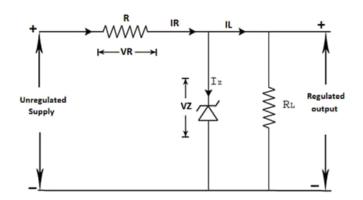
निष्कर्षः (छात्र द्वारा तिस्वा जाना है)

- आगे और पीछे दोनों पूर्वाब्रहों के लिए प्राप्त वक्रों की विशेषताओं पर चर्चा करें।
- जेनर डायोड अनुप्रयोगों में ब्रेकडाउन वोल्टेज की अवधारणा और इसके महत्व को समझाएं

लैब में विद्युत घटकों के साथ काम करते समय सावधानियां

विद्युत घटकों के साथ काम करते समय याद रखने योग्य कुछ आवश्यक सावधानियाँ

- बिजती के झटके को रोकने के लिए उचित ग्राउंडिंग प्रक्रियाओं को पहचानें और उनका पालन करें।
- उपकरण चालू होने पर कभी भी प्रोब को कनेक्ट, डिस्कनेक्ट न करें या खुले विद्युत घटकों (ट्रांसफार्मर, कनेक्टिंग तार या डीएसओ प्रोब) को न छुएं।
- विशिष्टताओं के लिए ट्रांसफार्मर और डायोड डेटाशीट से परामर्श लें: इसके अधिकतम फॉरवर्ड और रिवर्स वोल्टेज और वर्तमान रेटिंग को जानें।
- धर्मल अपन्यय पर विचार करें: लंबे समय तक करंट प्रवाहित करने पर ट्रांसफार्मर और डायोड गर्म हो सकते हैं।
- उपकरण की ध्रवीयता से सावधान रहें।
- स्वराबी होने पर तुरंत बिजली काट दें: यदि अत्यधिक करंट, धुआं या असामान्य व्यवहार दिखाई दे तो तुरंत प्रतिक्रिया देने और बिजली काटने के लिए तैयार रहें।
- दुर्घटनाओं को रोकने के लिए कार्य क्षेत्र को साफ और व्यवस्थित रखें और किसी भी खतरे या खराबी की सूचना तुरंत अपने प्रशिक्षक को दें।


Sur ut you	प्रयोग ७		
विभाग	इतेक्ट्रॉनिक्स एवं संचार अभियांत्रिकी	सत्र	२०२३- २४
शिक्षक का नाम	डॉ. राहुल कुमार चौरिसिया	कार्यक्रम	बी टेक
विषय	इलेक्ट्रॉनिक सर्किट प्रयोगशाला (EC-217)	सेमेस्टर	III

उद्देश्य: प्रयोविद्युत दाब नियामक के रूप में जेनर डायोड के संचातन का अध्ययन और निष्पादन करें

आवश्यक घटक और उपकरण:

- 1. जेनर डायोड
- 2. परिवर्तनीय वोल्टेज आउटपूट के साथ DC बिजली की आपूर्ति
- 3. मल्टीमीटर
- ४. परिवर्तनीय भार अवरोधक
- 5. ब्रेडबोर्ड और कनेविटंग तार

सर्किट आरेख:

प्रकिया:

- 1. वांछित विनियमित आउटपुट वोल्टेज से थोड़ा अधिक ब्रेकडाउन वोल्टेज वाला जेनर डायोड चुनें|Calculate the सूत्र का उपयोग करके शृंखता अवरोधक मान: $R_S = (V_{in} V_Z) / I_Z$, जहां V_{in} न्यूनतम अपेक्षित इनपुट वोल्टेज हैं, वीजेड जेनर डायोड ब्रेकडाउन वोल्टेज हैं, और आईज़ डायोड के माध्यम से न्यूनतम वांछित वर्तमान हैं (डेटाशीट देखें)|
- 2. ब्रेडबोर्ड पर वोल्टेज रेगुलेटर सर्किट बनाएं:
- a जेनर डायोड को रिवर्स बायस में एनोड को पॉजिटिव टर्मिनल की ओर और कैथोड को लोड रेसिस्टर की ओर कनेक्ट करें।
- b श्रंखला अवरोधक को जेनर डायोड और बिजली आपूर्ति इनपुट के साथ श्रंखला में कनेक्ट करें।
- c लोड रेसिस्टर को आउटपूट टर्मिनलों (जेनर डायोड कैंथोड और ग्राउंड) से कनेक्ट करें।

अवलोकन और गणना:

- 1. DC बिजली आपूर्ति को जेनर डायोड ब्रेकडाउन वोल्टेज से थोड़ा अधिक वोल्टेज पर सेट करें।
- 2. मल्टीमीटर का उपयोग करके लोड अवशेषक पर आउटपुट वोल्टेज (V_o) मापें। मान रिकार्ड करें.
- 3. धीरे-धीरे चरणों में लोड प्रतिरोध (यदि परिवर्तनशील हो) बढ़ाएं और प्रत्येक चरण के लिए संबंधित आउटपुट वोल्टेज को मापें.
- 4. इस माप के दौरान इनपूट वोल्टेज को स्थिर बनाए रखें.
- 5. अपेक्षित ऑपरेटिंग रेंज के आसपास की सीमा को कवर करते हुए, विभिन्न इनपुट वोल्टेज के लिए चरण ३ और ४ को दोहराएं
- 6. प्रत्येक इनपुट वोल्टेज के लिए लोड प्रतिरोध के एक फ़ंक्शन के रूप में मापा आउटपुट वोल्टेज को प्लॉट करें.
- 7. सूत्र का उपयोग करके वोल्टेज विनियमन प्रतिशत की गणना करें: विनियमन (%) = $[(V_{in} V_o) / V_{in}] * 100\%$, जहां V_{in} इनपुट वोल्टेज हैं।.
- 8. प्रत्येक इनपूट वोल्टेज के लिए लोड प्रतिरोध के एक फ़ंक्शन के रूप में गणना किए गए विनियमन प्रतिशत को प्लॉट करें.
- 9. जेनर डायोर्ड विनिर्देशों से गणना किए गए सैद्धांतिक विनियमन प्रतिशत की प्रयोगात्मक मूल्यों के साथ तुलना करें.
- 10. विभिन्न लोड और इनपुट वोल्टेज स्थितियों पर जेनर डायोड और श्रृंखला अवशेषक द्वारा न्यय की गई शक्ति की गणना करें.

	V _{in} = रथायी मान				
क्र.सं.	R_{L}	V _o	विनियमन (%) औ द्धांतिक	विनियमन (%) वास्तविक	

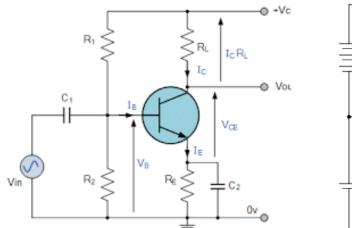
• निष्कर्ष: (छात्र द्वारा तिखा जाना है)

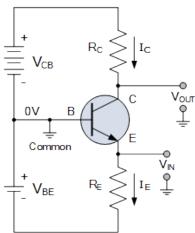
विभिन्न लोड और इनपुट वोल्टेज रिथतियों पर जेनर डायोड और श्रृंखला अवरोधक द्वारा नष्ट होने वाली शक्ति पर चर्चा करें

लैंब में विद्युत घटकों के साथ काम करते समय सावधानियां

विद्युत घटकों के साथ काम करते समय याद रखने योग्य कुछ आवश्यक सावधानियाँ

- बिजती के झटके को रोकने के लिए उचित ब्राउंडिंग प्रक्रियाओं को पहचानें और उनका पालन करें।
- उपकरण चालू होने पर कभी भी प्रोब को कनेक्ट, डिस्कनेक्ट न करें या खुले विद्युत घटकों (ट्रांसफार्मर, कनेक्टिंग तार या डीएसओ प्रोब) को न छुएं।
- विशिष्टताओं के लिए ट्रांसफार्मर और डायोड डेटाशीट से परामर्श तें: इसके अधिकतम फॉरवर्ड और रिवर्स वोल्टेज और वर्तमान रेटिंग को जानें।
- थर्मल अपन्यय पर विचार करें: लंबे समय तक करंट प्रवाहित करने पर ट्रांसफार्मर और डायोड गर्म हो सकते हैं।
- उपकरण की ध्रुवीयता से सावधान रहें|
- खराबी होने पर तुरंत बिजली काट दें: यदि अत्यधिक करंट, धुआं या असामान्य व्यवहार दिखाई दे तो तुरंत प्रतिक्रिया देने और बिजली काटने के लिए तैयार रहें।
- दुर्घटनाओं को रोकने के तिए कार्य क्षेत्र को साफ और व्यवस्थित रखें और किसी भी खतरे या खराबी की सूचना तुरंत अपने प्रशिक्षक को दें।


Sur ut you	प्रयोग 8		
विभाग	इतेक्ट्रॉनिक्स एवं संचार अभियांत्रिकी	सत्र	२०२३- २४
शिक्षक का नाम	डॉ. राहुल कुमार चौरिसिया	कार्यक्रम	बी टेक
विषय	इलेक्ट्रॉनिक सर्किट प्रयोगशाला (EC-217)	सेमेस्टर	III


उद्देश्य: कॉमन एमिटर और कॉमन बेस मोड में ट्रांजिस्टर प्रवर्धक का अध्ययन करें

आवश्यक घटक और उपकरण:

- 1. एनपीएन ट्रांजिस्टर (जैंसे, BC547)
- 2. परिवर्तनीय वोल्टेज आउटपुट के साथ DC बिजली की आपूर्ति
- 3. मल्टीमीटर
- ४. परिवर्तनीय भार अवरोधक
- 5. ब्रेडबोर्ड और क्रनेविटंग तार

सर्किट आरेख:

प्रकिया:

सामान्य उत्सर्जक (CE):

- 1. आरेख का अनुसरण करते हुए ब्रेडबोर्ड पर सीई एम्पतीफायर सर्किट बनाएं.
- 2. सक्रिय क्षेत्र में ट्रांजिस्टर को बायस करने के लिए उचित अवरोधक मान चूनें (ट्रांजिस्टर डेटाशीट देखें).
- 3. सही ध्रुवता सुनिश्चित करते हुए DC बिजली आपूर्ति को सर्किट से कनेक्ट करें.
- 4. सिग्नल जनरेटर को इनपुट (बेस) से और ऑसितोस्कोप को आउटपुट (कलेक्टर) से कनेक्ट करें.
- 5. सिम्नल जनरेटर से एक छोटा एसी सिम्नल (उदाहरण के लिए, 1 kHz, 10mV) लागू करें और ऑसिलोस्कोप पर प्रवर्धित आउटपुट का निरीक्षण करें.
- 7. एसी प्रतिबाधा मीटर (यदि उपलब्ध हो) का उपयोग करके या एक छोटा एसी करंट इंजेक्ट करके और इनपुट अवरोधक पर परिणामी वोल्टेज ड्रॉप को मापकर इनपूट प्रतिबाधा (Zin) को मापें।.
- 8. एसी प्रतिबाधा मीटर का उपयोग करके आउटपुट प्रतिबाधा (Zout) को मापें या आउटपुट में एक छोटा एसी करंट इंजेक्ट करके और परिणामी वोल्टेज ड्रॉप को मापें.

सामान्य आधार (CB):

- 1. आरेख का अनुसरण करते हुए ब्रेडबोर्ड पर CB एम्पलीफायर सर्किट बनाएं.
- 2. CB कॉन्फ्रिगरेशन के अनुसार बायसिंग के तिए उचित अवरोधक मान चुनें.
- 3. DC बिजली आपूर्ति और सिग्नल जनरेटर/ऑसिलोस्कोप को पहले की तरह कनेक्ट करें.
- 4. एक छोटा एसी सिग्नल लागू करें और CE कॉन्फ्रिगरेशन के समान प्रक्रिया का पालन करते हुए वोल्टेज लाभ, इनपुट प्रतिबाधा और आउटपुट प्रतिबाधा को मापें.

Observation and Calculations:

CE और सीबी दोनों कॉन्फ्गिरशन के लिए मापा वोल्टेज लाभ, इनपुट प्रतिबाधा और आउटपुट प्रतिबाधा की तुलना करें.

क्र.सं.	Vin	Vo	Av	Zin	Zout

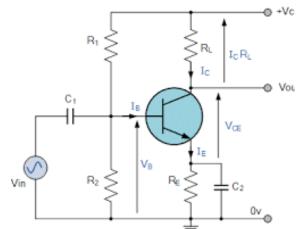
निष्कर्षः (छात्र द्वारा तिस्वा जाना है)

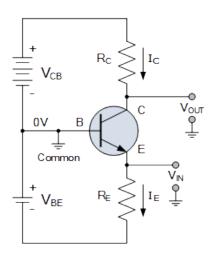
प्राप्त परिणामों के आधार पर प्रत्येक कॉनिफ़गरेशन के फायदे और नुकसान पर चर्चा करें.

लैंब में विद्युत घटकों के साथ काम करते समय सावधानियां

विद्युत घटकों के साथ काम करते समय याद रखने योग्य कुछ आवश्यक सावधानियाँ

- बिजली के झटके को रोकने के लिए उचित ग्राउंडिंग प्रक्रियाओं को पहचानें और उनका पालन करें।
- उपकरण चालू होने पर कभी भी प्रोब को कनेक्ट, डिस्कनेक्ट न करें या खुले विद्युत घटकों (ट्रांसफार्मर, कनेक्टिंग तार या डीएसओ प्रोब) को न छुएं।
- विशिष्टताओं के लिए ट्रांसफार्मर और डायोड डेटाशीट से परामर्श लें: इसके अधिकतम फॉरवर्ड और रिवर्स वोल्टेज और वर्तमान रेटिंग को जातें।
- थर्मल अपन्यय पर विचार करें: लंबे समय तक करंट प्रवाहित करने पर ट्रांसफार्मर और डायोड गर्म हो सकते हैं।
- उपकरण की ध्रुवीयता से सावधान रहें|
- खराबी होने पर तुरंत बिजली काट दें: यदि अत्यधिक करंट, धुआं या असामान्य व्यवहार दिखाई दे तो तुरंत प्रतिक्रिया देने और बिजली काटने के लिए तैयार रहें।
- दुर्घटनाओं को रोकने के लिए कार्य क्षेत्र को साफ और व्यवस्थित रखें और किसी भी खतरे या खराबी की सूचना तुरंत अपने प्रशिक्षक को दें।


The strains of the st	प्रयोग 9		
विभाग	इतेक्ट्रॉनिक्स एवं संचार अभियांत्रिकी	सत्र	२०२३- २४
शिक्षक का नाम	डॉ. राहुत कुमार चौरसिया	कार्यक्रम	बी टेक
Name of Teacher	Dr. Rahul Kumar Chaurasiya		जा ८५७
विषय	इतेक्ट्रॉनिक सर्किट प्रयोगशाला (EC-217)	सेमेस्टर	III


उद्देश्य: विभिन्न पूर्वाग्रह तकनीक द्वारा बाइपोलर जंक्शन ट्रांजिस्टर (BJT) के विद्युत दाब के लाभ की गणना करें

आवश्यक घटक और उपकरण:

- 1. NPN ट्रांजिस्टर (जैसे, BC547)
- 2. परिवर्तनीय वोल्टेज आउटपूट के साथ DC बिजली की आपूर्ति
- 3. मल्टीमीटर
- ४. परिवर्तनीय भार अवरोधक
- 5. ब्रेडबोर्ड और कनेविटंग तार

सर्किट आरेख:

प्रकिया:

अग्र अभिनति (CE):

- आरेख का अनुसरण करते हुए ब्रेडबोर्ड पर फॉरवर्ड-बायरुड सीई एम्पलीफायर सर्किट बनाएं.
- 2. सक्रिय क्षेत्र में ट्रांजिस्टर को बायस करने के लिए उचित अवरोधक मान चुनकर ट्रांजिस्टर डेटाशीट देखें.
- 3. सही ध्रुवता सुनिश्चित करते हुए DC बिजली आपूर्ति को सर्किट से कनेक्ट करें.
- 4. बिजली आपूर्ति या सिम्नल जनरेटर का उपयोग करके इनपुट (बेस) पर एक छोटा DC वोल्टेज (उदाहरण के लिए, 10 mV) लागू कों
- 5. मल्टीमीटर का उपयोग करके आउटपुट (कलेक्टर) पर DC वोल्टेज को मापें.
- 6. सूत्र का उपयोग करके वोल्टेज लाभ (एवी) की गणना करें: Av = Vo / Vin, जहां Vo आउटपुट वोल्टेज हैं और Vin इनपुट वोल्टेज हैं.
- 7. विभिन्न इनपुट वोल्टेज के लिए चरण ४-६ दोहराएं, यह सुनिश्चित करते हुए कि वे ट्रांजिस्टर के सुरक्षित ऑपरेटिंग क्षेत्र के भीतर रहें.

उलटा पूर्वाग्रह (CB):

- 1. आरेख का अनुसरण करते हुए ब्रेडबोर्ड पर रिवर्स-बायरेड **CB** सर्किट बनाएं.
- 2. प्रारंभिक तृतना के लिए CE कॉन्फ्गिरेशन के समान अवरोधक मानों का उपयोग करें.
- 3. सही ध्रुवता सुनिश्चित करते हुए DC बिजली आपूर्ति को सर्किट से कनेक्ट करें.
- 4. बिजली आपूर्ति या सिग्नल जनरेटर का उपयोग करके इनपुट (एमिटर) पर एक छोटा DC वोल्टेज लागू करें.
- 5. मल्टीमीटर का उपयोग करके आउटपूट (कलेक्टर) पर DC वोल्टेज को मापें.
- CE कॉिंक्गिरेशन के समान सूत्र का उपयोग करके वोल्टेज लाभ की गणना करें.
- 7. सुरक्षित सीमा के भीतर रहते हुए, विभिन्न इनपुट वोल्टेज के लिए चरण ४-६ दोहराएं.

Observation and Calculations:

CE और CB दोनों कॉन्फ़िगरेशन के लिए मापा वोल्टेज लाभ की तुलना करें.

क्र.सं.	कॉन्फ्गिरेशन	इनपुट वोल्टेज (Vin)	आउटपुट वोल्टेज (Vo)
	अग्र अभिनति (CE)		
	उत्तटा पूर्वाग्रह (CB)		

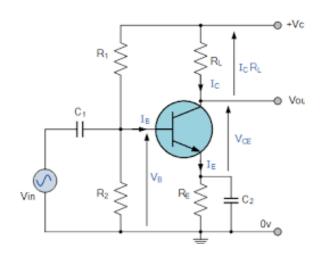
निष्कर्षः (छात्र द्वारा तिस्वा जाना है)

फॉरवर्ड और रिवर्स बायरड कॉन्फ्रिगरेशन दोनों के लिए मापे गए वोल्टेज लाभ मानों की तुलना करें बताएं कि BJT आमतौर पर रिवर्स बायस में एक रैरिवक एम्पलीफायर के रूप में काम क्यों नहीं करता है.

लैंब में विद्युत घटकों के साथ काम करते समय सावधानियां

विद्युत घटकों के साथ काम करते समय याद रखने योग्य कुछ आवश्यक सावधानियाँ

- बिजली के झटके को रोकने के लिए उचित ग्राउंडिंग प्रक्रियाओं को पहचानें और उनका पालन करें।
- उपकरण चालू होने पर कभी भी प्रोब को कनेक्ट, डिस्कनेक्ट न करें या खुले विद्युत घटकों (ट्रांसफार्मर, कनेक्टिंग तार या डीएसओ प्रोब) को न छुएं।
- विशिष्टताओं के लिए ट्रांसफार्मर और डायोड डेटाशीट से परामर्श तें: इसके अधिकतम फॉरवर्ड और रिवर्स वोल्टेज और वर्तमान रेटिंग को जानें।
- धर्मल अपन्यय पर विचार करें: लंबे समय तक करंट प्रवाहित करने पर ट्रांसफार्मर और डायोड गर्म हो सकते हैं।
- उपकरण की ध्रुवीयता से सावधान रहें|
- स्वराबी होने पर तुरंत बिजली काट दें: यदि अत्यधिक करंट, धुआं या असामान्य व्यवहार दिखाई दे तो तुरंत प्रतिक्रिया देने और बिजली काटने के लिए तैयार रहें।
- दुर्घटनाओं को रोकने के लिए कार्य क्षेत्र को साफ और व्यवस्थित रखें और किसी भी खतरे या खराबी की सूचना तुरंत अपने प्रशिक्षक को दें।


Then yet year	प्रयोग 10		
विभाग	इलेक्ट्रॉनिक्स एवं संचार अभियांत्रिकी	स्रत्र	२०२३- २४
शिक्षक का नाम	डॉ. राहुत कुमार चौरिसया	कार्यक्रम	बी टेक
विषय	इलेक्ट्रॉनिक सर्किट प्रयोगशाला (EC-217)	सेमेस्टर	III

उद्देश्य: प्रवर्धक के रूप में ट्रांजिस्टर की विशेषताओं का अध्ययन और प्रदर्शन करें

आवश्यक घटक और उपकरण:

- 1. NPN ट्रांजिस्टर (जैंसे, BC547)
- 2. परिवर्तनीय वोल्टेज आउटपूट के साथ DC बिजली की आपूर्ति
- 3. मल्टीमीटर
- ४. परिवर्तनीय भार अवरोधक
- 5. ब्रेडबोर्ड और कनेविटंग तार

सर्किट आरेख:

प्रक्रिया:

DC बयाझिंग:

- 1. आरेख का अनुसरण करते हुए ब्रेडबोर्ड पर सीई एम्पलीफायर सर्किट बनाएं.
- 2. सक्रिय क्षेत्र में ट्रांजिस्टर को बायस करने के लिए उचित अवरोधक मान का चयन करें। अनुशंसित मानों और सुरक्षित संचालन क्षेत्र के लिए टांजिस्टर डेटाशीट देखें.
- 3. सही ध्रुवता सुनिश्चित करते हुए DC बिजली आपूर्ति को सर्किट से कनेक्ट करें.
- 4. मल्टीमीटर का उपयोग करके कलेक्टर (Vc), बेस (Vb), और एमिटर (Ve) पर DC वोल्टेज को मापें। इन मानों को अवलोकन तालिका में रिकार्ड करें.
- 5. सूत्र का उपयोग करके कलेक्टर करंट (Ic) की गणना करें: Ic = (Vc Ve) / Rc, जहां Rc कलेक्टर अवरोधक हैं.
- 6. सूत्र का उपयोग करके आधार धारा (Ib) की गणना करें: Ib = (Vb Ve) / Rb, जहां Rb आधार अवरोधक हैं.

२. इनपुट विशेषताएँ:

- 1. एक सिम्नल जनरेटर (वैकल्पिक) को आधार से और एक ऑसिलोस्कोप (वैकल्पिक) को कलेक्टर से कनेक्ट करें (यदि एसी माप के लिए मल्टीमीटर का उपयोग नहीं कर रहे हैं).
- 2. सिग्नल जनरेटर को एक निश्चित आवृत्ति (जैसे, 1 kHz) और छोटे आयाम (जैसे, 10mV) पर सेट करें.
- कलेक्टर वोल्टेज (Vc) को स्थिर रखते हुए धीर-धीर बेस वोल्टेज (Vb) को चरणों में बढ़ाएं (उदाहरण के लिए, 10 mV).
- 4. प्रत्येक चरण पर, बेस वोल्टेज (Vb), बेस करंट (Ib), कलेक्टर वोल्टेज (Vc), और कलेक्टर करंट (आईसी) को अवलोकन तालिका में रिकॉर्ड करें.

३. आउटपुट विशेषताएँ:

- 1. सक्रिय क्षेत्र के भीतर चयनित मूल्य पर बेस वोल्टेज (Vb) को स्थिर रखें.
- 2. DC बिजली आपूर्ति का उपयोग करके धीरे-धीर कलेक्टर वोल्टेज (Vc) को चरणों में बढ़ाएं (उदाहरण के लिए, 1 V).
- 3. प्रत्येक चरण पर, कलेक्टर वोल्टेज (Vc), कलेक्टर करंट (Ic), और बेस वोल्टेज (Vb) को अवलोकन तालिका में रिकॉर्ड करें.

अवलोकन और गणना:

- इनपुट विशेषताओं (I, vs V,) और आउटपुट विशेषताओं (I, vs V,) को अलग-अलग ब्राफ़ पर प्लॉट करें.
- सूत्र का उपयोग करके DC वोल्टेज लाभ (A_v) की गणना करें: $A_v = \Delta V_c / \Delta V_b$, जहां ΔV_c और ΔV_b क्रमशः कलेक्टर और बेस वोल्टेज में परिवर्तन हैं.
- सूत्र का उपयोग करके इनपुट प्रतिबाधा (Zin) की गणना करें: Z_{in} = ΔV_b / ΔI_b जहां ΔVb और ΔIb क्रमशः बेस वोल्टेज और करंट में छोटे परिवर्तन हैं.
- AC प्रतिबाधा मीटर का उपयोग करके या आउटपुट में एक छोटा AC करंट इंजेक्ट करके और परिणामी वोल्टेज ड्रॉप को मापकर आउटपुट प्रतिबाधा (Z_{out}) की गणना करें.

क्र.सं.	R _c	V _c	V _b	V _e	I _b	I _e	$\mathbf{A}_{\mathbf{v}}$	Z _{in}	Z_{out}

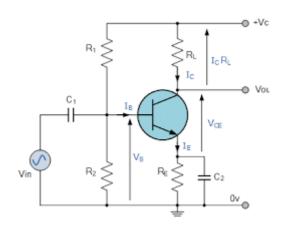
निष्कर्षः (छात्र द्वारा तिस्वा जाना है)

इनपुट और आउटपुट विशेषताओं में देखे गए रूझानों पर चर्चा करें. बताएं कि पूर्वाग्रह बिंदु लाभ और बाधाओं को कैसे प्रभावित करता है.

लैंब में विद्युत घटकों के साथ काम करते समय सावधानियां

विद्युत घटकों के साथ काम करते समय याद रखने योग्य कुछ आवश्यक सावधानियाँ

- बिजती के झटके को रोकने के लिए उचित ग्राउंडिंग प्रक्रियाओं को पहचानें और उनका पालन करें।
- उपकरण चालू होने पर कभी भी प्रोब को कनेक्ट, डिस्कनेक्ट न करें या खुले विद्युत घटकों (ट्रांसफार्मर, कनेक्टिंग तार या डीएसओ प्रोब) को न छुएं।
- विशिष्टताओं के लिए ट्रांसफार्मर और डायोड डेटाशीट से परामर्श लें: इसके अधिकतम फॉरवर्ड और रिवर्स वोल्टेज और वर्तमान रेटिंग को जातें।
- धर्मल अपन्यय पर विचार करें: लंबे समय तक करंट प्रवाहित करने पर ट्रांसफार्मर और डायोड गर्म हो सकते हैं।
- उपकरण की ध्रुवीयता से सावधान रहें|
- खराबी होने पर तुरंत बिजली काट दें: यदि अत्यधिक करंट, धुआं या असामान्य व्यवहार दिखाई दे तो तुरंत प्रतिक्रिया देने और बिजली काटने के लिए तैयार रहें।
- दुर्घटनाओं को रोकने के लिए कार्य क्षेत्र को साफ और व्यवस्थित रखें और किसी भी खतरे या खराबी की सूचना तुरंत अपने प्रशिक्षक को दें।


Form we spen	प्रयोग 11		
विभाग	इतेक्ट्रॉनिक्स एवं संचार अभियांत्रिकी	सत्र	२०२३- २४
शिक्षक का नाम	डॉ. राहुल कुमार चौरिसिया	कार्यक्रम	बी टेक
विषय	इलेक्ट्रॉनिक सर्किट प्रयोगशाला (EC-217)	सेमेस्टर	III

उद्देश्य: फ़ील्ड इफ़्रेक्ट ट्रांजिस्टर (FET) की विशेषताओं का अध्ययन और आलेखन करें

आवश्यक घटक और उपकरण:

- 1. N-चैनल FET
- 2. परिवर्तनीय वोल्टेज आउटपुट के साथ DC बिजली की आपूर्ति
- 3. मल्टीमीटर
- ४. परिवर्तनीय भार अवरोधक
- 5. ब्रेडबोर्ड और कनेविटंग तार

सर्किट आरेख :

प्रक्रिया:

एन्हांसमेंट-मोड MOSFET (NMOS):

- 1. आरेख का अनुसरण करते हुए, ब्रेडबोर्ड पर N-MOS ट्रांजिस्टर के लिए सामान्य स्रोत (CS) सर्किट बनाएं।
- 2. डेटाशीट का संदर्भ लेते हुए, सक्रिय क्षेत्र में ट्रांजिस्टर को बायस करने के लिए उचित अवरोधक मान चुनें।
- 3. सही ध्रुवता सुनिश्चित करते हुए DC बिजली आपूर्ति को सर्किट से कनेक्ट करें।

स्थानांतरण विशेषताएँ:

- १. बिजली आपूर्ति का उपयोग करके एक निरंतर नाली वोल्टेज (वीडी) सेट करें।
- 2. धीरे-धीरे गेंट वोल्टेज (वीजी) को चरणों में बढ़ाएं (उदाहरण के लिए, 0.1V) नकारात्मक से सकारात्मक मान तक, थ्रेशोल्ड वोल्टेज (V₇) से अधिक।
- 3. प्रत्येक चरण पर, मल्टीमीटर का उपयोग करके ड्रेन करंट (आईडी) को मापें और रिकॉर्ड करें।

जल निकासी विशेषताएँ:

- 1. सक्रिय क्षेत्र के भीतर एक स्थिर गेंट वोल्टेज (V_e) सेट करें।
- 2. धीर-धीर ड्रेन वोल्टेज (V_d) को चरणों में (जैसे, 1V) 0V से सूरक्षित सीमा तक बढ़ाएं।
- 3. प्रत्येक चरण में, मल्टीमीटर का उपयोग करके ड्रेन करट (I_a) को मापें और रिकॉर्ड करें।

अवलोकन और गणना:

- स्थानांतरण विशेषताएँ: मापी गई आईडी बनाम वीजी को एक ब्राफ़ पर प्लॉट करें (वाई-अक्ष पर आईडी, एक्स-अक्ष पर V_{ϱ} I V_d के विभिन्न मानों के लिए दोहराएँ
- नाली की विशेषताएं: मापी गई आईडी बनाम $V_{\scriptscriptstyle D}$ को एक ब्राफ़ पर प्लॉट करें (वाई-अक्ष पर आईडी, एक्स-अक्ष पर $V_{\scriptscriptstyle D}$ । $V_{\scriptscriptstyle D}$ के विभिन्न मानों के लिए दोहराएँ
- सूत्र का उपयोग करके स्थानांतरण विशेषता प्लॉट में रैरिवक क्षेत्र के ढलान से ट्रांसकंडक्टेंस (G_{M}) की गणना करें: G_{M} = Δ ID / Δ Vg
- गेंट वोल्टेज के रूप में ट्रांसफर विशेषता प्लॉट से थ्रेशोल्ड वोल्टेज (V,) का अनुमान लगाएं जहां आईडी काफी बढ़ने लगती हैं।

S.No.	Transfer Characte	rstics		Drain Characterstics		
		V _g	I_{D}		V _d	I_D
	V _d =constant 1			V _g =constant 1		
	V _d =constant 2			V _g =constant 2		

निष्कर्ष: (छात्र द्वारा तिखा जाना है)

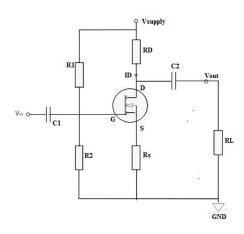
दोनों प्रकार के एफईटी के लिए स्थानांतरण और नाली विशेषताओं के आकार की तुलना करें और चर्चा करें। प्रत्येक ट्रांजिस्टर के लिए परिकलित ट्रांसकंडक्टेंस (G_M) और थ्रेशोल्ड वोल्टेज (V_T) मानों का विश्लेषण करें।

लैब में विद्युत घटकों के साथ काम करते समय सावधानियां

विद्युत घटकों के साथ काम करते समय याद रखने योग्य कुछ आवश्यक सावधानियाँ

- बिजली के झटके को रोकने के लिए उचित ब्राउंडिंग प्रक्रियाओं को पहचानें और उनका पालन करें।
- उपकरण चालू होने पर कभी भी प्रोब को कनेक्ट, डिस्कनेक्ट न करें या खुले विद्युत घटकों को न छुएं।
- विशिष्टताओं के लिए ट्रांजिस्टर डेटाशीट से परामर्श लें: इसकी अधिकतम फॉरवर्ड और रिवर्स वोल्टेज और वर्तमान रेटिंग जानें।
- थर्मल अपन्यय पर विचार करें: लंबे समय तक करंट प्रवाहित करने पर ट्रांजिस्टर गर्म हो सकता है।
- उपकरण की ध्रुवीयता से सावधान रहें
- खराबी होने पर तुरंत बिजली काट दें: यदि अत्यधिक करंट, धुआं या असामान्य व्यवहार दिखाई दे तो तुरंत प्रतिक्रिया देने और बिजली काटने के लिए तैयार रहें।
- दुर्घटनाओं को रोकने के लिए कार्य क्षेत्र को साफ और व्यवस्थित रखें और किसी भी खतरे या खराबी की सूचना तुरंत अपने प्रशिक्षक को दें

The state of the s	प्रयोग 12		
विभाग	इलेक्ट्रॉनिक्स एवं संचार अभियांत्रिकी	सत्र	२०२३ <i>-</i> २४
शिक्षक का नाम	डॉ. राहुल कुमार चौरिसया	कार्यक्रम	बी टेक
विषय	इतेक्ट्रॉनिक सर्किट प्रयोगशाला (EC-217)	सेमेस्टर	III


उहेश्य:

उद्देश्य: फ़ील्ड इफ़ेक्ट ट्रांजिस्टर (FET) प्रवर्धक की विशेषताओं का अध्ययन और आलेखन करें

आवश्यक घटक और उपकरण:

- 1. N**-चैनल** FET
- 2. परिवर्तनीय वोल्टेज आउटपुट के साथ DC बिजली की आपूर्ति
- 3. सिग्नल जेनरेटर
- ४. डिजिटल स्टोरेज ऑसिलोस्कोप
- ५. मल्टीमीटर
- ६. परिवर्तनीय भार अवरोधक
- 7. ब्रेडबोर्ड और कनेविटंग तार

सर्किट आरेख :

प्रकिया:

सर्किट की स्थापना:

- 1. आरेख का अनुसरण करते हुए ब्रेडबोर्ड पर CS FET एम्पलीफायर सर्किट बनाएं।
- 2. डेटाशीट का संदर्भ तेते हुए, सक्रिय क्षेत्र में ट्रांजिस्टर को बायस करने के लिए उचित अवरोधक मान चुनें।
- 3. सही ध्रुवता सुनिश्चित करते हुए DC बिजली आपूर्ति को सर्किट से कनेक्ट करें।
- ४. सिग्नल जनरेटर को इनपुट (गेट) से और ऑसिलोस्कोप को आउटपुट (ड्रेन) से कनेक्ट करें।

लाभ मापना:

- 1. सिग्नल जनरेटर को एक छोटे एसी सिग्नल (जैसे, 1 kHz, 10mV) पर सेट करें।
- 2. एफईटी के सरक्षित संचालन क्षेत्र के भीतर रखते हुए इनपट सिग्नल आयाम को धीरे-धीरे बढ़ाएं।
- 3. प्रत्येक चरण पर, ऑसिलोस्कोप का उपयोग करके इनपुट सिग्नल (V_{in}) और आउटपुट सिग्नल (V_{out}) के पीक-टू-पीक वोल्टेज को मापें।
- 4. सूत्र का उपयोग करके प्रत्येक चरण पर वोल्टेज लाभ (A_v) की गणना करें:
- $A_v = V_{out} / V_{in}$
- 5. वोल्टेज ताभ (A_v) बनाम इनपुट सिग्नल आयाम (V_{in}) को एक ग्राफ़ (वाई-अक्ष पर A_v , एक्स-अक्ष पर V_{in}) पर प्लॉट करें। आवृत्ति प्रतिक्रिया:

- १. इनपूट ऋग्नल आयाम को चूने हुए मान पर ऋथर रखें।
- 2. लॉगरिदमिक चरणों में सिग्नल जनरेटर आवृत्ति को कम मान (जैसे, 100 हुर्ट्ज) से उच्च मान (जैसे, 1 मेगाहुर्ट्ज) तक स्वीप करें।
- 3. प्रत्येक आवृति पर, ऑसिलोस्कोप का उपयोग करके आउटपुट सिग्नल आयाम (V_{out}) को मापें।
- ४. कम आवृति (जैसे, DC लाभ) पर मापे गए लाभ के लिए आउटपूट आयाम को सामान्य करें।

BJT एम्पलीफायर के साथ वैकल्पिक तुलगा:

- 1. समान परिस्थितियों में BJT एम्पलीफायर सर्किट (उदाहरण के लिए, सामान्य उत्सर्जक) के साथ चरण 2-4 को दोहराएं।
- 2. FET और BJT दोनों एम्पलीफायरों के लाभ, इनपूट/आउटपूट प्रतिबाधा और आवृत्ति प्रतिक्रिया की तुलना करें।
- 3. विशिष्ट अनुप्रयोगों के लिए उपयुक्त ट्रांजिस्टर प्रकार चुनने के लिए देखे गए अंतरों और उनके निहितार्थों पर चर्चा करें।

अवलोकन और गणना

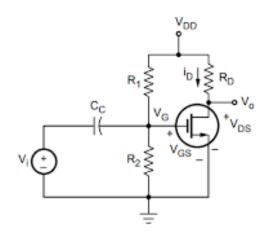
- 1. ताभ: वोल्टेज लाभ (A_v) बनाम इनपूट सिग्नल आयाम (V_{in}) को एक ग्राफ पर प्लॉट करें (A_v वाई-अक्ष पर, V_{in} एक्स-अक्ष पर)।
- 2. लॉग-लॉग ग्राफ़ पर सामान्यीकृत आउटपुट आयाम बनाम आवृत्ति को प्लॉट करें
- 3. इनपुट प्रतिबाधा (Z_{in}): सीधे इनपुट (गेट) टर्मिनलों पर प्रतिबाधा मापने के लिए एक एसी प्रतिबाधा मीटर (यदि उपलब्ध हो) का उपयोग करें
- 4. आउट प्रतिबाधा (Z_{out}) : आउटपुट (ड्रेन) टर्मिनलों पर सीधे प्रतिबाधा मापने के लिए एक एसी प्रतिबाधा मीटर (यदि उपलब्ध हो) का उपयोग करें

S.No.	Gain Measurement		Fı	requency Response		
5.140.	V _{in}	V_{out}	A _v	V	Freq	$V_{\text{out v}}$
				V in		
				constant		

निष्कर्ष: (छात्र द्वारा तिखा जाना है)

FET की आवृत्ति प्रतिक्रिया प्लॉट पर चर्चा करें।

लैंब में विद्युत घटकों के साथ काम करते समय सावधानियां


- विद्युत घटकों के साथ काम करते समय याद रखने योग्य कुछ आवश्यक सावधानियां
- बिजती के झटके को रोकने के लिए उचित ग्राउंडिंग प्रक्रियाओं को पहचानें और उनका पालन करें।
- उपकरण चालू होने पर कभी भी प्रोब को कनेक्ट, डिस्कनेक्ट न करें या खुले विद्युत घटकों को न छुएं।
- विशिष्टताओं के लिए ट्रांजिस्टर डेटाशीट से परामर्श लें: इसकी अधिकतम फॉरवर्ड और रिवर्स वोल्टेज और वर्तमान रेटिंग जानें। धर्मल अपन्यय पर विचार करें: लंबे समय तक करंट प्रवाहित करने पर ट्रांजिस्टर गर्म हो सकता हैं।
- उपकरण की ध्रुवीयता से सावधान रहें
- खराबी होने पर तुरंत बिजली काट दें: यदि अत्यधिक करंट, धुआं या असामान्य व्यवहार दिखाई दे तो तुरंत प्रतिक्रिया देने और बिजली काटने के लिए तैंयार रहें।
- दुर्घटनाओं को रोकने के लिए कार्य क्षेत्र को साफ और न्यवस्थित रखें और किसी भी खतरे या खराबी की सूचना तुरंत अपने प्रशिक्षक को है

Survey were	प्रयोग 13		
विभाग	इतेक्ट्रॉनिक्स एवं संचार अभियांत्रिकी	सत्र	२०२३- २४
शिक्षक का नाम	डॉ. राहुत कुमार चौरसिया	कार्यक्रम	बी टेक
विषय	इतेक्ट्रॉनिक सर्किट प्रयोगशाला (EC-217)	सेमेस्टर	III

उदेश्य: धातु-ऑक्साइड-अर्धचालक क्षेत्र-प्रभाव ट्रांजिस्टर (MOSFET) की विशेषताओं का अध्ययन और आलेखन करें **आवश्यक घटक और उपकरण**:

- 1. N-चैनत एन्हांसमेंट-मोड MOSFET
- 2. परिवर्तनीय वोल्टेज आउटपुट के साथ DC बिजली की आपूर्ति
- 3. सिग्नल जेनरेटर
- ४. डिजिटल स्टोरेज ऑसिलोस्कोप
- ५. मल्टीमीटर
- ६. परिवर्तनीय भार अवरोधक
- 7. ब्रेडबोर्ड और कनेविटंग तार

सर्किट आरेख :

प्रक्रिया:

सर्किट की स्थापना:

- 1. आरेख का अनुसरण करते हुए ब्रेडबोर्ड पर CS NMOS सर्किट बनाएं।
- 2. NMOS डेटाशीट का संदर्भ लेते हुए, सक्रिय क्षेत्र में ट्रांजिस्टर को बायस करने के लिए उचित अवरोधक मान चुनें।
- 3. सही ध्रुवता सुनिश्चित करते हुए DC बिजली आपूर्ति को सर्किट से कनेक्ट करें।
- 2. स्थानांतरण विशेषताएँ (I_D बनाम V_g):
- 1. बिजली आपूर्ति का उपयोग करके एक निरंतर नाती वोल्टेज (V_D) सेट करें।
- 2. धीरे-धीरे मेंट वोल्टेज (V_g) को चरणों में बढ़ाएं (उदाहरण के लिए, 0.1V) नकारात्मक से सकारात्मक मान तक, थ्रेशोल्ड वोल्टेज (V_T) से अधिक।
- 3. प्रत्येक चरण में, मल्टीमीटर का उपयोग करके ड्रेन करंट (I_D) को मापें और रिकॉर्ड करें।
- ४. मापी गई आईडी बनाम वीजी को एक ग्राफ़ पर प्लॉट करें (वाई-अक्ष पर \mathbf{I}_{D} , एक्स-अक्ष पर \mathbf{V}_{p})।
- 5. प्लॉट से, गेट वोल्टेज के रूप में थ्रेसहोल्ड वोल्टेज (V_T) का अनुमान लगाएं जहां I_D काफी बढ़ने लगती हैं।
- 6. सूत्र का उपयोग करके प्लॉट के रैखिक क्षेत्र में ट्रांसकंडक्टेंस (G_{M}) की गणना करें: G_{M} = ΔID / ΔVg
- 3. नाती की विशेषताएं (I_D बनाम V_D):
- ।. सक्रिय क्षेत्र के भीतर एक स्थिर गेंट वोल्टेज (Vg) सेंट करें।
- 2. डेटाशीट के अनुसार धीरे-धीरे ड्रेन वोल्टेज (Vd) को चरणों में (जैसे, 1V) 0V से सुरक्षित सीमा तक बढ़ाएं।
- 3. प्रत्येक चरण पर, मल्टीमीटर का उपयोग करके ड्रेन करंट (${
 m I}_{
 m D}$) को मापें और रिकॉर्ड करें।
- 4. मापी गई $I_{\rm p}$ बनाम $V_{\rm p}$ को एक ग्राफ़ पर प्लॉट करें (वाई-अक्ष पर $I_{\rm p}$, एक्स-अक्ष पर $V_{\rm p}$)।

- 5. संतृप्ति क्षेत्र का निरीक्षण करें जहां $V_{\scriptscriptstyle D}$ बढ़ने के बावजूद $I_{\scriptscriptstyle D}$ स्थिर रहती हैं।
- ४. वैंकिटिपक: आवृत्ति प्रतिक्रिया विश्लेषण:
- ा. गेट पर एक छोटा एसी सिम्नल लगाने और नाली पर AC प्रतिक्रिया को मापने के लिए एक ऑसिलोस्कोप और फ़ंक्शन जनरेटर (वैकल्पिक) का उपयोग करें।
- २. शिग्नल आवृत्ति को स्वीप करें और लाभ और चरण बदलाव विशेषताओं का निरीक्षण करें।

अवलोकन और गणना:

S.No.	Vg (V)	Vg (V)	Vg (V)

निष्कर्ष: (छात्र द्वारा तिखा जाना है) FET की आवृत्ति प्रतिक्रिया प्लॉट पर चर्चा करें।

लैंब में विद्युत घटकों के साथ काम करते समय सावधानियां

- विद्युत घटकों के साथ काम करते समय याद रखने योग्य कुछ आवश्यक सावधानियां
- बिजली के झटके को रोकने के लिए उचित ग्राउंडिंग प्रक्रियाओं को पहचानें और उनका पालन करें।
- उपकरण चालू होने पर कभी भी प्रोब को कनेक्ट, डिस्कनेक्ट न करें या खुले विद्युत घटकों को न छुएं।
- विशिष्टताओं के लिए ट्रांजिस्टर डेटाशीट से परामर्श लें: इसकी अधिकतम फॉरवर्ड और रिवर्स वोल्टेज और वर्तमान रेटिंग जानें। धर्मल अपन्यय पर विचार करें: लंबे समय तक करंट प्रवाहित करने पर ट्रांजिस्टर गर्म हो सकता हैं।
- उपकरण की ध्रुवीयता से सावधान रहें
- खराबी होने पर तुरंत बिजली काट दें: यदि अत्यधिक करंट, धुआं या असामान्य व्यवहार दिखाई दे तो तुरंत प्रतिक्रिया देने और बिजली काटने के लिए तैंयार रहें।
- दुर्घटनाओं को रोकने के लिए कार्य क्षेत्र को साफ और न्यवस्थित रखें और किसी भी खतरे या खराबी की सूचना तुरंत अपने प्रशिक्षक को हैं

Town we specific	प्रयोग 14		
विभाग	इतेक्ट्रॉनिक्स एवं संचार अभियांत्रिकी	सत्र	२०२३ <i>-</i> २४
शिक्षक का नाम	डॉ. राहुत कुमार चौरसिया	कार्यक्रम	बी टेक
विषय	इलेक्ट्रॉनिक सर्किट प्रयोगशाला (EC-217)	सेमेस्टर	III

उद्देश्य: DC को AC में परिवर्तित करने के लिए MOSFET का उपयोग करके वोल्टेज इन्वर्टर को डिज़ाइन और कार्यान्वित करें आवश्यक घटक और उपकरण:

- 1. N-चैनल पावर MOSFET (जैसे, IRFP150)
- 2. परिवर्तनीय वोल्टेज आउटपुट के साथ DC बिजली की आपूर्ति
- 3. प्रतिरोधक (विभिन्न मान)
- ४. कैपेसिटर (फ़िल्टरिग के लिए)
- ५. सिग्नल जेनरेटर
- ६. डिजिटल स्टोरेज ऑसिलोस्कोप
- ७. मल्टीमीटर
- 8. ब्रेडबोर्ड और कनेविटंग तार

सर्किट आरेख :

प्रक्रिया:

- १. इन्वर्टर सर्किट को उपरोक्त चित्र में दिखाए अनुसार डिज़ाइन करें
- 2. सिग्नल जनरेटर का उपयोग करके Q1, Q2, Q3 और Q4 MOSFET रिवच के लिए उपयुक्त PWM आवृति (जैसे, 20 kHz) चुनें।
- 3. सुनिश्चित करें कि MOSFET को आवश्यक वोल्टेज और करंट स्तर के लिए रेट किया गया है।

सर्किट की स्थापना:

सर्किट की स्थापना:

- १. आरेख के अनुसार सर्किट को ब्रेडबोर्ड पर इकहा करें
- 2. DC वोल्टेज आपूर्ति को टर्मिनल A और B से कनेक्ट करें
- 3. BNC केबल के माध्यम से सिग्नल जनरेटर चैनल १ और चैनल २ से PWM आउटपुट लें और ब्रेडबोर्ड पर कनेक्ट करें (इन्हें S1 और S2 के रूप में चिह्नित करें)
- 4. अब S1 को Q1 और Q4 पर कनेक्ट करें
- 5. S2 को Q3 और Q2 से कनेक्ट करें
- 6. लोड टर्मिनल C और D पर आउटपुट को मापें

आउटपुट तरंगरूप को मापें:

आउटपुट तरंगरूप का निरीक्षण करने के लिए ऑसिलोस्कोप का उपयोग करें।

आउटपुट तरंग के आयाम को नियंत्रित करने के लिए PWM सिग्नल के कर्तन्य चक्र को समायोजित करें।

आउटपुट वेवफॉर्म के पीक-टू-पीक वोल्टेज को मापें।

दक्षता की गणना करें:

इनपुट वोल्टेज और करंट के उत्पाद के रूप में इनपुट पावर (P_{in}) को मापें। आउटपुट पावर (P_{out}) को आउटपुट वोल्टेज और करंट के उत्पाद के रूप में मापें। दक्षता (η) की गणना (P_{out}/P_{in}) * 100% के रूप में करें।

अवलोकन और गणना:	
PWM आवृत्ति=	
PWM आयाम =	

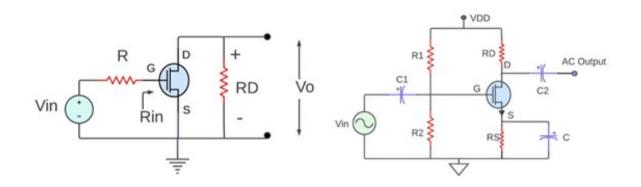
S.N0.	V _{AB} (input dc)	States of the inputs and Switch terminals						V_{c}	V _D	Output Amplitude	Output Frequency
		S1	S2	Q1	Q2	Q3	Q4				

नोट: इनपुट और आउटपुट वोल्टेज स्तरों के लिए प्रॉपर वेवफॉर्म चक्र तैयार किया जाना चाहिए

निष्कर्ष: (छात्र द्वारा तिखा जाना है)

लैब में विद्युत घटकों के साथ काम करते समय सावधानियां

- विद्युत घटकों के साथ काम करते समय याद रखने योग्य कुछ आवश्यक सावधानियां
- बिजली के झटके को रोकने के लिए उचित ग्राउंडिंग प्रक्रियाओं को पहचानें और उनका पालन करें।
- उपकरण चालू होने पर कभी भी प्रोब को कनेक्ट, डिस्कनेक्ट न करें या खुले विद्युत घटकों को न छुएं।
- विशिष्टताओं के लिए ट्रांजिस्टर डेटाशीट से परामर्श लें: इसकी अधिकतम फॉरवर्ड और रिवर्स वोल्टेज और वर्तमान रेटिंग जानें। धर्मल अपन्यय पर विचार करें: लंबे समय तक करंट प्रवाहित करने पर ट्रांजिस्टर गर्म हो सकता हैं।
- उपकरण की ध्रुवीयता से सावधान रहें
- स्वराबी होने पर तुरंत बिजली काट दें: यदि अत्यधिक करंट, धुआं या असामान्य व्यवहार दिखाई दे तो तुरंत प्रतिक्रिया देने और बिजली काटने के लिए तैयार रहें।
- दुर्घटनाओं को रोकने के लिए कार्य क्षेत्र को साफ और न्यवस्थित रखें और किसी भी खतरे या खराबी की सूचना तुरंत अपने प्रशिक्षक को दें


Then or your	प्रयोग 15		
विभाग	इलेक्ट्रॉनिक्स एवं संचार अभियांत्रिकी	सत्र	२०२३- २४
शिक्षक का नाम	डॉ. राहुत कुमार चौरिसया	कार्यक्रम	बी टेक
विषय	इलेक्ट्रॉनिक सर्किट प्रयोगशाला (EC-217)	सेमेस्टर	III

उहेश्य: MOSFET का उपयोग करके उट्च-आवृत्ति RF एम्पलीफायर का डिज़ाइन, निर्माण और परीक्षण करें। इसके लाभ, बैंडविड्थ और स्थिरता विशेषताओं की जांच करें

आवश्यक घटक और उपकरण:

- 1. N-चैंनल पावर MOSFET (जैसे, IRFP150)
- 2. परिवर्तनीय वोल्टेज आउटपुट के साथ DC बिजली की आपूर्ति
- 3. प्रतिरोधक (विभिन्न मान)
- ४. कैपेशिटर (फ़िल्टरिग के लिए)
- ५. सिग्नल जेनरेटर
- ६. डिजिटल स्टोरेज ऑसिलोस्कोप
- ७. इंडक्टर्स (यदि ट्यूनिंग उद्देश्यों के लिए आवश्यक हो)
- ८. मल्टीमीटर
- ९. ब्रेडबोर्ड और कनेविटंग तार

सर्किट आरेख :

प्रकिया:

उपरोक्त चित्र में दिखाए अनुसार सर्किट को डिज़ाइन करें

डिज़ाइन चरण:

- 1. MOSFET को बायस करना: MOSFET को उपयुक्त क्षेत्र (आमतौर पर प्रवर्धन के लिए संतृप्ति क्षेत्र) में बायस करने के लिए वोल्टेज डिवाइडर या निरंतर वर्तमान स्रोत का उपयोग करें।
- 2. आवश्यक बायस वोल्टेज (V ू) की गणना करें और तदनुसार प्रतिरोधों का चयन करें।
- 3. किसी भी एसी सिग्नल को पूर्वाग्रह को प्रभावित करने से रोकने के लिए डिकूपलिंग कैंपेसिटर का उपयोग करें।

लाभ और भार प्रतिबाधाः

- 1. वांछित ताभ निर्धारित करने के तिए तोड रेसिस्टर (आरएत) चुनें। ताभ Av=gm×RLA_v = g_m \times R_LAv=gm×RL, जहां gmg_mgm MOSFET ट्रांसकंडवटेंस हैं।
- 2. कपतिंग कैपेसिटर: DC घटकों को ब्लॉक करने और RF सिग्नल पास करने के लिए उच्च आवृत्ति कपतिंग कैपेसिटर का उपरोग करें।
- 3. कैंपेसिटर मान का चयन किया जाना चाहिए ताकि कटऑफ आवृत्ति सबसे कम सिग्नल आवृत्ति से काफी नीचे हो।

बाईपास कैपेसिटर: सर्किट को श्थिर करने और उच्च आवृत्ति शोर को कम करने के लिए बाईपास कैपेसिटर का उपयोग करें।

फ्रीववेंग्री रिस्पांग्र: इंडक्टर्स और कैंपेसिटर का चयन करें जो एम्पलीफायर की बैंडविड्थ को परिभाषित करते हैं। फ़्रीववेंशी रेंज को ट्यून करने के लिए यदि आवश्यक हो तो छोटे इंडक्टर्स का उपयोग करें।

फीडबैंक नेटवर्क (यदि आवश्यक हो): बढ़ी हुई श्थिरता के लिए, एक फीडबैंक नेटवर्क जोड़ा जा सकता है।

निर्माण चरण[.]

डिज़ाइन किए गए सर्किट को ब्रेडबोर्ड पर इकट्ठा करें

सुनिश्चित करें कि सभी घटक ठीक से रखें गए हैं और दोलन या सिग्नल हानि से बचने के लिए कनेक्शन सुरक्षित हैं।

परीक्षण चरणः

लाभ मापः

- १. सिग्नल जनरेटर को एम्पलीफायर के इनपुट से कनेवट करें।
- २. इनपुट आवृत्ति को वांछित सीमा के भीतर सेट करें (उदाहरण के लिए, १ मेगाहर्ट्ज १०० मेगाहर्ट्ज)।
- 3. ऑसिलोस्कोप का उपयोग करके इनपुट और आउटपूट वोल्टेज को मापें।
- 4. लाभ की गणना करें Av= Vout/Vin.

बैंडविड्थ मापन:

- १. इनपुट फ़्रीक्वेंसी को निम्नतम से उच्चतम ऑपरेटिंग रेंज तक स्वीप करें।
- 2. उस आवृत्ति का निरीक्षण करें जिस पर लाभ अपने अधिकतम मान से 3 डीबी कम हो जाता है।
- 3. दो -3 डीबी बिंदुओं के बीच का अंतर बैंडविड्थ हैं।

स्थिरता परीक्षण:

- १.किसी भी अवांछित दोलन या उच्च-आवृत्ति शोर के लिए ऑसिलोस्कोप पर आउटपूट की निगरानी करें।
- 2.किसी भी नकती सिग्नत के लिए एम्पलीफायर के आउटपुट स्पेवट्रम की जांच करने के लिए स्पेवट्रम विश्लेषक का उपयोग करें।
- 3. संपूर्ण आवृत्ति रेंज में स्थिरता की जाँच करें।

स्निश्चित करें कि MOSFET को आवश्यक वोल्टेज और वर्तमान स्तरों के लिए रेट किया गया है।

सर्किट की स्थापना:

आरेख के अनुसार सर्किट को ब्रेडबोर्ड पर एकत्रित करें

विश्लेषण:

ताभ: मापे गए ताभ की तुतना सैद्धांतिक मूल्य से करें और किसी भी विसंगति का विश्लेषण करें। बैंडविड्थ: मूल्यांकन करें कि डिज़ाइन किया गया एम्पतीफायर बैंडविड्थ विनिर्देशों को पूरा करता हैं या नहीं। रिथरता: परीक्षण परिणामों के आधार पर एम्पतीफायर की रिथरता का आकतन करें।

अवलोकन और गणना

S.No.	Frequency (Hz)	Vin (mV)	Vout (mV)	Gain (dB)

निष्कर्ष: (छात्र द्वारा लिखा जाना है)

लैब में विद्युत घटकों के साथ काम करते समय सावधानियां

- विद्युत घटकों के साथ काम करते समय याद रखने योग्य कुछ आवश्यक सावधानियां
- बिजली के झटके को रोकने के लिए उचित ग्राउंडिंग प्रक्रियाओं को पहचानें और उनका पालन करें।

- उपकरण चालू होने पर कभी भी प्रोब को कनेक्ट, डिस्कनेक्ट न करें या खुले विद्युत घटकों को न छुएं। विशिष्टताओं के लिए ट्रांजिस्टर डेटाशीट से परामर्श लें: इसकी अधिकतम फॉरवर्ड और रिवर्स वोल्टेज और वर्तमान रेटिंग जानें। थर्मल अपन्यय पर विचार करें: लंबे समय तक करंट प्रवाहित करने पर ट्रांजिस्टर गर्म हो सकता है।
- उपकरण की ध्रुवीयता से सावधान रहें
- खराबी होने पर तुरंत बिजली काट दें: यदि अत्यधिक करंट, धुआं या असामान्य व्यवहार दिखाई दे तो तुरंत प्रतिक्रिया देने और बिजली
- दुर्घटनाओं को रोकने के लिए कार्य क्षेत्र को साफ और न्यवस्थित रखें और किसी भी खतरे या खराबी की सूचना तुरंत अपने प्रशिक्षक को दें