मौलाना आज़ाद राष्ट्रीय प्रौद्योगिकी संस्थान भोपाल (राष्ट्रीय महत्व का एक संस्थान)

रसायनिक अभियांत्रिकी विभाग

♦♦♦ द्रव यांत्रिकी प्रयोगशाला ♦♦♦

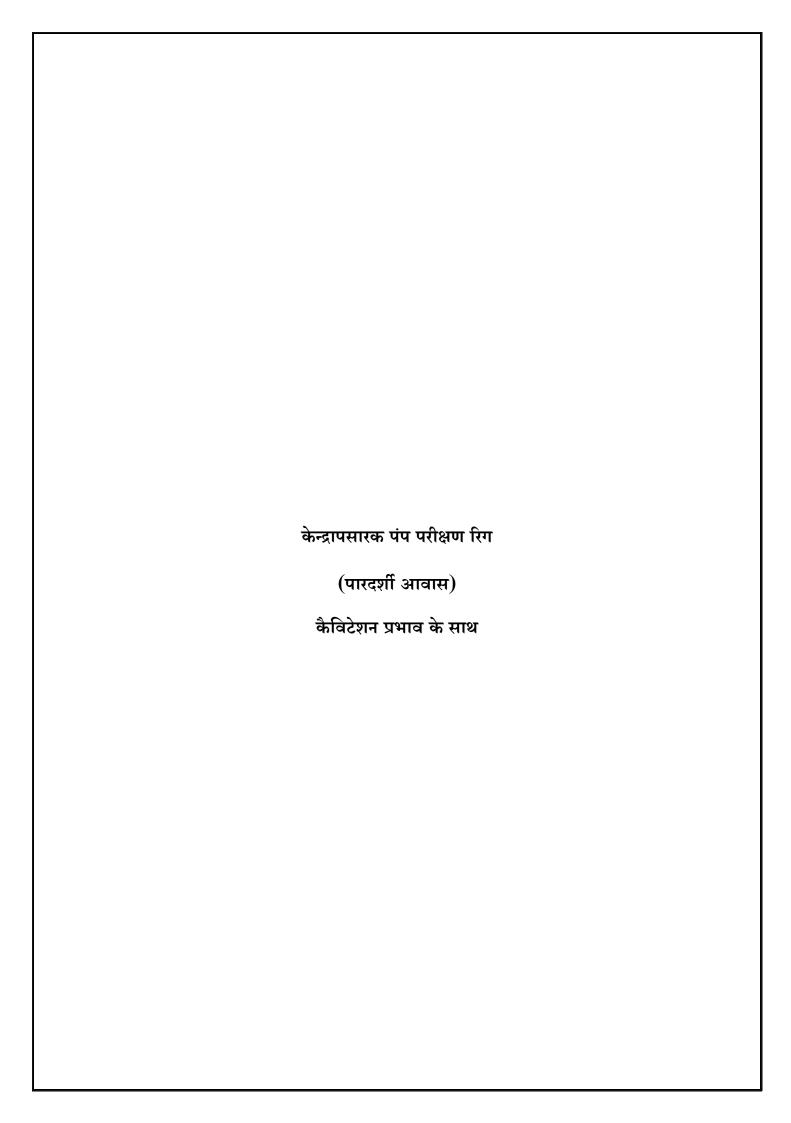
(फ्लूइड मैकेनिक्स लैब)

प्रयोगशाला प्रमुख डॉ. शुभजीत पात्र, सह - प्राध्यापक

कार्यक्रम का नाम Name of Program	रासायनिक अभियांत्रिकी में बी.टेक B.Tech in Chemical Engineering	_	वर्ष : द्वितीय Year : Second
पाठ्यक्रम का नाम Name of Course	द्रव यांत्रिकी प्रयोगशाला Fluid Mechanics Lab	,	
पाठ्यक्रम कोड Course Code	सी.एच.ई. 216 CHE 216		
कोर / ऐच्छिक / अन्य Core/Elective/Other	कोर Core		

	प्रयोग की सूची
	List of Experiment
क्र.	प्रयोग का नाम
S.No.	Name of Experiment
1	उत्तेजित बर्तन में शक्ति की खपत का अध्ययन
	Study of Power Consumption in Agitated vessel
2	सेंट्रीफ्यूगल पंप परीक्षण रिग का अध्ययन
	Study of Centrifugal Pump test rig
3	रेनॉल्ड के उपकरण का अध्ययन
	Study of Reynold's apparatus
4	बर्नौली प्रमेय का अध्ययन
4	Study of Bernoulli theorem
5	पाइप में घर्षण के कारण होने वाले नुकसान का अध्ययन (हाइड्रोलिक बेंच)
5	Study of Loss due to friction in pipe (Hydraulic Bench)
	पाइप फिटिंग के कारण होने वाले नुकसान का अध्ययन (हाइड्रोलिक बेंच)
6	Study of Loss due to Pipe fitting (Hydraulic Bench)
	ऑरिफिस मीटर के माध्यम से प्रवाह का अध्ययन (हाइड्रोलिक बेंच)
7	Study of flow through Orifice meter (Hydraulic Bench)
	वेंच्री मीटर के माध्यम से प्रवाह का अध्ययन (हाइड्रोलिक बेंच)
8	Study of flow through Venturi meter (Hydraulic Bench)
	पिटोट ट्यूब की मदद के साथ स्थानीय बिंद् दबाव निर्धारित करना।
9	विद्याद एवं वर्ग वाद्य वर्ग साथ रवावाव विद्यु देवाव विवासी वर्गवारी
10	
	Study of Pressure drop through packed bed

• प्रयोगशाला नियमावली एवं सुरक्षा निर्देश


📘 प्रयोगशाला नियमावली का उद्देश्य (Manual Overview):

द्रव यांत्रिकी प्रयोगशाला का उद्देश्य छात्रों को विभिन्न द्रव प्रवाह सिद्धांतों की व्यावहारिक समझ देना है। इस प्रयोगशाला में छात्र विभिन्न उपकरणों जैसे कि वेंचुरी मीटर, पाइप घर्षण सेटअप, ओरिफ़िस मीटर, और नॉट्च फ्लो पर प्रयोग करते हैं।

प्रत्येक प्रयोग का उद्देश्य, सिद्धांत, उपकरण सूची, प्रक्रिया, गणना एवं परिणाम का अवलोकन किया जाता है।

🛕 सुरक्षा निर्देश (Safety Instructions):

- 1. प्रयोगशाला में हमेशा प्रयोगशाला कोट (Lab coat) और बंद जूते पहनकर आएं।
- 2. किसी भी उपकरण को प्रयोगशाला प्रभारी या शिक्षक की अनुमित के बिना न चलाएँ।
- 3. सभी वाल्व और पंपों को धीरे और सावधानीपूर्वक संचालित करें।
- 4. फर्श गीला हो सकता है फिसलने से बचें।
- 5. विद्युत उपकरणों और पानी के संपर्क से सावधान रहें।
- 6. प्रयोग समाप्त होने के बाद उपकरणों को स्विच ऑफ करें और प्रयोग स्थल साफ रखें।
- 7. आपातकाल की स्थिति में तुरंत शिक्षक या तकनीशियन को सूचित करें।

इस मैनुअल के बारे में महत्वपूर्ण जानकारी

सुरक्षा हेतु अनुस्मारक

उपकरण में संशोधन :

इस उपकरण में कोई बदलाव नहीं किया जाना चाहिए। बदलाव से इसके प्रदर्शन, सुरक्षा या गड़बड़ी पर असर पड़ सकता है। इसके अलावा, बदलाव के कारण होने वाली क्षति या प्रदर्शन संबंधी समस्याओं को वारंटी के तहत कवर नहीं किया जा सकता है।

सावधानियाँ और रखरखाव:

इसका उपयोग किसी ऐसे खतरे की उपस्थिति को इंगित करने के लिए किया जाता है जो आपके उपकरण को मामूली या मध्यम व्यक्तिगत चोट या क्षति पहुंचा सकता है। जोखिम से बचने या उसे कम करने के लिए, प्रक्रियाओं का सावधानीपूर्वक पालन किया जाना चाहिए।

उद्देश्य:

केन्द्रापसारी पम्प की विशेषताओं का निर्धारण करना तथा पता लगाना:

- 1. कुल शीर्ष
- 2. पंप दक्षता
- 3. समग्र दक्षता

निम्नसिद्धांत प्रदर्शन विशेषताओं को प्लॉट करने के लिए:-

- 1. सिर बनाम डिस्चार्ज
- 2. पंप दक्षता बनाम निर्वहन.

परिचय:

हाइड्रोलिक मशीनें, जो यांत्रिक ऊर्जा को हाइड्रोलिक ऊर्जा में परिवर्तित करती हैं, पंप कहलाती हैं। हाइड्रोलिक ऊर्जा दबाव ऊर्जा के रूप में होती है। यदि यांत्रिक ऊर्जा को तरल पदार्थ पर केन्द्रापसारक बल के माध्यम से दबाव ऊर्जा में परिवर्तित किया जाता है, तो हाइड्रोलिक मशीन को केन्द्रापसारक पंप कहा जाता है।

सिद्धांत:

केन्द्रापसारक पंप एक आवक रेडियल प्रवाह प्रतिक्रिया टरबाइन के विपरीत कार्य करता है। इसका मतलब है कि केन्द्रापसारक पंप में प्रवाह रेडियल बाहरी दिशाओं में होता है।

केन्द्रापसारक पंप बलपूर्वक भंवर प्रवाह के सिद्धांत पर काम करता है, जिसका अर्थ है कि जब कोई बाहरी टॉर्क द्रव के एक निश्चित द्रव्यमान को घुमाता है, तो घूमते हुए तरल के दबाव सिर में वृद्धि होती है। घूमते हुए तरल के िकसी भी बिंदु पर दबाव सिर में वृद्धि उस बिंदु पर तरल के स्पर्शरेखा वेग के वर्ग के समानुपाती होती है (यानी दबाव सिर में वृद्धि $= V^2/2g$ या $w^2r^2/2g$)। इस प्रकार, प्रिरत करनेवाला के आउटलेट पर जहां त्रिज्या अधिक है, दबाव सिर में वृद्धि एक उच्च दबाव वाले सिर के कारण, तरल को उच्च स्तर तक उठाया जा सकता है।

सेंट्रीफ्यूगल पंप एक यांत्रिक उपकरण है, जिसमें एक बॉडी, इम्पेलर और एक घूमने वाला साधन यानी मोटर, इंजन आदि होते हैं। इम्पेलर एक स्थिर बॉडी में घूमता है, अपनी धुरी के माध्यम से द्रव को चूसता है, और अपनी परिधि के माध्यम से वितरित करता है। इम्पेलर में एक इनलेट एंगल, आउटलेट एंगल और परिधीय गति होती है, जो हेड और डिस्चार्ज को प्रभावित करती है। इम्पेलर को मोटर या इंजन या किसी अन्य डिवाइस द्वारा घुमाया जाता है।

किसी पंप का प्रदर्शन उसके नेट हेड h द्वारा निर्धारित होता है, जिसे पंप के चूषण पक्ष और वितरण पक्ष के बीच बर्नौली हेड में परिवर्तन के रूप में परिभाषित किया जाता है। h को जल के समतुल्य स्तंभ ऊंचाई में व्यक्त किया जाता है।

$$h_{w} = \left(\frac{p}{\rho g} + \frac{V^{2}}{2g} + Z\right)_{delivery} - \left(\frac{p}{\rho g} + \frac{V^{2}}{2g} + Z\right)_{suction}$$

सबस्क्रिप्ट सक्शन या डिलीवरी पक्षों के लिए खड़े हैं। इस समीकरण को इस प्रकार भी इस्तेमाल किया जा सकता है

इस प्रकार लिखा गया,

Net head,
$$h_w = \frac{\left(P_{del} - P_{suc}\right)}{\rho g} + \frac{\left(V^2_{del} - V^2_{suc}\right)}{2g} + \left(Z_{del} - Z_{suc}\right)$$

पानी के वेग की गणना निर्वहन और व्यास का उपयोग करके की जा सकती है

पाइप्स। पंप द्वारा उत्पादित डिस्चार्ज को संग्रहण टैंक और स्टॉपवॉच सेटअप का उपयोग करके निर्धारित किया जा सकता है।

$$Q = \frac{A \times R}{t}$$

नेट हेड वास्तव में वितरित उपयोगी शक्ति के समानुपाती होता है

पंप में तरल पदार्थ। परंपरागत रूप से इसे जल अश्वशक्ति (whp) कहा जाता है, भले ही

शक्ति को हॉर्सपावर में नहीं मापा जाता है। इसे इस प्रकार परिभाषित किया जाता है,

$$P_{whp} = \rho Qgh_w (watt)$$

विवरण:

सेंट्रीफ्यूगल पंप टेस्ट रिंग में एक नाबदान टैंक, एक ऐक्रेलिक आवरण या पारदर्शी आवास सेंट्रीफ्यूगल पंप, एक एसी मोटर और मापने वाला टैंक होता है। हेड को मापने के लिए, प्रेशर और वैक्यूम गेज प्रदान किए जाते हैं। डिस्चार्ज को मापने के लिए, एक मापने वाला टैंक प्रदान किया जाता है। नाबदान टैंक से मापने वाले टैंक और मापने वाले टैंक से नाबदान टैंक तक प्रवाह को मोड़ने के लिए पलो डायवर्जन सिस्टम प्रदान किया जाता है। प्रवाह की दर को बदलने के लिए पाइपलाइन में एक वाल्व प्रदान किया जाता है।

आवश्यक सुविधाएं:

- 1. जलापूर्ति।
- 2. नाली
- 3. बिजली 440V एसी, एकल चरण।
- 4. आवश्यक स्थान: 2 मी x 1 मी.

प्रायोगिक प्रक्रिया:

- 1. उपकरण को साफ करें और सभी टैंकों को धूल से मुक्त करें।
- 2. उपलब्ध नाली वाल्व बंद करें।
- 3. सॉम्प टैंक को $\frac{3}{4}$ भाग तक साफ पानी से भरें और सुनिश्चित करें कि कोई बाहरी कण वहां न हो।
- जल निर्वहन लाइन पर खुला प्रवाह नियंत्रण वाल्व दिया गया है और नियंत्रण वाल्व दिया गया है सक्शन लाइन.
- 5. सुनिश्चित करें कि पैनल पर दिए गए सभी ऑन/ऑफ स्विच ऑफ स्थिति में हों।
- 6. अब मुख्य विद्युत आपूर्ति ($220\ V\ AC,\,50\ Hz$) चालू करें और पंप चालू करें।
- 7. एसी ड्राइव की सहायता से मोटर/पंप की वांछित गति निर्धारित करें।
- 8. पंप द्वारा पानी के प्रवाह को नियंत्रित करने के लिए प्रवाह नियंत्रण वाल्व का संचालन करें।
- 9. पंप के चूषण को विनियमित करने के लिए प्रवाह नियंत्रण वाल्व संचालित करें।
- 10. डिस्चार्ज लाइन पर उपलब्ध प्रेशर गेज के माध्यम से डिस्चार्ज प्रेशर रिकॉर्ड करें।
- 11. पंप के चूषण पर उपलब्ध वैक्यूम गेज के माध्यम से चूषण दबाव रिकॉर्ड करें।
- 12. पैनल में उपलब्ध ऊर्जा मीटर के माध्यम से बिजली की खपत को रिकॉर्ड करें।
- 13. स्टॉप वॉच और मापक टैंक का उपयोग करके, पंप द्वारा पानी के प्रवाह और निर्वहन को मापें।
- 14. मोटर/पंप की शेष दो गतियों के लिए यही प्रक्रिया दोहराएं।
- 15. जब प्रयोग समाप्त हो जाता है, तो डिस्चार्ज लाइन पर गेट वाल्व उचित रूप से खुला रहता है
- 16. सबसे पहले पंप को बंद करें.
- 17. पैनल की विद्युत आपूर्ति बंद करें।

मानक डेटा:	
संग्रहण टैंक ${f A}$ का क्षेत्रफल $=0.1$ m 2	ক্রর্जা मीटर स्थिरांक ईएमसी = 450 किलोवाट घंटा
पानी का घनत्व $ ho=1000$ किय्रा/मी 3	

अवलोकन	अवलोकन तालिका:								
क्र.सं.	एन (आरपीएम)	पी _{एस}	पी _{वी}	आर 1	आर 2	टी (सेकंड)	पी	टी _{पी}	
								(सेकंड)	
1									
2									
3									

गणना:

$$H.P_{electrical} = \frac{P}{t_p} \times \frac{3600}{EMC} \times \frac{1000}{746}$$

$$\textit{H.P of Shaft} = \textit{H.P}_{electrical} \times \eta_{motor}$$
 (Efficiency of motor = 0.8 (assumed))

$$R = \frac{R_1 - R_2}{100} \quad m$$

$$Q = \frac{A \times R}{t} \quad m^3 / \text{sec}$$

$$H = \left[10 \times \left(delivery \text{ Pr} \, essure + \frac{Vacuum \text{ Pr} \, essure}{760}\right)\right] + 1 \quad "m" \, of \, water$$

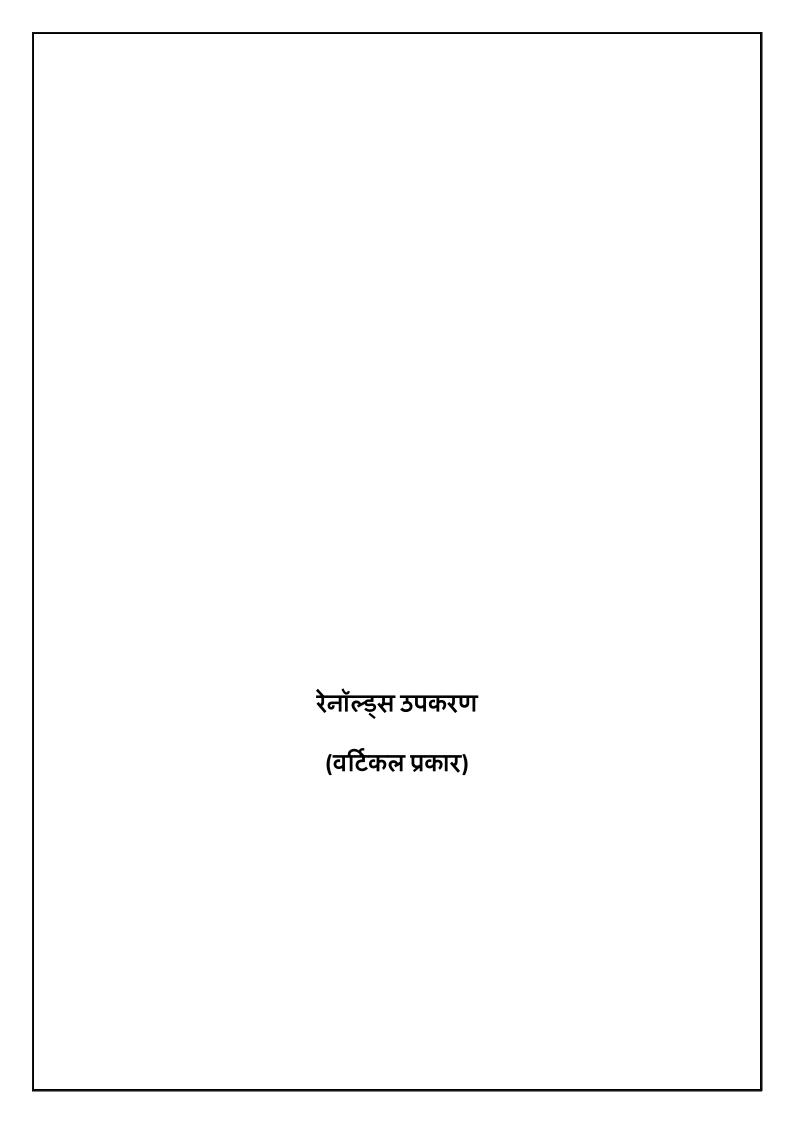
$$HP_{PUMP} = \frac{\rho QH}{75}$$

$$Overall\ Efficiency = \frac{H.P\ of\ Pump}{H.P_{Electrical}} \times 100\%$$

$$Pump \ Efficiency = \frac{H.P \ of \ Pump}{H.P \ of \ shaft} \times 100 \%$$

<u>गणना तालिका:-</u>							
क्र.सं.	एचपी _{इलेक्ट्रिक}	एचपी _{शाफ्ट}	क्यू (मी ³	एच (पानी का	एचपी _{पंप}	η ओ (%)	η ψ (%)
			क्यू (मी ³ /सेकंड)	मीटर)			
1							
2							
3							

नामपद्धति :


नोम	कॉलम शीर्षक इकाइयों		प्रकार
ए	संग्रहण टैंक का क्षेत्रफल	मी 2	दिया गया
पी	 दालें	*	मापा
ਟੀ _{ਥੀ}	दालों का समय	सेकंड	मापा
ईएमसी	ऊर्जा मीटर स्थिरांक	किलोवाट घंटा	दिया गया
$\eta_{\scriptscriptstyle motor}$	मोटर की दक्षता	*	दिया गया
क्यू	स्राव होना	मी ³ /एस	परिकलित
आर	टैंक में एकत्रित पानी की ऊंचाई	एम	मापा
ਟੀ	संग्रहण टैंक में पानी एकत्रित होने का समय	सेकंड	मापा
एच	कुल मुखिया	पानी का मीटर	परिकलित
पी _{वी}	वैक्यूम दबाव	मिमी एचजी	मापा
पी _{डी}	निर्वहन दबाव	किलोग्राम/सेमी ²	मापा
ρ	पानी का घनत्व	किलोग्राम/मी ³	दिया गया
एन	पंप का आर.पी.एम.	*	मापा
η ओ	समग्र दक्षता	%	परिकलित
η	पंप दक्षता	%	परिकलित

सावधानियाँ एवं रखरखाव निर्देश:

- 1. पंप को कम वोल्टेज अर्थात 180 वोल्ट से कम पर न चलाएं।
- 2. डिलीवरी लाइन और बाईपास लाइन वाल्व को कभी भी एक साथ पूरी तरह से बंद न करें
- 3. उपकरण को हमेशा धूल से मुक्त रखें।
- 4. चलने वाले भागों में रुकावट को रोकने के लिए, पंप को सप्ताह में एक बार अवश्य चलाएं।
- 5. धूमने वाले भागों में तीन महीने में एक बार ग्रीस/तेल लगाएं।
- 6. हमेशा साफ पानी का उपयोग करें
- 7. यदि उपकरण एक महीने से अधिक समय तक उपयोग में नहीं आएगा, तो उपकरण को पूरी तरह से खाली कर दें।

समस्या निवारण:

- 1. यदि पंप पानी नहीं उठा रहा है, तो पंप से हवा निकालने के लिए पंप पर लगे एयर वेंट को खोलें।
- 2. यदि पैनल इनपुट नहीं दिखा रहा है, तो पयूज और मुख्य आपूर्ति की जांच करें।

इस मैनुअल के बारे में महत्वपूर्ण जानकारी

सुरक्षा हेतु अनुस्मारक

उपकरण में संशोधन :

इस उपकरण में कोई बदलाव नहीं किया जाना चाहिए। बदलाव से इसके प्रदर्शन, सुरक्षा या गड़बड़ी पर असर पड़ सकता है। इसके अलावा, बदलाव के कारण होने वाली क्षति या प्रदर्शन संबंधी समस्याओं को वारंटी के तहत कवर नहीं किया जा सकता है।

सावधानियाँ और रखरखाव:

इसका उपयोग किसी ऐसे खतरे की उपस्थिति को इंगित करने के लिए किया जाता है जो आपके उपकरण को मामूली या मध्यम व्यक्तिगत चोट या क्षति पहुंचा सकता है। जोखिम से बचने या उसे कम करने के लिए, प्रक्रियाओं का सावधानीपूर्वक पालन किया जाना चाहिए।

उद्देश्य :

विभिन्न प्रकार के प्रवाह का अध्ययन करना।

लक्ष्य:

रेनॉल्ड्स संख्या निर्धारित करने के लिए तथा प्रवाह के प्रकार (लिमनार या अशांत) का निर्धारण करने के लिए।

परिचय:

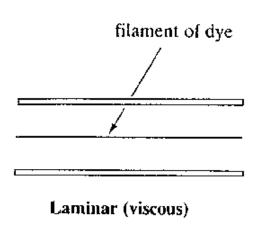
इंजीनियरिंग के दृष्टिकोण से, वेग प्रोफ़ाइल को प्रभावित करने वाले कई चरों का मूल्यांकन सभी संभावित प्रवाह मीटरों और सभी पाइप स्थितियों के लिए नहीं किया जा सकता है। इस कारण से, न्यूटोनियन, सजातीय द्रव द्वारा परिभाषित स्थिर प्रवाह और पूरी तरह से विकसित प्रवाह प्रोफ़ाइल को शुरू में मान लिया जाता है। फिर गुणांक का अनुमान आयामहीन रेनॉल्ड्स संख्या के साथ लगाया जा सकता है। यह संख्या एक स्वीकार्य सहसंबंधी पैरामीटर पाया गया है जो चिपचिपाहट, घनत्व और पाइप लाइन वेग के प्रभाव को जोड़ती है।

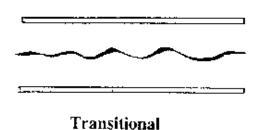
सिद्धांत:

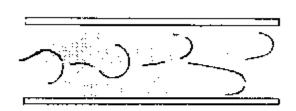
निर्वहन का गुणांक:

रेनॉल्ड्स प्रयोग में, जड़त्व और श्यानता बलों का अनुपात आयामहीन पाया गया और यह श्यानता, औसत पाइपलाइन वेग और ज्यामितीय रूप से समान सीमा स्थितियों से संबंधित था। एक सजातीय न्यूटोनियन तरल पदार्थ के लिए, यह आयामहीन अनुपात **R** है , जिसे इस प्रकार व्यक्त किया जाता है:

$$R_e = \frac{dV\rho}{\mu}$$


लामिनार प्रवाह के लिए Re <2000


Re > 4000.


संक्रमण क्षेत्र में $Re \approx 2100-4000$

जब रेनॉल्ड्स प्रयोग में डाई फिलामेंट डगमगाता है, तो यह प्रवाह की क्रांतिक अवस्था को इंगित करता है और संबंधित रेनॉल्ड्स संख्या को क्रांतिक रेनॉल्ड्स संख्या \mathbf{R} $\mathbf{e} \approx 2000$ कहा जाता है, जिसके आगे प्रवाह संक्रमण अवस्था में होता है और फिर अशांत हो जाता है।

श्यान और जड़त्वीय बलों के सापेक्ष परिमाणों के आधार पर, प्रवाह दो अलग-अलग तरीकों से हो सकता है। एक धारारेखीय प्रवाह को एक रेखा के रूप में परिभाषित किया जाता है, जो किसी दिए गए क्षण में हर बिंदु पर प्रवाह की दिशा में स्थित होती है। लेमिनर प्रवाह को एक प्रवाह के रूप में परिभाषित किया जाता है जिसमें धारारेखाओं को सीधा होने की आवश्यकता नहीं होती है क्योंकि प्रवाह स्थिर रहता है जब तक कि यह मानदंड पूरा हो जाता है। इस प्रकार की गित को धारारेखीय या श्यान प्रवाह भी कहा जाता है। यदि रेनॉल्ड्स संख्या, गित आम तौर पर पूरे चैनल में लेमिनर नहीं पाई जाती है, अस्थिरता के प्रारंभिक क्षेत्र में उत्पन्न भंवर तरल पदार्थ के माध्यम से तेजी से फैलते हैं, जिससे पूरे प्रवाह पैटर्न में व्यवधान पैदा होता है। परिणाम अनुवाद की प्राथमिक गित पर आरोपित द्रव अशांति है, जिसे अशांत प्रवाह कहा जाता है।

Turbulent

विवरण:

उपकरण में एक ग्लास ट्यूब होती है जिसके एक छोर पर बेल माउथ प्रवेश द्वार होता है जो पानी की टंकी से जुड़ा होता है। ग्लास ट्यूब के दूसरे छोर पर प्रवाह की दर को बदलने के लिए एक कॉक प्रदान किया जाता है। पानी के प्रवाह की दर को मापने वाले सिलेंडर और स्टॉप वॉच की मदद से मापा जा सकता है जो सेट अप के साथ आपूर्ति की जाती है। बेल माउथ में एक केशिका ट्यूब को केंद्र में पेश किया जाता है। इस ट्यूब में डाई को निरंतर हेड टैंक के शीर्ष पर रखे एक छोटे कंटेनर से खिलाया जाता है।

प्रायोगिक प्रक्रिया:

- 1. उपकरण को साफ करें और सभी टैंकों को धूल से मुक्त करें।
- 2. उपलब्ध नाली वाल्व बंद करें।
- 3. परीक्षण अनुभाग अर्थात ग्लास ट्यूब के अंत में दिए गए प्रवाह नियंत्रण वाल्व को बंद करें।
- 4. भंडारण टैंक को साफ पानी से भरें और सुनिश्चित करें कि कोई बाहरी कण वहां न हो।
- डाई घोल (KMnO4) तैयार करें पीयू ट्यूबिंग पर दिए गए डाई के लिए कंट्रोल वाल्व को बंद करें। यह सुनिश्चित करने के बाद िक घोल
 में कोई बाहरी कण नहीं हैं, इस घोल को डाई बर्तन में डालें।
- 6. परीक्षण खंड के अंत में दिए गए गेट वाल्व की सहायता से परीक्षण खंड के माध्यम से पानी के न्यूनतम प्रवाह को विनियमित करें। फिर केशिका ट्यूब के माध्यम से डाई के प्रवाह को इस तरह से समायोजित करें कि एक महीन रंग का धागा दिखाई दे जो लैमिनार प्रवाह को दर्शाता है। कांच की ट्यूब के माध्यम से प्रवाह बढ़ाएँ और रंग के धागे का निरीक्षण करें। यदि यह अभी भी सीधा है तो प्रवाह अभी भी लैमिनार क्षेत्र में बना हुआ है और यदि लहरदार होना शुरू होता है, तो यह संकेत है कि प्रवाह लैमिनार नहीं है।
- उस डिस्चार्ज को नोट करें जिस पर रंग का धागा लहरदार रूप में चलना शुरू करता है जो 'उच्च क्रिटिकल रेनॉल्ड्स संख्या' और 'उच्च क्रिटिकल वेग' के अनुरूप है। डिस्चार्ज को और भी बढ़ाएँ। फिलामेंट टूटने लगता है जो अधिक अशांति का संकेत देता है। डिस्चार्ज में और वृद्धि से प्रवाह अशांत हो जाएगा, जो बहते पानी के साथ डाई के प्रसार से स्पष्ट होता है।
- 8. अब डिस्चार्ज को कम करना शुरू करें। पहले प्रसार जारी रहेगा। आगे की कमी से प्रसार कम हो जाएगा। यदि डिस्चार्ज को और कम किया जाता है, तो एक चरण आएगा जब डाई फिलामेंट सीधा हो जाएगा। यह 'लोअर क्रिटिकल रेनॉल्ड्स नंबर' और 'लोअर क्रिटिकल वेलोसिटी' से मेल खाता है।
- 9. मापने वाले सिलेंडर और स्टॉप वॉच का उपयोग करके प्रवाह दर को मापें।
- 10. जब प्रयोग समाप्त हो जाए तो पंप बंद कर दें।
- 11. पैनल की बिजली आपूर्ति बंद करें।
- 12. उपलब्ध नाली वाल्व की सहायता से टैंकों से पानी निकालें।

अवलोकन एवं गणना:

मानक डेटा:	
द्रव की गतिशील श्यानता $=0.000891$ किय्रा/मी.से.	द्रव का घनत्व $ ho=1000$ किग्रा/मी 3
ऐक्रेलिक पाइप का आंतरिक व्यास = 12 मिमी	

जल की गतिज श्यानता	
तापमान (डिग्री सेल्सियस)	कीमत
0	$1.792 \mathrm{~x~10^{-6}}$ मी $^2/$ सेकण्ड
20	$1.006 ext{ x } 10^{-6}$ मी 2 /सेकण्ड
30	$0.801 ext{ x } 10^{-6}$ मी 2 /सेक
40	$0.657 ext{ x } 10^{-6}$ मी 2 /सेक
50	$0.553 ext{ x } 10^{-6}$ मी 2 /सेकण्ड
60	$0.478 ext{ x } 10^{-6}$ मी 2 /सेकण्ड

अवलोकन	अवलोकन तालिका:-					
क्र.सं.	वी _ओ (एमएल)	टी (सेकंड)	प्रवाह का प्रकार देखा गया			
1						
2						
3						

गणना:

$$A = \frac{\pi}{4} \times (d)^2$$

$$Q = \frac{V_o \times 10^{-6}}{t}$$

$$R_e = \frac{dV}{v}$$

$$V = \frac{Q}{A}$$

$$V = \frac{Q}{A}$$

गणना तालि	गणना तालिका:-						
क्र.सं.	क्यू (मी ³ /से)	वी (एम/एस)	दोबारा	प्रवाह का प्रकार सैद्धांतिक			
1							
2							
3							

नामपद्धति:

नोम	कॉलम शीर्षक		
नाम		इकाइयों	प्रकार
Ų	ऐक्रेलिक ट्यूब का क्रॉस सेक्शनल क्षेत्र	मी ²	गणना की जानी है
दोबारा	रेनॉल्ड्स संख्या	*	गणना की जानी है
वी	द्रव की गतिज श्यानता	मी ² /सेकण्ड	गणना की जानी है
वी	द्रव का औसत वेग.	मी ² /सेकण्ड	गणना की जानी है
क्यू	स्राव होना	मी ³ /सेकेंड	गणना की जानी है
डी	ऐक्रेलिक पाइप का व्यास	मिमी	दिया गया

वी _ओ	मापने वाले सिलेंडर में एकत्रित पानी की मात्रा	सेमी	गणना की जानी है	
टी	o के लिए लिया गया समय	सेकंड	मापन किया जाना है	

सावधानियां एवं रखरखाव निर्देश:

- 1. जब पानी स्थिर हो जाए तब प्रयोग करें।
- 2. उपकरण को हमेशा धूल से मुक्त रखें।
- 3. हमेशा साफ पानी का उपयोग करें.
- 4. यदि उपकरण एक महीने से अधिक समय तक उपयोग में नहीं आएगा, तो उपकरण को पूरी तरह से खाली कर दें।

समस्या निवारण:

1. यदि डाई केशिका नली और सुई को अवरुद्ध कर देती है, तो सुई को केशिका नली से अलग करके हटा दें और दोनों के माध्यम से हवा का दबाव पारित करें।

संदर्भ:

- 1. स्ट्रीटर, विक्टर एल. वाइली, ई. बेंजामिन (1983). द्रव यांत्रिकी. प्रथम संस्करण. NY: मैकग्रॉ हिल. पृ. 195-198.
- 2. मोदी, पी.एन. सेठ, पी.एन. (2005). हाइड्रोलिक्स और द्रव यांत्रिकी जिसमें हाइड्रोलिक मशीनें शामिल हैं। 15वां संस्करण एन.डी.: राजिंदर कुमार जैन। पृ. 454-455.

बरनौली का प्रमेय उपकरण

1. <u>उद्देश्यः</u>

बर्नौली के समीकरण को प्रयोगात्मक रूप से सत्यापित करना।

2. <u>लक्ष्य :</u>

- 2.1. विभिन्न बिंदुओं पर कुल ऊर्जा की गणना करना।
- 2.2.कुल ऊर्जा बनाम दूरी के बीच ग्राफ बनाने के लिए।

3. <u>परिचय:</u>

बर्नों के प्रमेय में कहा गया है कि जब कणों के बीच निरंतर संबंध होता है, तरल पदार्थ का प्रवाहित द्रव्यमान, प्रवाह के किसी भी खंड पर कुल ऊर्जा समान रहेगी, बशर्ते कि किसी भी बिंदु पर ऊर्जा में कोई कमी या बढ़ोतरी न हो।

4. <u>सिद्धांतः</u>

यह ऊर्जा समीकरण है और ऊर्जा संरक्षण के नियम पर आधारित है। यह समीकरण बताता है कि प्रवाह क्षेत्र के दो खंडों पर कुल ऊर्जा समान रहती है। बशर्ते कि दोनों वर्गों के बीच ऊर्जा का कोई नुकसान या लाभ न हो। यह समीकरण केवल स्थिर प्रवाह के लिए मान्य है। इस समीकरण को इस प्रकार व्यक्त किया गया है:

$$E = P_1/\rho g + V_1^2/2g + Z_1 = P_2/\rho g + V_2^2/2g + Z_2$$

5. <u>विवरणः</u>

बर्नोली के प्रमेय के लिए वर्तमान प्रायोगिक सेट-अप स्व-निहित पुनः प्रसारित इकाई है। यह सेट-अप पानी परिसंचरण के लिए नाबदान टैंक, ओवरहेड टैंक, सेंट्रीफ्यूगल पंप के साथ आता है। पानी के प्रवाह को नियंत्रित करने के लिए नियंत्रण वाल्व और बाय-पास वाल्व निरंतर हेड टैंक में प्रदान किया जाता है। अलग-अलग क्रॉस सेक्शन का पर्सपेक्स से बना एक परीक्षण अनुभाग प्रदान किया गया है, जिसमें अभिसरण और अपसारी खंड है। इस परीक्षण में पीज़ोमीटर ट्यूब लगाई जाती है, निर्दिष्ट बिंदुओं पर

अनुभाग। नाली का इनलेट ओवरहेड टैंक से जुड़ा हुआ है। परीक्षण अनुभाग के माध्यम से निर्वहन को मापने वाले टैंक और स्टॉप की सहायता से मापा जा सकता है।

6. <u>आवश्यक उपयोगिताएँ:</u>

- **6.1.**विद्युत आपूर्तिः एकल चरण, 220 वी एसी, 50 हर्ट्ज, 5-15 एम्पियर। संयुक्त सॉकेट पृथ्वी कनेक्शन के साथ. अर्थ वोल्टेज 5 वोल्ट से कम होना चाहिए।
- 6.2. जल आपूर्ति (प्रारंभिक भराव)।
- 6.3. फर्श नाली की आवश्यकता है।
- 6.4. आवश्यक फर्श क्षेत्र: 1.5 मीटर x 0.75 मीटर।

7. प्रायोगिक विधि:

7.1. आरंभिक प्रक्रियाः

- 7.1.1. सुनिश्चित करें कि पैनल पर दिए गए सभी ऑन/ऑफ स्विच ऑफ स्थिति पर हैं।
- 7.1.2. सभी वाल्व V1 से V5 बंद करें।
- 7.1.3. नाबदान टैंक को पानी से भरें।
- 7.1.4. जल आपूर्ति लाइन पर दिया गया ओपन बाय-पास वाल्व V21
- 7.1.5. मुख्य बिजली आपूर्ति चालू करें और पंप चालू करें।
- 7.1.6. ओवरहेड टैंक में पानी भरने की अनुमित देने के लिए बाय-पास वाल्व V2 को आंशिक रूप से बंद करें।
- 7.1.7. ओवरहेड टैंक से ओवरफ्लो होने तक प्रतीक्षा करें।
- 7.1.8. नियंत्रण वाल्व V1 की सहायता से परीक्षण अनुभाग के माध्यम से पानी के प्रवाह को नियंत्रित करें परीक्षण अनुभाग के अंत में प्रदान किया गया।
- 7.1.9. सुनिश्चित करें कि अतिप्रवाह अभी भी हो; यदि नहीं तो ऐसा करने के लिए V2 बाय-पास वाल्व को आंशिक रूप से बंद कर दें।
- 7.1.10.पीज़ोमीटर ट्यूबों द्वारा दबाव शीर्ष को मापें।
- 7.1.11. मापने वाले टैंक और स्टॉप वॉच का उपयोग करके पानी के प्रवाह की दर को मापें।
- 7.1.12.जल की विभिन्न प्रवाह दर के लिए चरण (8) से (11) दोहराएँ।

7.2. <u>समापन प्रक्रियाः</u>

- 7.2.1. जब प्रयोग समाप्त हो जाए तो पंप बंद कर दें।
- 7.2.2. पैनल की बिजली आपूर्ति बंद कर दें।
- 7.2.3. दिए गए ड्रेन वाल्व V3, V4 और V5 की सहायता से सभी टैंकों से पानी निकालें।

8. <u>अवलोकन एवं गणनाः</u>

_							
8.	8.1.डेटा:						
मापने वाले टैंक A का क्षेत्रफल = 0.077 m2 गुरुत्वीय त्वरण g = 9.81 m/s²							
परीक्षण	दीया. परीक्षण बिंदु का	संकर अनुभाव	गीय क्षेत्र	परीक्षण बिंदु की दूरी			
की क्रम	डी (मिमी)	परीक्षण बिंद्		संदर्भ बिंदु से			
संख्या	(d1-d7)	(m2))	एस (एम)			
अंक		(ए1-ए?	7)	(एस1-एस7)			
1.	28.0	6.154E-4		6.154E-4 0.02705		0.02705	
2.	24.0	4.521E-4		0.04914			
3.	20.0	3.14E-4		0.0592			
4.	16.0	2.009E-4		0.07725			
5.	20.0	3.14E-4		0.12047			
6.	24.0	4.521E-4		4.521E-4		0.15569	
7.	28.0	6.154E	-4	0.20296			

	8.2.	अवलोक	न तालि	का:						
Sr. No	R1 (cm)	R2 (cm)	t (s)	h1 (cm)	h2 (cm)	h3 (cm)	h4 (cm)	h5 (cm)	h6 (cm)	h7 (cm)
1.										
2.										
3.										
4.										
5.										
6.										
7.										

8.3. <u>गणनाः</u>

$$R = R1-R2 / 100 (m)$$

$$Q = A*R/t (m^3/s)$$

$$V1 = Q/a1 (m/s)$$

$$V3 = Q/a3 (m/s)$$

$$V4 = Q/a4 (m/s)$$

$$V_5 = Q/a_5 (m/s)$$

P1/
$$\rho g = h1/100 (m)$$

$$P2/ \rho g = h2/100 (m)$$

P3/
$$\rho g = h3/100 (m)$$

P4/
$$\rho$$
g= $h4/100 (m)$

$$P_5 / \rho g = h_5 / 100 (m)$$

P6/
$$\rho g = h6/100 (m)$$

$$P7/ \rho g = h7/100 (m)$$

E1=
$$P1/\rho g + V1^2/2g$$
 (m)

$$E_2 = P_2/\rho g + V_2^2/2g$$
 (m)

E3 =
$$P3/\rho g + V3^2/2g$$
 (m)

$$E4 = P4/\rho g + V4^2/2g (m)$$

Es =
$$P_5/\rho g + V_5^2/2g$$
 (m)

$$E6 = P6/\rho g + V6^2/2g (m)$$

$$E_7 = P_7/\rho g + V_7^2/2g$$
 (m)

ग्राफ E (E1 से E7) बनाम S (S1 से S7) प्लॉट करें|

9. <u>नामपद्धतिः</u>

नामपद्धति	स्तम्भ शीर्षक	इकाई	प्रकार
А	मापने वाले टैंक का क्षेत्रफल	m²	Given
a	परीक्षण बिंदु पर क्रॉस सेक्शनल क्षेत्र (a1-	m²	Given
D	परीक्षण बिंदु का व्यास (d1-d7)	mm	Given
E	विशेष बिंदु पर कुल ऊर्जा (E1 से E7)	m	Calculated
g	गुरुत्वाकर्षण के कारण त्वरण	m/s²	Given
h	विशेष बिंदु पर पीजोमेट्रिक ट्यूब रीडिंग (h1-h7)	m	Measured
P/ρg	द्रव या दबाव के प्रति इकाई भार पर दबाव ऊर्जा विशेष बिंदु पर सिर (P1/ρg से P7/ρg)	m	Calculated
Q	परीक्षण अनुभाग के माध्यम से निर्वहन	m³/s	Calculated
R	मापने वाले टैंक में जल स्तर का बढ़ना	m	Calculated
R1	मापने वाले टैंक में पानी का अंतिम स्तर	cm	Measured
R2	मापने वाले टैंक में पानी का प्रारंभिक स्तर	cm	Measured
S	विशेष बिंदु पर संदर्भ बिंदु से दूरी (S1-S7)	m	Given
t	R के लिए लिया गया समय	S	Measured
V ² /2g	प्रति इकाई भार या गतिज शीर्ष पर गतिज ऊर्जा खास बिंदु (V1²/2g से V7²/2g)	m	Calculated

10. सावधानी एवं रखरखाव निर्देश:

- 10.1. यदि बिजली की आपूर्ति 200 वोल्ट से कम और 230 वोल्ट से अधिक है तो उपकरण कभी न चलाएं।
- 10.2. चलने वाले हिस्सों में रुकावट को रोकने के लिए पखवाड़े में कम से कम एक बार पंप चलाएं।
- 10.3. हमेशा साफ पानी का प्रयोग करें।
- 10.4. उपकरण को हमेशा धूल से मुक्त रखें।
- 10.5. ओवरहेड टैंक में पानी रखे बिना प्रयोग न करें।
- 10.6. प्रयोग के बाद उपकरण को पूरी तरह से सूखा दें।

11. समस्या निवारणः

- 11.1. यदि पंप जाम हो जाए तो पंप का पिछला कवर खोलें और शाफ्ट को मैन्युअल रूप से घुमाएं।
- 11.2. यदि पंप गर्म हो जाए तो पंप को 30 मिनट के लिए बंद कर दें।

12. सन्दर्भ:

- 12.1. स्ट्रीटर, विक्टर एल. वाइली, ई. बेंजामिन (1983)। द्रव यांत्रिकी। प्रथम संस्करण. एनवाई: मैकग्रा हिल. पीपी 101-104
- 12.2. गार्डे, आर.जे. (1997)। समस्याओं के माध्यम से द्रव यांत्रिकी। दूसरा संस्करण. एनडी: नया जमाना अंतरराष्ट्रीय। पीपी 58-59

पाइप लाइनों में घर्षण के कारण हानि

1. <u>उद्देश्यः</u>

पाइपों में घर्षण के कारण होने वाले नुकसान का अध्ययन करना

2. <u>लक्ष्य</u>:

डार्सी-वेस्बैक समीकरण के लिए घर्षण कारक निर्धारित करना

3. <u>परिचयः</u>

जब एक तरल पदार्थ पाइप के माध्यम से बह रहा होता है, तो तरल पदार्थ को कुछ प्रतिरोध का अनुभव होता है, जिससे द्रव की कुछ ऊर्जा नष्ट हो जाती है। इससे पाइपलाइनों में ऊर्जा की हानि होती है, प्रमुख ऊर्जा हानियों और छोटी ऊर्जा हानियों के अंतर्गत। लंबी पाइपलाइनों में घर्षण हानि होती है। ये छोटी-मोटी हानियों से कहीं अधिक बड़ी होती हैं और इसलिए, बाद वाली हानियों को अक्सर उपेक्षित कर दिया जाता है। पाइपलाइनों में घर्षण के कारण होने वाली हानि को प्रमुख ऊर्जा हानि के रूप में जाना जाता है। घर्षण में पाइपलाइन तरल पदार्थ की धारा के मोड़ों के बीच एक चिपचिपे खिंचाव के कारण होती है। धारा ठोस सतह से सटे मोड़ हमेशा गीली सतह के सापेक्ष आराम पर होते हैं। चिपचिपा खिंचाव द्रव के अणुओं के बीच आणविक आकर्षण के कारण होता है।

4. सिद्धांत:

यह पाया गया है कि द्रव प्रवाह का कुल घर्षण प्रतिरोध निम्नसिद्धांत पर निर्भर करता है:-

गीली सतह का क्षेत्रफल

द्रव का घनत्व

सतह का खुरदरापन

यह द्रव दबाव से स्वतंत्र है

यह वेग के वर्ग के साथ बढ़ता है

घर्षण के कारण पाइप में सिर के नुकसान की गणना डार्सी-वेस्बैक समीकरण से की जाती है जो दिया गया है: hf = 4FLV²/ 2gd जहाँ,

hf= घर्षण के कारण सिर की हानि

f= घर्षण कारक

L= दबाव बिंदु के बीच की दूरी

- v= द्रव का माध्य वेग
- d= पाइप का व्यास
- g= गुरुत्वाकर्षण के कारण त्वरण

5. <u>विवरणः</u>

उपकरण में अलग-अलग व्यास के दो पाइप होते हैं जिनके लिए सामान्य इनलेट होता है, प्रवाह को नियंत्रित करने के लिए पाइप का डाउनस्ट्रीम सिरे के पास नियंत्रण वाल्व के साथ कनेक्शन प्रदान किया जाता है। प्रेशर टेपिंग को एक दूसरे के बीच उचित दूरी पर लिया जाता है, घर्षण के कारण दबाव हानि का अध्ययन करने के लिए मैनोमीटर प्रदान किया जाता है। डिस्चार्ज हाइड्रोलिक बेंच की सहायता से मापा गया है।

6. आवश्यक उपयोगिताएँ:

हाइड्रोलिक बेंच

7. प्रायोगिग विधि:

7.1. आरंभिक प्रक्रियाः

- 7.1.1. एक्सेसरी को हाइड्रोलिक बेंच की शीर्ष ट्रे पर रखें।
- 7.1.2. दिए गए सभी वाल्व बंद कर दें।
- 7.1.3. हाइड्रोलिक बेंच के नाबदान टैंक को साफ पानी से भरें और सुनिश्चित करें कि विदेशी कण नहीं हैं।
- 7.1.4. हाइड्रोलिक बेंच का बाय-पास वाल्व खोलें।
- 7.1.5. सुनिश्चित करें कि हाइड्रोलिक बेंच के पैनल पर दिया गया ऑन/ऑफ स्विच बंद स्थिति में है।
- 7.1.6. लचीले पाइप को एक्सेसरी के वॉटर इनलेट से कनेक्ट करें त्वरित रिलीज़ युग्मन (लचीले पाइप के अंत में युग्मक प्रदान किया जाता है सहायक उपकरण के इनलेट पर दिए गए प्लग से कनेक्ट किया जाए)
- 7.1.7. मुख्य बिजली आपूर्ति चालू करें।
- 7.1.8. पंप चालू करें।
- 7.1.9. ¾" पाइप या ½" पाइप और बाय पास के लिए प्रवाह नियंत्रण वाल्व संचालित करें वांछित परीक्षण अनुभाग में पानी के प्रवाह को नियंत्रित करने के लिए वाल्व।
- 7.1.10. संबंधित परीक्षण अनुभाग के दबाव नल को मैनोमीटर से कनेक्ट करें।
- 7.1.11. हवा को अंदर छोड़ने के लिए मैनोमीटर पर लगा वाल्व धीरे-धीरे खोलें।

- 7.1.12. जब मैनोमीटर में हवा न हो तो वायु रिलीज वाल्व बंद कर दें।
- 7.1.13. नियंत्रण वाल्व की सहायता से वांछित अनुभाग में जल प्रवाह दर को समायोजित करें।
- 7.1.14. किसी भी स्केल के ऊपर दबाव होने की स्थिति में, मैनोमीटर रीडिंग रिकॉर्ड करें, पठनीय रीडिंग प्राप्त करने के लिए ट्यूब पर हैंडपंप द्वारा हवा का दबाव डाला जाता है।
- 7.1.15. विराम घड़ी का उपयोग करके वांछित परीक्षण अनुभाग के माध्यम से छोड़े गए पानी के प्रवाह को मापें, टैंक को देखना और मापना बंद करें।
- 7.1.16. संचालन नियंत्रण द्वारा जल की विभिन्न प्रवाह दरों के लिए प्रयोग को दोहराएं वाल्व और बाय-पास वाल्व।
- 7.1.17. जब एक वांछित परीक्षण अनुभाग के लिए प्रयोग समाप्त हो जाए, तो बाईपास खोलें, वाल्व पूरी तरह से. फिर रिनंग टेस्ट सेक्शन के फ्लो कंट्रोल वाल्व को बंद कर दें, दूसरे वांछित परीक्षण अनुभाग का नियंत्रण वाल्व खोलें।
- 7.1.18. अन्य परीक्षण अनुभाग के लिए भी यही प्रक्रिया दोहराएँ।

7.2. <u>समापन प्रक्रियाः</u>

- 7.2.1. जब प्रयोग समाप्त हो जाए तो पंप की आपूर्ति बंद कर दें।
- 7.2.2. दिए गए नाली वाल्वों की सहायता से टैंकों को खाली करें।

8. <u>अवलोकन एवं गणनाः</u>

8.1. डेटा:	
दबाव टेपिंग के बीच की दूरी L	पाइप के अंदर का व्यास d
पाइप के लिए ¾" = 1 मी	पाइप के लिए ¾" = 0.022 मीटर
पाइप के लिए ½" = 1 मी	पाइप के लिए ½" = 0.016 मी
गुरुत्वीय त्वरण g = 9.81 m/s²	

	8.2. अवलोकन तालिकाः										
टेस्ट पाइप = ¾" टेस्ट पाइप =					ाइप =	1/2"					
	H1	H2	R1	R2	t(s)		H1	H2	R1	R2	t(s)
क्रमांक	(cm)	(cm)	(cm)	(cm)		क्रमांक	(cm)	(cm)	(cm)	(cm)	
1.						1.					
2.						2.					
3.						3.					
4.						4.					

8.3. <u>गणनाः</u>

R= R1-R2/100 (m) Q= A*R/t (m³/s) a= π /4 d² (m²) V=Q/a (m/s) hf= h1-h2/100 (m) f= hf 2gd/ 4LV²

9. <u>नामपद्धतिः</u>

नामपद्धति	स्तम्भ शीर्षक	इकाई	प्रकार
Α	मापने वाले टैंक का क्षेत्रफल	m²	Given
Α	पाइप का क्रॉस-सेक्शन क्षेत्र	m²	Calculated
d	पाइप के अंदर का व्यास	m	Given
f	घर्षण कारक	*	Calculated
G	गुरुत्वाकर्षण के कारण त्वरण	m/s²	Given
h1,h2	दोनों बिंदुओं पर मैनोमेट्रिक रीडिंग	cm	Measured
hf	हेड क्षति	m of water	Calculated
L	दबाव टेपिंग के बीच की दूरी	m	Given

Q	स्राव होना	m³/s	Calculated
R	मापने वाले टैंक में जल स्तर का बढ़ना	m	Calculated
R1	मापने वाले टैंक में पानी का अंतिम	cm	Measured
	स्तर		
R2	मापने वाले टैंक में पानी का प्रारंभिक	cm	Measured
	स्तर		
t	R के लिए लिया गया समय	S	Measured
V	द्रव का वेग	m/s	Calculated

^{*} प्रतीक इकाईहीन होते हैं

10. सावधानी एवं रखरखाव निर्देश:

- 10.1. एक्सेसरी को हमेशा धूल से म्क रखें।
- 10.2. हमेशा साफ पानी का प्रयोग करें।
- 10.3. प्रयोग के बाद एक्सेसरी को पूरी तरह से सूखा लें।
- 10.4. प्रवाह को समायोजित करते समय नियंत्रण वाल्व को कभी भी पूरी तरह से बंद न करें।

11. समस्या निवारण:

11.1. यदि पंप जाम हो जाता है, तो पिछला कवर खोलें और शाफ्ट को मैन्युअल रूप से घुमाएं।

12. सन्दर्भ:

- 12.1. स्ट्रीटर, वाइली, बेडफोर्ड, "फ्लुइड मैकेनिक्स", 9वां संस्करण, मैक। ग्रे हिल, एनडी, 2007, पृष्ठ 290।
- 12.2. डॉ. पी.एन. मोदी और पी.एन. सेठ, "हाइड्रोलिक्स और द्रव यांत्रिकी सहित मशीनें", 15वां संस्करण, राजिंदर कुमार जैन, एनडी, 2005, पृष्ठ 458-459।

पाइप फिटिंग के कारण होने वाले नुकसान का अध्ययन

1. <u>उद्देश्यः</u>

पाइपलाइनों में विभिन्न फिटिंग के कारण हेड के नुकसान का अध्ययन करना।

2. <u>लक्ष्य :</u>

- 2.1. विभिन्न जल प्रवाह दरों पर फिटिंग में हेड के न्कसान का निर्धारण करना
- 2.2. पाइप फिटिंग के लिए हानियों का गुणांक निर्धारित करना।

3. <u>परिचयः</u>

क्रॉस-सेक्शन, मोड़, कोहनी, वाल्व और फिटिंग सभी में बदलाव के कारण सिर का नुकसान प्रकार पाइप लाइनों में मामूली हानि की श्रेणी में आते हैं। लंबी पाइप लाइनों में घर्षण होता है, नुकसान इन छोटे नुकसानों की तुलना में बहुत बड़ा होता है और इसलिए बाद वाले को अक्सर नजरअंदाज कर दिया जाता है लेकिन, छोटी पाइपलाइनों के सही अनुमान के लिए उन पर विचार करना आवश्यक है।

4. सिद्धांतः

जब पाइप में किसी प्रकार का मोड़ होता है, तो प्रवाह का वेग बदल जाता है, जिसके कारण प्रवाह का सीमा से पृथक्करण तथा भँवरों का निर्माण भी होता है। इस प्रकार ऊर्जा नष्ट हो जाती है।

 $hL = KL V^2 / 2g$

संकुचन में मामूली हानि को इस प्रकार व्यक्त किया जा सकता है:

 $hL = KL V1^2 / 2g$

विस्तार में मामूली हानियों को इस प्रकार व्यक्त किया जा सकता है:

 $hL = KL (V_1-V_2)^2 / 2g$

कहाँ.

hL = मामूली हानि या सिर का नुकसान

K∟ = हानि का गुणांक

v = द्रव का वेग

V1 = छोटे व्यास के पाइप में द्रव का वेग।

V2 = बड़े व्यास के पाइप में द्रव का वेग।

5. <u>विवरण:</u>

उपकरण में विभिन्न फिटिंग वाली पाइप लाइन होती है। झुकना, आकस्मिकविस्तार, आकस्मिकसंकुचन, कोहनी, बॉल वाल्व और गेट वाल्व फिटिंग के रूप में प्रदान किए जाते हैं। दबाव इन फिटिंग्स के इनलेट और आउटलेट पर उचित दूरी पर टेपिंग लगाई जाती है। दबाव हाइड्रोलिक बेंच की मदद से हेड और डिस्चार्ज को मापा जाता है।

6. आवश्यक उपयोगिताएँ:

हाइड्रोलिक बेंच (KCFM-151)

7. प्रायोगिग विधि:

7.1. आरंभिक प्रक्रियाः

- 7.1.1. एक्सेसरी को हाइड्रोलिक बेंच की शीर्ष ट्रे पर रखें।
- 7.1.2. वाल्व वीए बंद करें।
- 7.1.3. एक्सेसरी को हाइड्रोलिक बेंच से कनेक्ट करें।
- 7.1.4. आकस्मिकइज़ाफ़ा के दबाव टैपिंग P1 और P2 को कनेक्ट करें (देखें)। विभिन्न दबाव टैपिंग के लिए तालिका H2) से मैनोमीटर टैपिंग M1 और M2 (हाइड्रोलिक बेंच मैनुअल देखें)।
- 7.1.5. गेट वाल्व, बॉल वाल्व और कंट्रोल वाल्व वीए को पूरी तरह से खोलें।
- 7.1.6. हाइड्रोलिक बेंच का संचालन करें। (हाइड्रोलिक बेंच मैन्अल देखें)
- 7.1.7. मैनोमीटर संचालित करें। (हाइड्रोलिक बेंच मैन्अल देखें)
- 7.1.8. प्रवाह दर बनाए रखने के लिए वाल्व VA संचालित करें।
- 7.1.9. मैनोमीटर रीडिंग यानी h1 और h2 रिकॉर्ड करें। (हाइड्रोलिक बेंच देखें नियमावली)
- 7.1.10. पानी के प्रवाह को मापें. (हाइड्रोलिक बेंच मैनुअल देखें)
- 7.1.11. विभिन्न पानी प्रवाह दरों के लिए उपरोक्त प्रक्रिया (जी.1.6 जी.1.10) को दोहराएं ।
- 7.1.12. आकस्मिकसंकुचन, मोड़, बॉल वाल्व, कोहनी और गेट वाल्व के लिए प्रयोग (जी.1.4 जी.1.10) दोहराएँ।
- 7.1.13. (गेंद वाल्व/गेट वाल्व) समान प्रवाह दर के लिए अलग-अलग उद्घाटन के लिए प्रयोग (जी.1.4 - जी.1.10) को दोहराएँ।

7.2. <u>समापन प्रक्रियाः</u>

- 7.2.1. जब प्रयोग समाप्त हो जाए, तो हाइड्रोलिक बेंच को बंद कर दें।
- 7.2.2. प्रेशर टैपिंग को डिस्कनेक्ट करें।
- 7.2.3. हाइड्रोलिक बेंच से एक्सेसरी को डिस्कनेक्ट करें।

8. <u>अवलोकन एवं गणनाः</u>

8.1. डेटा: छोटे पाइप का व्यास d1 = 0.016 मीटर बड़े पाइप का व्यास d2 = 0.028 मीटर गुरुत्वीय त्वरण g = 9.81 m/s²

8.2. परीक्षण अनुभाग दबाव दोहन:				
क्रमांक	परीक्षण अनुभाग	दबाव दोहन		
1.	आकस्मिक विस्तार	P1 & P2		
2.	आकस्मिक संकुचन	P3 & P4		
3.	झुकाव	P5 & P6		
4.	बॉल वाल्व	P7 & P8		
5.	एल्बो	P9 & P10		
6.	गेट वाल्व	P11 & P12		

8.3. अवलोकन तालिकाः			(परीक्षण अनुभाग:)		
क्रमांक	h1 (cm)	h1 (cm)	R1 (cm)	R2 (cm)	t(s)
1.					
2.					
3.					

8.4 <u>गणनाः</u>

R= R1-R2/100 (m)
Q= A*R/t (m³/s) (ए के लिए, हाइड्रोलिक बेंच मैनुअल देखें)
a1= $\pi/4$ d1² (m²)
a2= $\pi/4$ d2² (m²)
V1=Q/a1 (m/s)
V2=Q/a2 (m/s)
hL=h1-h2/100 (m)
KL=2ghL/ V1² (आकस्मिक संकुचन, बैंड, कोहनी, बॉल वाल्व, गेट वाल्व के लिए)
KL= 2ghL/ (V1-V2)² (आकस्मिक विस्तार के लिए)

9. <u>नामपद्धतिः</u>

नामपद्धति	स्तम्भ शीर्षक	इकाइ	प्रकार
Α	हाइड्रोलिक बेंच के मापने वाले टैंक का	m²	Given
	क्षेत्रफल		
aı	छोटे व्यास वाले पाइप का क्रॉस-अनुभागीय	m²	Calculated
	क्षेत्र		
a2	बड़े व्यास वाले पाइप का क्रॉस-अनुभागीय	m²	Calculated
	क्षेत्र		
D1	पाइप का छोटा व्यास	m	Given
D2	पाइप का बड़ा व्यास	m	Given
G	गुरुत्वाकर्षण के कारण त्वरण	m/s²	Given
h1,h2	दोनों बिंदुओं पर मैनोमेट्रिक रीडिंग	cm	Measured
hL	शीर्ष क्षति	M of water	Calculated
KL	हानि गुणांक	*	Calculated
Q	स्राय होना	m³s	Calculated
R	मापने वाले टैंक में जल स्तर का बढ़ना	m	Calculated
R1	मापने वाले टैंक में पानी का अंतिम स्तर	cm	Measured
R2	मापने वाले टैंक में पानी का प्रारंभिक स्तर	cm	Measured
_			3.5
Т	R के लिए लिया गया समय	S	Measured
V1	छोटे व्यास के पाइप में द्रव का वेग	m/s	Calculated
V2	बड़े ट्यास के पाइप में द्रव का वेग	m/s	Calculated

^{*} प्रतीक इकाई रहित मात्रा का प्रतिनिधित्व करते हैं।

10. <u>सावधानी एवं रखरखाव:</u>

10.1. एक्सेसरी को हमेशा धूल से मुक्त रखें।

- 10.2. हमेशा साफ पानी का प्रयोग करें।
- 10.3. प्रवाह को समायोजित करते समय नियंत्रण वाल्व VA को कभी भी पूरी तरह से बंद न करें।

11. <u>समस्या निवारणः</u>

11.1. यदि पाइप लाइन में लीकेज पाया जाता है, तो फिटिंग को ठीक से कस लें।

12. संदर्भ:

- 12.1. वी.एल. स्ट्रीटर, ई.बी. वाइली, "फ्लुइड मैकेनिक्स", पहला संस्करण, मैकग्रा हिल, एनवाई, 1983, पृष्ठ 134-135, 243-246।
- 12.2. डब्ल्यू. मैककेबे जे. स्मिथ, "यूनिट ऑपरेशन ऑफ केमिकल इंजीनियरिंग", 7वां संस्करण, मैकग्राहिल, एनवाई, 2005, पृष्ठ 121-124 एनवाई, 2005, पृष्ठ 121-

छिद्रमापी सेटअप

1. <u>उद्देश्यः</u>

ओरिफिस मीटर का अध्ययन करना।

2. <u>लक्ष्य :</u>

ऑरिफिस मीटर के लिए डिस्चार्ज सीडी का गुणांक निर्धारित करें।

3. <u>परिचयः</u>

यदि तरल पदार्थ की धारा ले जाने वाले एक बंद चैनल में एक अवरोध रखा जाए, तो वहां संकुचन होगा, वेग में वृद्धि, और इसलिए संकुचन पर गतिज ऊर्जा में वृद्धि, एक से ऊर्जा संतुलन, जैसा कि बर्नौली के प्रमेय द्वारा दिया गया है, एक संगत दबाव में कमी होना चाहिए। संकुचन से मुक्ति की दर की गणना इस दबाव में कमी को जानते हुए की जा सकती है, संकुचन पर प्रवाह के लिए उपलब्ध क्षेत्र, द्रव का घनत्व, और निर्वहन का गुणांक। अंतिम नाम को वास्तविक प्रवाह और सैद्धांतिक प्रवाह का अनुपात प्रकार परिभाषित किया गया है।

4. <u>सिद्धांतः</u>

ऑरिफिस मीटर में एक गोलाकार छेद वाली एक सपाट गोलाकार प्लेट होती है जिसे ऑरिफिस कहा जाता है, जो पाइप अक्ष के साथ संकेंद्रित है।

5. <u>विवरण:</u>

उपकरण में एक छिद्र मीटर होता है, जो सहायक उपकरण की पाइपलाइन में फिट होता है। नियंत्रण वाल्व और बाय पास वाल्व द्वारा प्रवाह नियंत्रित कर सकते हैं। छिद्र मीटर आउटलेट में प्रेशर टेपिंग उपलब्ध कराई गई है।दबाव टेपिंग एक विभेदक मैनोमीटर से जुड़े होते हैं। सेट-अप को नम्य पाइप लाइन के साथ हाइड्रोलिक बेंच से जोड़ा जा सकता है।

6. <u>आवश्यक उपयोगिताएँ:</u>

हाइड्रोलिक बेंच

7. प्रायोगिग विधि:

7.1. आरंभिक प्रक्रिया:

7.1.1. एक्सेसरी को हाइड्रोलिक बेंच की शीर्ष ट्रे पर रखें।

- 7.1.2. उपकरण को साफ करें और इसे धूल से मुक्त करें।
- 7.1.3. दिए गए निकासवाल्व बंद करें।
- 7.1.4. हाइड्रोलिक बेंच के नाबदान टैंक को साफ पानी से भरें और सुनिश्चित करें कि विदेशी कण नहीं हैं।
- 7.1.5. बायपास वाल्व खोलें।
- 7.1.6. नम्य पाइप को एक्सेसरी के वॉटर इनलेट से कनेक्ट त्वरित रिलीज़ युग्मन करें (लचीले पाइप के अंत में युग्मक प्रदान किया जाता है, सहायक उपकरण के इनलेट पर दिए गए प्लग से कनेक्ट किया जाए)।
- 7.1.7. विद्युत आपूर्ति को पंप से कनेक्ट करें।
- 7.1.8. परीक्षण किए जाने वाले परीक्षण अनुभाग का प्रवाह नियंत्रण वाल्व खोलें।
- 7.1.9. परीक्षण अनुभाग के अंत में दिए गए नियंत्रण वाल्व द्वारा प्रवाह को सेट करें और बाईपास वॉल्व।
- 7.1.10. मैनोमीटर पर लगे वाल्व की सहायता से हवा निकालें।
- 7.1.11. मापने वाले टैंक और स्टॉप वॉच का उपयोग करके पानी के प्रवाह को मापें।
- 7.1.12. किसी विशेष डिस्चार्ज पर मैनोमीटर की रीडिंग नोट करें।
- 7.1.13. विभिन्न प्रवाह दरों पर रीडिंग लें।

7.2. <u>समापन प्रक्रियाः</u>

- 7.2.1. जब प्रयोग समाप्त हो जाए तो पंप की आपूर्ति बंद कर दें।
- 7.2.2. एक मिनट तक प्रतीक्षा करें ताकि सहायक उपकरण से प्रसारित पानी निकल जाए।
- 7.2.3. एक्सेसरी के प्लग से कपलर को डिस्कनेक्ट करें और इसे दिए गए हुक की सहायता से शीर्ष ट्रे के पीछे की ओर लटका दें।
- 7.2.4. मापने वाले टैंक और नाबदान टैंक को सूखा दें।

8. अवलोकन एवं गणनाः

8.1. डेटा:

ऑरिफ़िस मीटर के इनलेट पर व्यास d1 =0.028 मीटर

छिद्र मीटर के गले पर व्यास d2 =0.014 मीटर

गुरुत्वाकर्षण के कारण त्वरण g =9.81 m/s²

8.2. अवलोकन तालिकाः					
क्रमांक	h1,cm	h2,cm	R1,cm	R2,cm	t,(s)

8.3. <u>गणनाः</u>

$$R2 = R1 + R1 / 100 (g eq/L)$$

Qa =
$$A*R/t$$
, m^3/s

$$H = h1-h2/100, m$$

a1=
$$\pi/4$$
 d1², m²

$$a2 = \pi/4 d2^2$$
, m^2

Qt = a1a2
$$\sqrt{2gH} / \sqrt{a1^2-a2^2}$$
, m³/s

9. <u>नामपद्धतिः</u>

|--|

aı	छिद्र मीटर के इनलेट पर क्षेत्र	m²	Calculated
a2	छिद्र मीटर के गले का क्षेत्र	m²	Calculated
Cd	निर्वहन का गुणांक	*	Calculated
d1	छिद्र मीटर के इनलेट पर व्यास	m	Given
d1	छिद्र मीटर के गले पर व्यास	m	Given
g	गुरुत्वाकर्षण के कारण त्वरण	m/s²	Given
Н	प्रमुख क्षति	m of water	Calculated
H1,h2	दोनों बिंदुओं पर मैनोमीटर रीडिंग	cm	Measured
Qa	वास्तविक निर्वहन (हाइड्रोलिक बेंच से)	m³/s	Given
Qt	सैद्धांतिक निर्वहन	m³/s	Measured

* प्रतीक इकाईहीन होते हैं

10. सावधानी एवं रखरखाव निर्देश:

- 10.1. एक्सेसरी को हमेशा धूल से मुक्त रखें।
- 10.2. हमेशा साफ पानी का प्रयोग करें।
- 10.3. प्रयोग के बाद एक्सेसरी को पूरी तरह से सूखा लें।
- 10.4. प्रवाह को समायोजित करते समय नियंत्रण वाल्व को कभी भी पूरी तरह से बंद न करें।

11. समस्या निवारणः

11.1. यदि सहायक उपकरण में कहीं भी रिसाव हो, तो पाइप फिटिंग को कस लें।

12. <u>संदर्भः</u>

- 12.1. वी.एल. स्ट्रीटर, ई.बी. वाइली, "द्रव यांत्रिकी", प्रथम संस्करण, मैकग्रा हिल, एनवाई,1983, पृष्ठ 347-349,351-353।
- 12.2. डॉ. आर.के. बंसल, "द्रव यांत्रिकी और हाइड्रोलिक यांत्रिकी" 9वां संस्करण, लक्ष्मी
- 12.3. प्रकाशन (पी) लिमिटेड, एनडी, 2008, पृष्ठ 265-266, 278-280।

वेंचुरीमीटर सेटअप

1. उद्देश्य:

वेंचुरीमीटर का अध्ययन करना

2. लक्ष्य:

वेंचुरीमीटर के लिए डिस्चार्ज सीडी का गुणांक निर्धारित करें

3. परिचय:

यदि तरल पदार्थ की धारा ले जाने वाले एक बंद चैनल में एक अवरोध रखा जाए, तो वहां वेग में वृद्धि संकुचन होगा ,और इसलिए संकुचन पर गतिज ऊर्जा में वृद्धि, एक से ऊर्जा संतुलन, जैसा कि बनौंली के प्रमेय द्वारा दिया गया है, एक दबाव में कमी संगत होना चाहिए। संकुचन से मुक्ति की दर की गणना की जा सकती है, इस दबाव में कमी को जानते हुए, संकुचन पर प्रवाह के लिए उपलब्ध क्षेत्र,

द्रव का घनत्व, और निर्वहन का गुणांक। वास्तविक प्रवाह और सैद्धांतिक प्रवाह का अनुपात अंतिम नाम को इस प्रकार परिभाषित किया गया है।

4. सिद्धांत:

एक वेंचुरीमीटर में निम्न शामिल होते हैं:

- एक इनलेट अनुभाग जिसके बाद एक अभिसरण शंकु होता है।
- एक बेलनाकार थ्रोट।
- धीरे-धीरे अपसारी शंकु।

वेंचुरीमीटर का इनलेट सेक्शन पाइप के समान व्यास का होता है, जो इसके बाद एक अभिसारी शंकु आता है। अभिसरण शंकु एक छोटा पाइप है, जो पतला होता है पाइप के मूल आकार से लेकर वेंचुरीमीटर के गले तक। थ्रोट वेंचुरीमीटर एक छोटी समानांतर साइड ट्यूब है जिसका पाइप की तुलना में क्रॉस-सेक्शनल क्षेत्र छोटा होता है। वेंचुरीमीटर का अपसारी शंकु धीरे-धीरे अपसारी हो रहा है, पाइप जिसका क्रॉस-सेक्शनल क्षेत्र थ्रोट से मूल आकार तक बढ़ रहा है। वेंचुरीमीटर के इनलेट अनुभाग और गले पर, दबाव नल प्रदान किए जाते हैं।

5. विवरण:

उपकरण में एक वेंचुरीमीटर होता है जो सहायक उपकरण की पाइपलाइन में फिट किया जाता है। नियंत्रण वाल्व और बाय पास वाल्व द्वारा प्रवाह नियंत्रित किया जाना चाहिए। प्रेशर टेपिंग वेंचुरीमीटर का आउटलेट पर उपलब्ध कराई गई है। दबाव टेपिंग एक विभेदक मैनोमीटर से जुड़े होते हैं। सेट-अप को लचीली पाइप लाइन के साथ हाइड्रोलिक बेंच से जोड़ा जा सकता है।

6. आवश्यक उपयोगिताएँ:

हाइड्रोलिक बेंच

7. प्रायोगिग विधि:

7.1.आरंभिक प्रक्रिया:

- 7.1.1. एक्सेसरी को हाइड्रोलिक बेंच की शीर्ष ट्रे पर रखें।
- 7.1.2. उपकरण को साफ करें और इसे धूल से मुक्त करें।
- 7.1.3. दिए गए नाली वाल्व बंद करें।
- 7.1.4. हाइड्रोलिक बेंच के नाबदान टैंक को साफ पानी से भरें और सुनिश्चित करें कि विदेशी कण नहीं हैं।
- 7.1.5. बायपास वाल्व खोलें।
- 7.1.6. लचीले पाइप को एक्सेसरी के वॉटर इनलेट से कनेक्ट करें त्वरित रिलीज़ युग्मन किया जाता है (लचीले पाइप के अंत में युग्मक प्रदान एक्सेसरी के इनलेट पर दिए गए प्लग से कनेक्ट किया जाए)।
- 7.1.7. विद्युत आपूर्ति को पंप से कनेक्ट करें।
- 7.1.8. परीक्षण किए जाने वाले परीक्षण अनुभाग का प्रवाह नियंत्रण वाल्व खोलें।
- 7.1.9. परीक्षण अनुभाग के अंत में दिए गए नियंत्रण वाल्व द्वारा प्रवाह को सेट करें।
- 7.1.10. मैनोमीटर पर लगे वाल्व की सहायता से हवा निकालें।
- 7.1.11. मापने वाले टैंक और स्टॉप वॉच का उपयोग करके पानी के प्रवाह को मापें।
- 7.1.12. किसी विशेष डिस्चार्ज पर मैनोमीटर की रीडिंग नोट करें।
- 7.1.13.विभिन्न प्रवाह दरों पर रीडिंग लें।

7.2. समापन प्रक्रिया:

- 7.2.1. जब प्रयोग समाप्त हो जाए तो पंप की आपूर्ति बंद कर दें।
- 7.2.2. एक मिनट तक प्रतीक्षा करें ताकि सहायक उपकरण से प्रसारित पानी निकल जाए।
- 7.2.3. एक्सेसरी के प्लग से कपलर को डिस्कनेक्ट करें और इसे लटका दें दिए गए हुक की सहायता से शीर्ष ट्रे के पीछे की ओर।

7.2.4. मापने वाले टैंक और नाबदान टैंक को सूखा दें।

8. अवलोकन एवं गणना:

8.1.डेटा:
वेंचुरीमीटर d1 के इनलेट पर व्यास =0.028 मीटर
वेंचुरीमीटर d2 के गले का व्यास =0.014 मीटर
गुरुत्वाकर्षण के कारण त्वरण g =9.81 m/s2

8.2. अवलोकन तालिका:					
क्रमांक	h1, cm	h2, cm	R1, cm	R2, cm	t, (s)

8.3. गणना:

R2= R1+R1/100 (g eq/L) Qa= A*R/t, m^3/s H=h1-h2/100, m

a1=
$$\pi$$
/4 d1², m²
a2= π /4 d2², m²
Qt= a1a2 $\sqrt{2gH}/\sqrt{a1^2-a2^2}$
Cd= Qa / Qt

9. नामपद्धतिः

नामपद्धति	स्तंभ शीर्षक	इकाई	प्रकार
aı	वेंचुरीमीटर के इनलेट पर क्षेत्र	m²	Calculated
a2	वेंचुरीमीटर के गले का क्षेत्र	m²	Calculated
Cd	निर्वहन का गुणांक	*	Calculated
d1	वेंचुरीमीटर के इनलेट पर व्यास	m	Given
d2	वेंचुरीमीटर के गले पर व्यास ^m (Given
g	गुरुत्वाकर्षण के कारण त्वरण	m/s²	Given
Н	हेड क्षति	m of water	Calculated
h1, h2	दोनों बिंदुओं पर मैनोमीटर रीडिंग	cm	Measured
Qa	वास्तविक निर्वहन (हाइड्रोलिक बेंच से)	m³/s	Given
Qt	सैद्धांतिक निर्वहन	m³/s	Measured

^{*} प्रतीक इकाईहीन होते हैं

10. सावधानी एवं रखरखाव निर्देश:

- 10.1. एक्सेसरी को हमेशा धूल से मुक्त रखें।
- 10.2. हमेशा साफ पानी का प्रयोग करें।
- 10.3. प्रयोग के बाद एक्सेसरी को पूरी तरह से सूखा लें।

10.4. प्रवाह को समायोजित करते समय नियंत्रण वाल्व को कभी भी पूरी तरह से बंद न करें।

11. समस्या निवारणः

11.1. यदि सहायक उपकरण में कहीं भी रिसाव हो, तो पाइप फिटिंग को कस लें।

12. सन्दर्भ:

- 12.1. वी.एल. स्ट्रीटर, ई.बी. वाइली, "फ्लुइड मैकेनिक्स", पहला संस्करण, मैकग्रा हिल, एनवाई, के.सी. इंजीनियर्स प्रा. लिमिटेड, अम्बाला वेंचुरीमीटर सेट-अप पृष्ठ संख्या 9 में से 9 (रेव. 1) 1983, पृष्ठ 347-349,351-353।
- 12.2. डॉ. आर.के. बंसल, "द्रव यांत्रिकी और हाइड्रोलिक यांत्रिकी" 9वां संस्करण, लक्ष्मी प्रकाशन (पी) लिमिटेड, एनडी, 2008, पृष्ठ 265-266, 278-280।

पिटोट ट्यूब

उद्देश्य:

पिटोट ट्यूब की मदद के साथ स्थानीय बिंदु दबाव निर्धारित करना।

सिद्धांत:

पिटोट ट्यूब एक दबाव मापने वाला उपकरण है जिसका उपयोग द्रव प्रवाह वेग मापने के किया जाता है। स्थानीय माप के लिए पिटोट ट्यूब का उपयोग किया जाता है, प्रवाह धारा में किसी दिए गए बिंदु पर वेग, न कि औसत वेग पाइप। चूंकि इस ट्यूब में तरल पदार्थ होता है, इसलिए दबाव हो सकता है मापा; गतिमान द्रव को विराम (स्थिर) में लाया जाता है क्योंकि वहाँ कोई नहीं होता है, प्रवाह को जारी रखने की अनुमित देने के लिए आउटलेट। यह दबाव ठहराव का दबाव द्रव का, जिसे कुल दबाव भी कहा जाता है।

बर्नौली का समीकरण बताता है:

ठहराव दबाव = स्थैतिक दबाव + गतिशील दबाव

जिसे लिखा भी जा सकता है,

Pt=Ps+ $(\rho V^2/2)$

वेग के लिए इसे हल करने पर हमें प्राप्त होता है:

 $V = \sqrt{(2 \text{ Pt-Ps})/\rho}$

जहाँ,

v द्रव वेग है;

Pt ठहराव या पूर्ण दबाव है;

Ps स्थिर दबाव है;

तथा, ρ द्रव घनत्व है।

दाब ड्रॉप का मान P2-P1 या ΔP के कारण Δh मैनोमीटर की रीडिंग:

 $\Delta P = \rho g \Delta h$

जहाँ,

ρ मैनोमीटर में द्रव का घनत्व है

∆h मैनोमीटर रीडिंग है

और समीकरण (1) और (2) से

 $V = \sqrt{2g}$

समीकरण (3) का उपयोग द्रव वेग को मापने के लिए किया जा सकता है, लेकिन पिटोट ट्यूब के लिए माप, माप में कुछ कारणों से त्रुटि हो सकती है, माप में त्रुटियाँ आ सकती हैं; कि जांच नहीं है प्रवाह की दिशा के अनुरूप। कम रेनॉल्ड्स संख्या पर, की वैधता

बर्नोली समीकरण को लागू करने की आगे जांच की जानी चाहिए। ज्यामिति जांच स्टिंग समर्थन माप की सटीकता को प्रभावित करता है। इसलिए, पिटोट ट्यूब के अंशांकन की आवश्यकता है, जिसे एक का उपयोग करके किया जा सकता है हॉट-वायर एनीमोमीटर रेखीय नियम पर विचार करते हुए।

 $V \propto f()$

पिटोट ट्यूब समीकरण;

$$V = K\sqrt{2g}$$

यहां, к पिटोट ट्यूब गुणांक है और इसे अंशांकन द्वारा निर्धारित करने की आवश्यकता है।

व्यास में माइक्रो-मीटर और इंच में मिनी-मीटर का एक गर्म तार लंबाई प्रवाह क्षेत्र में डाली गई है। प्रवाह वेग को आधार पर महसूस किया जा सकता है गर्म पर प्रवाह से संबंधित संवहन ताप स्थानांतरण के सिद्धांत पर 2-डी गोलाकार सिलेंडर। एनीमोमीटर में, सिकंट्री में फीडबैक होता है व्हीटस्टोन ब्रिज का लूप और एम्पलीफायरों की एक शृंखला जो सीधे प्रवाहित होती है वेग। पिटोट ट्यूब मूल रूप से समय-माध्य वेग माप (बहुत) के लिए है कम आवृत्ति प्रतिक्रिया. यह कम लागत वाला, उपयोग में आसान है। हॉट-वायर मूलतः है वास्तविक समय वेग में उतार-चढ़ाव माप (उच्च आवृत्ति) के लिए

प्रतिक्रिया)।

प्रक्रिया:

- 12.3. वाल्व की सहायता से वायु सेवन को समायोजित करें, एनीमोमीटर जांच को ठीक करें चैनल का निर्वहन।
- 12.4. मैनोमीटर को पिटोट ट्यूब और पीजो-मीटर ट्यूब से कनेक्ट करें।
- 12.5. ब्लोअर चालू करें।
- 12.6. प्रवाह दर रीडिंग एनीमोमीटर लें और मैनोमीटर का दबाव कम करें।
- 12.7. अज्ञात प्रवाह दर के लिए चरण 3 और 4 को दोहराएं और ट्यूब की रीडिंग रिकॉर्ड करें और ग्राफ बनाएं।
- 12.8. पिटोट ट्यूब की गहराई में अंतर के लिए उपरोक्त प्रक्रिया को भी दोहराया जा सकता है।

अवलोकन सारणी:

क्रमांक	एनीमोमीटर रीडिंग, v	मेनोमीटर रीडिंग, h	वास्तविक वेग, v
1.			
2.			
3.			
4.			

गणनाः

जैसा कि दिखाया गया है, वेग बनाम हेड का एक ग्राफ बनाएं और निर्धारित रेखा का ढलान और पिटोट के वेग का गुणांक। समीकरण को फिट करने के लिए रैखिक प्रतिगमन का उपयोग करें।

L = Slope/2 gm

परिणाम:

पिटोट ट्यूब गुणांक к

पूर्वावधान:

- 1) ओवर लोडिंग से बचने के लिए एयर रेगुलेटिंग वाल्व को पूरी तरह से बंद न करें ब्लोअर मीटर पर।
- 2) उपकरणों को साफ करने के लिए केवल हल्के डिटर्जेंट का उपयोग करें। कोई भी कार्बनिक विलायक और मजबूत अम्ल या क्षार उपयोग कभी नहीं किया जाता है।
- 3) बिजली के झटके से बचने के लिए उपकरण को ठीक से ग्राउंड करें।
- 4) मैनोमीटर में द्रव का घनत्व एक होता है।

सुझाव:

आगे पढ़ने के संसाधनः

पुस्तकः लैब प्रयोग संबंधी सिद्धांत निम्नसिद्धांत पुस्तकें उपलब्ध है:

पुस्तक का नाम लेखक पृष्ठ संख्या 1. द्रव यांत्रिकी स्ट्रीटर 130-132,457-458 2. द्रव यांत्रिकी एस जी गुप्ता 165-180