#### प्रयोगशाला नियमावली

द्रव यांत्रिकी एवं हाइड्रोलिक मशीन प्रयोगशाला (CE-228)

के लिए

#### HYDRAULICS LABORATORY MANUAL

**FOR** 

#### FLUID MACHANICS & HYDRAULIC MACHINES (CE-228)





# DEPARTMENT OF CIVIL ENGINEERING MAULANA AZAD NATIONAL INSTITUTE OF TECHNOLOGY BHOPAL(M.P.)

| Name:     |      | <br> |          |   |  |
|-----------|------|------|----------|---|--|
| Scholar I | No.: | <br> | Batch No | · |  |

# अनुक्रमणिका/INDEX

| S.No.    | Name of Experiment                                                         |
|----------|----------------------------------------------------------------------------|
| 1.       | पाइप लाइन में हानियों को मापना और घर्षण गुणांक का निर्धारण करना।           |
| 1.       | To measure losses in pipe line and determine the friction factor.          |
|          | मैनिंग गुणांक का निर्धारण करना एक खुले चैनल में समान प्रवाह के लिए।        |
| 2.       | To determine the manning's coefficient of an open channel for Uniform flow |
| 3.       | हाइड्रोलिक जंप में ऊर्जा हानि की गणना करना।                                |
| ٥.       | To compute energy loss in hydraulic jump.                                  |
| 4.       | पेल्टन व्हील की दक्षता विशेषताओं को व्युत्पन्न करना।                       |
| 4.       | To derive efficiency characteristics of Pelton Wheel                       |
| 5.       | फ्रांसिस टरबाइन की दक्षता विशेषताओं को व्युत्पन्न करना।                    |
| 5.       | To derive efficiency characteristics of Francis turbine                    |
| 6.       | सेंट्रीफ्यूगल पंप के H-Q और दक्षता विशेषताओं को व्युत्पन्न करना।           |
| 0.       | To derive H-Q and efficiency characteristics of Centrifugal pump           |
| 7.       | रेसिप्रोकेटिंग पंप में दक्षता की गणना करना                                 |
|          | To compute the efficiency in reciprocating pump                            |
| 8.       | करेंट-मीटर का अध्ययन।                                                      |
| <u> </u> | Study of current-meter                                                     |
| 9.       | कपलान टरबाइन का अध्ययन।                                                    |
| J.       | Study of Kaplan turbine                                                    |

#### प्रयोग क्रमांक. 1 EXPERIMENT NO.1

#### उद्देश्य/OBJECTIVE:

पाइप लाइन में हानियों को मापना और घर्षण गुणांक का निर्धारण करना। To measure losses in pipe line and determine the friction factor.

#### आवश्यक उपकरण/ APPARATUS REQUIRED:

Overhead tank with constant water level for supply of water.

- i. The straight pipeline fitted with inverted U-tube manometer to measure head loss.
- ii. A collecting tank and stop watch to measure the rate of flow.



#### सिद्धांत /THEORY

When liquid flows through pipes, it is subjected to energy loss. The energy losses in pipe fillings like bends valves etc. are minor losses. The loss due to friction between liquid and pipe is referred as major loss. These losses are function of velocity for any pipe and its flexures.

- i. Fluid friction in pipe or conduit-major losses.
- ii. Changes in velocity or direction of flow-minor losses.

Fluid pipe friction losses is a continuous loss of head, h<sub>f</sub> assumed to occur at a uniform rate along the pipe as long as the size and roughness of the pipe remains constant and is commonly referred to as the loss of head due to friction.

For turbulent flow in pipes, the major loss (h<sub>f</sub>) is normally taken as

$$h_f = \frac{f l v^2}{2gd}$$

Where.

f – Friction factor which is dependent upon the material, surface finish,

I - Length of pipe line in which the losses occur

d - Diameter of pipe line

v - Velocity of flow in the pipeline

#### प्रयोग विधि /PROCEDURE:

- 1. पाइप का व्यास (d) और लंबाई (l) को मैनोमीटर टैपिंग्स के बीच नोट करें।
- 2. मैनोमीटर से हवा निकालने के लिए एयर कॉक खोलें।
- 3. पानी को पाइप से प्रवाहित करने के लिए वाल्व खोलें।
- 4. मापने वाली टंकी में एक लीटर पानी इकट्ठा करें और संग्रह के लिए लिया गया समय नोट करें।
- 5. मैनोमीटर के कॉलम में स्तरों के अंतर को नोट करें।
- 6. वाल्व की स्थिति बदलें और चरण 4 और 5 को दोहराएं।
- 7. पानी का तापमान नोट करें।
- 8. परिणामों को सारणीबदध करें।
- 1. Note the pipe diameter (d) and length (l) between manometers tappings.
- 2. Open the air cocks to remove the air from manometer.
- 3. Open the valve to allow water to flow through the pipe.
- 4. Collect one liter of water in measuring tank and note down the time taken for the collection.
- 5. Note down the difference in levels in the columns of the manometers.
- 6. Change the valve opening and repeat the steps 4 and 5.
- 7. Note down the temperature of water.
- 8. Tabulate the results.

#### उपयोग किए जाने वाले सूत्र/FORMULAE TO BE USED:

Discharge

$$Q = \frac{V}{T}$$

Velocity

$$V = \frac{Q}{a}$$

Head loss due to friction (Darcy Weisbach formula) 
$$h_f = \frac{f \, l \, v^2}{2g d} = \frac{f \, l \, Q^2}{12.1 D^5}$$
 Reynold's number 
$$R_e = \frac{VD}{v}$$

# अवलोकन/OBSERVATION TABLE:

Length of pipe = Diameter of Pipe =

| S. No. | Reading of left<br>limb of<br>manometer (cm) | Reading of right<br>limb of<br>manometer (cm) | Difference<br>(cm) | Time for collection of 1 liter of water (s) |
|--------|----------------------------------------------|-----------------------------------------------|--------------------|---------------------------------------------|
| 1.     | manomotor (em)                               | manomotor (om)                                |                    |                                             |
| 2.     |                                              |                                               |                    |                                             |
| 3.     |                                              |                                               |                    |                                             |
| 4.     |                                              |                                               |                    |                                             |
| 5.     |                                              |                                               |                    |                                             |
| 6.     |                                              |                                               |                    |                                             |
| 7.     |                                              |                                               |                    |                                             |
| 8.     |                                              |                                               |                    |                                             |
| 9.     |                                              |                                               |                    |                                             |
| 10.    |                                              |                                               |                    |                                             |

नमूना गणना/ SAMPLE CALCULATIONS

| परिणामों का प्रस्तुतीकरण/PRESENTATION OF RESULTS                                                              |
|---------------------------------------------------------------------------------------------------------------|
| Plot friction factor 'f' vs $R_{\text{e}}$ on a double log graph and compare with the standard Moody's chart. |
|                                                                                                               |

चर्चा/DISCUSSION

#### प्रयोग क्रमांक. 2 EXPERIMENT NO.2

#### उद्देश्य/OBJECTIVE:

मैनिंग गुणांक का निर्धारण करना एक खुले चैनल में समान प्रवाह के लिए। To determine the manning's coefficient of an open channel for Uniform flow .

#### आवश्यक उपकरण/Apparatus Required:-

- I. A long glass walled rectangular flume having screen at the inlet, a gate at the outlet and a top rail for the movement of pointer gauge.
- II. A pump supplying water to the channel fitted with a venturimeter in its delivery pipe
- III. A pointer gauge and a scale.



#### सिद्धांत/ Theory:

Flow in open channel is said to be uniform if the depth of the flow does not change from section to section at any instant of time. Thus in a uniform flow, the depth of flow, area of cross-section and velocity remains constant along the length of channel.

For uniform flow in an open channel, the mean velocity is given as

$$V = C\sqrt{RS}$$
 (Chezy's equation) (1)

Here C is coefficient which depends on the nature of the surface of channel boundaries and Reynolds number, R is hydraulic mean radius and S is the bed slope of channel.

Another formula proposed by Manning, an Irish engineer is

$$V = \frac{1}{n} R^{2/3} S^{1/2}$$
 (Manning's equation) (2)

Where n is a roughness coefficient known as Manning's coefficient. This coefficient is also function of nature of channel boundary surface. Comparing the above two equations, the Chezy's coefficient is related with Manning's coefficient

$$C = \frac{R^{1/6}}{n} \tag{3}$$

#### प्रक्रिया/Procedure:

- 1. फ्लूम के केंद्रीय भाग में एक अनुभाग का चयन करें।
- 2. इस अनुभाग में बिस्तर के स्तरों के लिए पॉइंटर गेज रीडिंग्स लें।
- 3. पंप चालू करें और आउटलेट वाल्व को पूरी तरह से खोलें ताकि पानी फ्लूम में प्रवाहित हो सके। फ्लूम में उपयुक्त प्रवाह गहराई प्राप्त करने के लिए टेल गेट को समायोजित करें।
- 4. जब तक प्रवाह समान नहीं हो जाता, तब तक प्रतीक्षा करें, यह सुनिश्चित करते हुए कि चयनित अनुभाग में प्रवाह की गहराई समान है। चयनित अनुभागों में पानी की सतह की ऊंचाई के लिए पॉइंटर गेज रीडिंग लें।
- 5. मैनोमीटर की रीडिंग नोट करें जो वेंटुरी मीटर से जुड़ा हुआ है और इसके कैलीब्रेशन कर्व का उपयोग करके प्रवाह की दर (discharge) की गणना करें।
- 6. चैनल के गेट ओपनिंग को बदलें ताकि चैनल में पानी की गहराई में बदलाव हो सके और 3-4 विभिन्न गेट ओपनिंग्स के लिए चरण 2 से 5 तक को दोहराएं।
- 1. Select one section in central part of the flume.
- 2. Take the pointer gauge readings for the bed levels at this section.
- 3. Start the pump and open the outlet valve fully so that water flows in the flume. Adjust the tail gate so as to get a suitable depth of flow in the flume.
- 4. Wait until flow becomes uniform by ensuring that the depth of flow at the chosen section is same. Take the pointer gauge reading for water surface elevation at the chosen sections.
- Note the reading of manometer connected to the venturi meter and calculate discharge using its calibration curve.
- 6. Change the gate opening of channel to vary the depth water in channel andrepeat step 2 to 5 for 3-4 different gate openings.

#### अवलोकन तालिका/Observation Table Width of the flume (m) =

#### Inlet Dia. Of Venturimeter (m) =

#### Diameter of Throat (m) =

| S. No. | Disch                                                            | Discharge            |                     | Pointer gauge reading         |                         |      | Wetted<br>Perimet | Hyd.<br>Mean            | Velocity<br>'V' | Manning coefficient, 'n' |  |
|--------|------------------------------------------------------------------|----------------------|---------------------|-------------------------------|-------------------------|------|-------------------|-------------------------|-----------------|--------------------------|--|
|        | Differential<br>manometri<br>c head in<br>water<br>column<br>(m) | Discharg<br>e (m³/s) | Bed<br>level<br>(m) | Water<br>surface<br>level (m) | Depth<br>of flow<br>(m) | (m²) | er 'P'<br>(m)     | radius<br>R =A/P<br>(m) | (m/s)           |                          |  |
|        |                                                                  |                      |                     |                               |                         |      |                   |                         |                 |                          |  |
|        |                                                                  |                      |                     |                               |                         |      |                   |                         |                 |                          |  |
|        |                                                                  |                      |                     |                               |                         |      |                   |                         |                 |                          |  |
|        |                                                                  |                      |                     |                               |                         |      |                   |                         |                 |                          |  |

# नमूना गणना/ Calculations

1. Find the difference of bed levels  $z_1 - z_2$  over a distance  $x_1 - x_2$  of about 3m length of the flume. Calculate the slope S of the flume

$$S = \frac{z_1 - z_2}{x_1 - x_2}$$

- 2. Find the depth of flow 'Y' at different chosen sections by subtracting the water surface level reading from the bed level reading
- 3. Calculate the cross section area of flow A=B X Y,
- 4. The wetted perimeter P= B+2Y
- 5. Hydraulic mean radius

$$R = \frac{A}{P}$$

- 6. Calculate the mean velocity of flow  $V = \frac{Q}{A}$
- 7. Then calculate the Manning's coefficient using relation

$$V = \frac{1}{n} R^{2/3} S^{1/2}$$
 (Manning's equation)

परिणाम/Result

चर्चा/Discussion

#### प्रयोग क्रमांक. 3 EXPERIMENT NO.3

#### उद्देश्य/OBJECTIVE:

हाइड्रोलिक जंप में ऊर्जा हानि की गणना करना। To compute energy loss in hydraulic jump.

#### आवश्यक उपकरण/Apparatus Required:

A pump supplying water, a venturi meter, long glass walled rectangular flame, pointer gauge, moving gauge.

#### सिद्धांत/Theory:

A hydraulic jump is analogous to the shock wave phenomenon observed in aerodynamics, where a supersonic flow meets a subsonic flow and a shock front develops at the transition between the two flow regimes. The phenomenon of change in supercritical flow to super critical flow causes loss of energy.



Figure 1: Control volume for the analysis of a hydraulic

#### jump.

As shown in fig.1, the hdraulic jump is occurring between section 1 and 2.

Froude's No. at up stream is  $F_{r1} = \frac{{v_1}^2}{\sqrt{gh_1}}$  it should be greater than 1

Froude's No. at down stream is  $F_{r2} = \frac{{v_2}^2}{\sqrt{gh_2}}$  it should be smaller than 1

Height of hydraulic jump =  $h_2-h_1$ 

Loss of energy due to hydraulic jump =  $\frac{(h_2 - h_1)^3}{4h_1h_2}$ 

#### प्रक्रिया/Procedure:

- 1. फ्लूम में पानी आपूर्ति करने के लिए पंप का वाल्व खोलें।
- 2. फ्लूम के गेट को धीरे-धीरे खोलकर डिस्चार्ज को स्थिर करें।
- 3. गेट को डाउनस्ट्रीम अंत पर रखें और हाइड्रोलिक जंप उत्पन्न करने के लिए गेट को सावधानी से समायोजित करें।
- 4. वह बिंदु ढूंढें जहां प्रवाह सुपर क्रिटिकल स्तर से सब क्रिटिकल स्तर में बदलता है, इसके लिए कागज का टुकड़ा गिराकर देखें और यह प्रवाह की दिशा के विपरीत चलेगा।
- 5. पॉइंट गेज का उपयोग करके जंप से पहले और बाद में पानी की गहराई मापें।
- 6. सूत्र के अनुसार ऊर्जा हानि मापें।
- 7. डिस्चार्ज बदलकर चरण 2 से 6 तक को दोहराएं।
- 1. Open the valve of the pump to supply the water in the flume.
- 2. Make the discharge steady by slowly opening the gate of the flume.
- 3. Place the gate at the downstream end and adjust the upstream gate carefully to create a hydraulic jump.
- 4. Find the point where flow changes from supercritical level to sub-critical level by dropping a piece of paper & its moving opposite to the direction of flow.
- 5. Measure water depths before and after the jump using a point gauge.
- 6. Measure the energy loss according to the formula.
- 7. Repeat the steps 3 to 6 by changing the discharge.

#### अवलोकन तालिका/Observation Table

| S.<br>No. |                 |                   |                                         |                     | gauge rea<br>2        | iding at            | Fr <sub>1</sub> | Fr <sub>2</sub> | Energy<br>Loss(m |
|-----------|-----------------|-------------------|-----------------------------------------|---------------------|-----------------------|---------------------|-----------------|-----------------|------------------|
|           | Bed<br>Level(m) | Water<br>Level(m) | Differen<br>ce 'h <sub>1</sub> '<br>(m) | Bed<br>Level(<br>m) | Water<br>Level(m<br>) | Differen<br>ce 'h2' |                 |                 |                  |
|           |                 |                   |                                         |                     |                       |                     |                 |                 |                  |
|           |                 |                   |                                         |                     |                       |                     |                 |                 |                  |
|           |                 |                   |                                         |                     |                       |                     |                 |                 |                  |

#### गणना/Calculation:

- 1. Calculate the upstream and downstream Froude number. Are the calculated values satisfying the requirements for the hydraulic jump formation?
- 2. Calculate head loss using (equation (1) for each test.

परिणाम/Results

#### प्रयोग क्रमांक. 4 EXPERIMENT NO.4

#### उद्देश्य/OBJECTIVE:

पेल्टन व्हील की दक्षता विशेषताओं को व्युत्पन्न करना। To derive efficiency characteristics of Pelton Wheel.

#### आवश्यक उपकरण/APPARATUS:

- 1. Pelton Wheel unit.
- 2. Water supply pipe (Penstock) fitted with Venturi meter and manometer to measure discharge.
- 3. Tachometer to measure speed
- 4. Dynamometer or break drum to measure the torque on the shaft.



#### सिद्धांत/THEORY

Pelton wheel is an impulse turbine the wheel consists a series of buckets on periphery of circular disc on a shaft total energy of water is converted into kinetic energy by putting nozzle at the end of penstock. The jet of water coming out of the nozzle. Strikes the double hemispherical cup-shaped bucket at the center and is deflected back, leading to change in momentum. This imparts force on bucket and produces torque on shaft to rotate it. The water drops into tail race.

The main parts of the Pelton turbine are: 1. Sphere and nozzle assembly 2. Runner 3. Hydraulic brake

#### SPHERE AND NOZZLE ASSEMBLY

This mechanism controls the quantity of water passing through the nozzle to meet the variable demand of power. The mechanism consists of a spear fixed to the end of a shaft which is operated by servomotor through governor. When the speed of the wheel increases, the spear is pushed into the nozzle, thereby reducing the quantity of water striking the bucket. If the speed falls, the spear is drawn back allowing a greater quantity of water to pass through the nozzle.

#### **RUNNER**

Each bucket is divided vertically into two parts by a sharp edge splitter at the centre, thus having the shape of double-spherical cup. The splitter divides the jet into two parts moving side-ways in opposite directions. Cast steel runner is used for low – heads but for higher head, bronze or stainless steel is used. The buckets are bolted or integrally casted on the circumference of circular disk mounted on shaft. The buckets and disc together form the runner of the Pelton turbine.

#### **TAIL RACE SUMP**

It collects water falling from runner and water pumped back to turbine.

#### CHARACTERISTIC CURVES OF THE TURBINE

Turbines are always designed to work under the given design data. But in practice, turbines have to run under a range of conditions. The turbine is designed with various simplifying assumptions and it is impracticable and inaccurate to test the prototype. Therefore, the exact behavior of the turbine under varied conditions is predetermined through model tests to finalize the design. This is graphically represented by set of curves know as characteristic curves of the turbine.

#### प्रक्रिया/PROCEDURE

- 1. ब्रेक ड्रम का व्यास और वेंटुरी मीटर का आकार मापें।
- 2. नोजल के केंद्र और प्रेशर गेज के स्थान के बीच ऊर्ध्वाधर दूरी नोट करें।
- 3. सेंट्रीफ्यूगल पंप चालू करें, पंप के डिलीवरी वाल्व और टरबाइन के नीडल वाल्व को बंद रखते हुए।
- 4. नीडल स्पिंडल से जुड़ी पॉइंटर द्वारा दिखाए गए वांछित मानों के अनुसार स्पीयर ओपनिंग सेट करें।
- 5. सप्लाई लाइन के डिलीवरी वाल्व को पूरी तरह से खोलें, धीरे-धीरे।
- 6. ब्रेक ड्रम पर लोड समायोजित करें ताकि गति अनुमत सीमा के भीतर रखी जा सके।

- 7. लोड, वेंट्री मीटर और प्रेशर गेज की रीडिंग नोट करें।
- 8. ड्रम पर लोड बदलें ताकि गति को 50 या 100 rpm से बढ़ाया या घटाया जा सके।
- 9. चरण 7 और 8 को दोहराकर 3-5 डेटा रीडिंग्स लें।
- 10. नीडल ओपनिंग बदलें और सभी आवश्यक नोजल ओपनिंग्स के परीक्षण समाप्त होने तक चरण 6 से 9 को दोहराएं।
- 1. Measure the diameter of brake drum and size of venturi meter.
- 2. Note the vertical distance between nozzle centre and location of pressure gauge.
- 3. Start the centrifugal pump, keeping the delivery valve of pump and the needle valve of the turbine closed.
- 4. Set the spear opening to desired values shown by a pointer attached to the needle spindle.
- 5. Open fully the delivery valve of supply line gradually.
- 6. Adjust the load on the break drum so that the speed is kept within the allowable limit.
- 7. Note down the reading of load, venturi meter and pressure gauge.
- 8. Change the load on drum to vary the speed by 50 or 100 rpm.
- 9. Take 3-5 get of readings by repeating steps 7 and 8.
- 10. Change the needle opening and repeat step 6 to 9 to till tests for all required nozzle opening are over.

#### उपयोग किए जाने वाले सूत्र/FORMULAE TO BE USED:

Differential head in manometer limbs  $h = 12.6 \Delta y$ 

Discharge

$$Q = \frac{C_d a_1 a_2}{\sqrt{a_1^2 - a_2^2}} \sqrt{2gh}$$

Area of pipe

$$A = \frac{\pi d^2}{4}$$

Velocity in pipe

$$v=\,\frac{Q}{A}$$

Head

$$H = \frac{p}{\gamma} + \frac{V^2}{2g}$$

Net break load

$$T = (W_1 - W_2)$$

Output power

$$P_o = \frac{2\pi RnT \times 9.81}{60}$$

Input power

$$P_i = 9810QH$$

Efficiency (%)

$$\eta = \frac{P_o}{P_i}$$

Where,

h - Differential head in manometer limbs (m)

 $\Delta y$  – difference in mercury level in two limbs of manometer (m)

R – Radius of the break drum (m)

n - Rotational speed in rpm of the shaft

p- Pressure of intel turbine (N/m²)

#### अवलोकन तालिका/ OBSERVATION TABLE:

Diameter of pipe 'd' =

Radius of Break drum 'R' =

Difference in elevation of pressure gauge and Centre of nozzle 'z' =

| Spear opening | Pressure<br>Gauge<br>reading 'P' | Velocity<br>head 'H'<br>(m) | Venturi<br>meter<br>reading 'h' | Discharge<br>'Q' (m³/s) | Input<br>power 'P <sub>i</sub> '<br>(watts) | Speed<br>'n' (rpm) |                | d on<br>n (kg) | Net<br>load<br>'T' | Output<br>power 'P <sub>o</sub> '<br>(watts) | Efficiency (%) |
|---------------|----------------------------------|-----------------------------|---------------------------------|-------------------------|---------------------------------------------|--------------------|----------------|----------------|--------------------|----------------------------------------------|----------------|
|               | (kg/cm <sup>2</sup> )            | (111)                       | (m)                             |                         | (watts)                                     |                    | W <sub>1</sub> | W <sub>2</sub> | (kg)               | (watts)                                      |                |
|               |                                  |                             |                                 |                         |                                             |                    |                |                |                    |                                              |                |
|               |                                  |                             |                                 |                         |                                             |                    |                |                |                    |                                              |                |
|               |                                  |                             |                                 |                         |                                             |                    |                |                |                    |                                              |                |
|               |                                  |                             |                                 |                         |                                             |                    |                |                |                    |                                              |                |
|               |                                  |                             |                                 |                         |                                             |                    |                |                |                    |                                              |                |
|               |                                  |                             |                                 |                         |                                             |                    |                |                |                    |                                              |                |
|               |                                  |                             |                                 |                         |                                             |                    |                |                |                    |                                              |                |
|               |                                  |                             |                                 |                         |                                             |                    |                |                |                    |                                              |                |
|               |                                  |                             |                                 |                         |                                             |                    |                |                |                    |                                              |                |
|               |                                  |                             |                                 |                         |                                             |                    |                |                |                    |                                              |                |
|               |                                  |                             |                                 |                         |                                             |                    |                |                |                    |                                              |                |
|               |                                  |                             |                                 |                         |                                             |                    |                |                |                    |                                              |                |
|               |                                  |                             |                                 |                         |                                             |                    |                |                |                    |                                              |                |
|               |                                  |                             |                                 |                         |                                             |                    |                |                |                    |                                              |                |
|               |                                  |                             |                                 |                         |                                             |                    |                |                |                    |                                              |                |
|               |                                  |                             |                                 |                         |                                             |                    |                |                |                    |                                              |                |

| परिणाम/RESULTS                                                |
|---------------------------------------------------------------|
| 1. For each gate opening plot the Efficiency v/s speed graph. |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
| चर्चा/DISCUSSION:                                             |
|                                                               |
|                                                               |
|                                                               |
|                                                               |

नमूना गणना / SAMPLE CALCULATION

#### प्रयोग क्रमांक. 5 EXPERIMENT NO.5

#### उद्देश्य/OBJECTIVE:

फ्रांसिस टरबाइन की दक्षता विशेषताओं को व्युत्पन्न करना। To derive efficiency characteristics of the Francis turbine.

#### आवश्यक उपकरण/APPARATUS REQUIRED:

- 1. Francis turbine.
- 2. Supply a pump to supply water to the turbine.
- 3. Venturimeter with differential manometer.
- 4. Rope brake the torque.
- 5. Manometer or pressure gauges.
- 6. Tachometer to measure the shaft speed.



#### प्रक्रिया/PROCEDURE:

- 1. टरबाइन पर नाम प्लेट पर दी गई जानकारी नोट करें।
- 2. गाइड वेन को पूरी तरह से बंद रखें और पंप चालू करें।
- 3. टरबाइन के केंद्र से प्रेशर गेज (z1) और टेलरेस स्तर (z2) तक की दूरी मापें।
- 4. गाइड वेन को कुल ओपनिंग का ¼ खोलें और ब्रेक ड्रम पर लोड समायोजित करें, ताकि गति अनुमत सीमा के भीतर रहे।
- 5. वेंटुरी मीटर के मैनोमीटर और प्रेशर गेज से रीडिंग नोट करें।

- 6. रोप ब्रेक पर लोड और टरबाइन की गति नोट करें।
- 7. इम पर लोड बदलें ताकि गति को लगभग 100 RPM से बदला जा सके।
- 8. प्रत्येक गाइड वेन के उद्घाटन के लिए गति को 4-5 बार बदलें।
- 9. अब गाइड वेन के उद्घाटन को बदलें और 5 से 8 उद्घाटन के लिए ऊपर दिए गए चरणों को दोहराएं।

10. ब्रेक इम का व्यास नोट करें।

- 1. Note down the details of the turbine given on the name plate
- 2. Keep the guide vanes completely closed and start the pump
- 3. Open the guide vanes ¼ of the total opening simultaneously adjusting the load on the brake drum. So that speed is within allowable limit
- 4. Note down the reading from the manometer of the venturimeter and pressure gauge.
- 5. Measure the distance from the centre of the turbine to the pressure gauge.
- 6. Note down the load on the rope brake and the speed of the turbine
- 7. Vary the load on the drum to change the speed by about 100 RPM
- 8. For each opening of the guide vane vary the speed 5-6 times
- 9. Now change the guide vane opening and repeat the above steps for 4 to 5 openings
- 10. Note down the diameter of the brake drum.

#### उपयोग किए गए सूत्र/Formulae used:

#### Calculations:-

- 1. Calculate the discharge (Q) from the venturimeter manometer reading.
- 2. Calculate the effective head as

$$H = \left(\frac{P_1}{Y} + \frac{V_1^2}{2g} + Z_1\right) - \left(\frac{P_2}{Y} + \frac{V_2^2}{2g} + Z_2\right)$$

Where,

P<sub>1</sub>= reading of pressure gauge in at the inlet in N/m<sup>2</sup>

P<sub>2</sub>= reading of vacuum gauge in at the draft tube in N/m<sup>2</sup>

 $Z_1$  = vertical distance of pressure gauge from the reference line.

Z<sub>2</sub>= vertical distance of pressure gauge from the reference line.

3. Torque M = F X r

Where.

F = Brake load in kg  $(T_1 - T_2)$ 

r = radius of brake drum.

$$P_{in} = \gamma QH$$

$$P_{out} = \frac{2\pi NT(T_2 - T_1) \, r * 9.81}{60}$$

N = speed of rotation in rpm

Turbine efficiency, 
$$\eta = \frac{P_{out}}{P_{in}} X100$$

### **OBSERVATION TABLE:-**

Dia of Runner, D =

#### Diameter of brake drum =

dia of supply line =

Elevation of pressure gauage from datum  $(Z_1)$  =

(2) Elevation of Vacuum gauge from Datum (Z<sub>2</sub>)

| Guide<br>Vane<br>Opening | Pressure<br>Gauge<br>Reading | Vacuum<br>Gauge<br>Reading | Net<br>Head<br>H | Venturimeter<br>Reading, h<br>(m) | Discharge<br>Q<br>(m <sup>3</sup> /s) | Power (watt) | Speed<br>N<br>(rpm) | Load on<br>drum     |                     | Output<br>Power<br>(Watt) | Efficiency<br>H (%) |
|--------------------------|------------------------------|----------------------------|------------------|-----------------------------------|---------------------------------------|--------------|---------------------|---------------------|---------------------|---------------------------|---------------------|
|                          | (N/m <sup>2</sup> )          | (N/m <sup>2</sup> )        | (m)              |                                   |                                       |              |                     | T <sub>1</sub> (kg) | T <sub>2</sub> (kg) |                           |                     |
|                          |                              |                            |                  |                                   |                                       |              |                     |                     |                     |                           |                     |
|                          |                              |                            |                  |                                   |                                       |              |                     |                     |                     |                           |                     |
|                          |                              |                            |                  |                                   |                                       |              |                     |                     |                     |                           |                     |
|                          |                              |                            |                  |                                   |                                       |              |                     |                     |                     |                           |                     |
|                          |                              |                            |                  |                                   |                                       |              |                     |                     |                     |                           |                     |
|                          |                              |                            |                  |                                   |                                       |              |                     |                     |                     |                           |                     |
|                          |                              |                            |                  |                                   |                                       |              |                     |                     |                     |                           |                     |

# Representation of results $\mbox{For each gate opening plot } \eta \mbox{ against the speed}$

Discussion

#### प्रयोग क्रमांक. 6 EXPERIMENT NO.6

#### उद्देश्य/OBJECTIVE:

सेंट्रीफ्यूगल पंप के H-Q और दक्षता विशेषताओं को व्युत्पन्न करना। To derive H-Q and efficiency characteristics of Centrifugal pump.

#### आवश्यक उपकरण/APPARATUS REQUIRED:

- 1. A pump set up
- 2. Suction and delivery pipe line
- 3. Pressure and vacuum gauge/manometer
- 4. Flow measuring system
- 5. Electric motor and wattmeter
- 6. Orifice meter fitted with delivery line



#### सिद्धांत/THEORY

A centrifugal pump is a mechanical device that converts mechanical energy into hydraulic energy of water to increase pressure.

A centrifugal pump unit has following parts:

- i) Suction pipe fitted with a pressure gauge near pump inlet manometer and a foot valve with strainer (screen) at the lower end.
- ii) An impeller (rotor) and a volute type casing.
- iii) Delivery pipe fitted with pressure gauge and a control valve.

iv) The pump is driven by electric motor.

In these pumps energy is added to the liquid velocity within the impeller is measured by centrifugal action and subsequently the velocity rejection of liquid is converted in to pressure energy within the volute casing of pump.

#### प्रक्रिया/PROCEDURE

- 1. सेंट्रीफ्यूगल पंप की स्थापना और उसके घटकों का अध्ययन करें।
- 2. डिलीवरी वाल्व बंद करें और सेंट्रीफ्यूगल पंप को प्राइम करें।
- 3. पंप को चलाने के लिए इलेक्ट्रिक मोटर चालू करें और इसे पूर्ण गति तक पह्ंचने दें।
- 4. डिलीवरी वाल्व को धीरे-धीरे खोलें और इच्छित प्रवाह (discharge) सेट करें।
- 5. इलेक्ट्रिक मोटर से जुड़े वाट मीटर (W) की रीडिंग, वेंटुरी मीटर से जुड़े मैनोमीटर (h1 और h2) की रीडिंग, कैलीब्रेशन ग्राफ से संबंधित प्रवाह, सक्शन पाइपलाइन पर लगे वैक्यूम गेज या मैनोमीटर (y1 और y2) की रीडिंग, और डिलीवरी पाइपलाइन पर लगे प्रेशर गेज की रीडिंग नोट करें।
- 6. प्रेशर गेज कनेक्शन और वैक्यूम गेज/सक्शन लाइन मैनोमीटर कनेक्शन के बीच ऊर्ध्वाधर दूरी को नोट करें।
- 7. डिलीवरी वाल्व की स्थिति बदलें और चरण 5 में बताए गए सभी अवलोकन दोहराएं।
- 8. पूरे प्रवाह रेंज को कवर करते हुए 6-8 प्रवाह रीडिंग के लिए माप लें।
- 1. Study the centrifugal pump installation and component.
- 2. Close the delivery valve and prime the centrifugal pump.
- 3. Start the electric motor to run the pump and attain its full speed.
- 4. Open the delivery valve gradually to set it desired discharge.
- 5. Note the reading a watt meter W (connected to an electric motor), readings of manometer (h<sub>1</sub> and h<sub>2</sub>), connected to the orifice meter, and read corresponding discharge from the calibration graph, vacuum gauge or the manometer on the suction pipe line (y<sub>1</sub> and y<sub>2</sub> in case of manometer) and reading of the pressure gauge fitted to the delivery pipeline.
- Note the vertical distance between the pressure gauge connectionand centre line of pump.
- 7. Measure the vertical distance (Suction Height) from the pump centre line to the water level in the pump.
- 8. Change the setting of delivery valve and repeat all observation as in step 5.
- 9. Take measurement for 6-8 discharge readings covering full range of discharge.

#### उपयोग किए जाने वाले सूत्र/FORMULAE TO BE USED:

1. Calculate the manometer head developed by the pump.

Pump head (H) = (Pressure Gauge Reading (p)×10000) – Suction

Height 'hs' (m) from water level + location of pressure Gauge from pump axis 'z' (m)

$$H s = h_d + h_s + z (m)$$

- 2. The input power to the pump is calculated from:  $P_{input} = W \times \eta_m \times 1000$  (watts)
- 3. Calculate power output of pump as:  $P_{output} = \gamma QH$  (Watts)

Where ' $\gamma$ ' is the specific weight of liquid (N/m<sup>3</sup>)

'Q' is the discharge delivered by the pump (m<sup>3</sup>/s)

4. The overall efficiency of the pump is then calculated as  $\eta = \frac{P_{output}}{P_{input}} \times 100$ 

Velocity head at inlet and outlet of the pump are not being considered, because the diameter of suction and delivery pipe is same and hence velocity head will be same and will get cancelled with each other.

#### अवलोकन/OBSERVATIONS:

Diameter of suction pipe = Diameter of delivery pipe =

Efficiency of motor = Speed of pump =

Distance suction from suction gauge or manometer to delivery pressure gauge 'Z' (m) =

| sS.<br>No. | Wattmeter<br>Reading<br>'W' (Watt) | mand           | ifice<br>ometer<br>ing (m) | Discharge<br>'Q'(m³/sec) | Pressure<br>Gauge<br>Reading<br>'p' | Suction<br>Height<br>(m) | Mano metric head<br>'H' (m) | Power output P <sub>output</sub> (W) | Efficiency (%) |
|------------|------------------------------------|----------------|----------------------------|--------------------------|-------------------------------------|--------------------------|-----------------------------|--------------------------------------|----------------|
|            |                                    | h <sub>1</sub> | h <sub>2</sub>             |                          | (Kg/cm <sup>2</sup> )               |                          |                             |                                      |                |
|            |                                    |                |                            |                          |                                     |                          |                             |                                      |                |
|            |                                    |                |                            |                          |                                     |                          |                             |                                      |                |
|            |                                    |                |                            |                          |                                     |                          |                             |                                      |                |
|            |                                    |                |                            |                          |                                     |                          |                             |                                      |                |
|            |                                    |                |                            |                          |                                     |                          |                             |                                      |                |
|            |                                    |                |                            |                          |                                     |                          |                             |                                      |                |
|            |                                    |                |                            |                          |                                     |                          |                             |                                      |                |
|            |                                    |                |                            |                          |                                     |                          |                             |                                      |                |
|            |                                    |                |                            |                          |                                     |                          |                             |                                      |                |
|            |                                    |                |                            |                          |                                     |                          |                             |                                      |                |
|            |                                    |                |                            |                          |                                     |                          |                             |                                      |                |
|            |                                    |                |                            |                          |                                     |                          |                             |                                      |                |
|            |                                    |                |                            |                          |                                     |                          |                             |                                      |                |
|            |                                    |                |                            |                          |                                     |                          |                             |                                      |                |

| नमूना गणना/SAMPLE CALCULATION:                                                                                                                                                |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| नम्बा बंबबा/SAMFEE CALCOLATION.                                                                                                                                               |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |
| परिणामों का प्रस्तुतीकरण/PRESENTATION OF THE RESULTS                                                                                                                          |  |
| On a regular graph paper, plot of pump head ( $H_m$ ), efficiency ( $\eta$ ) as ordinate and discharge (Q) abscissa. The resulting curves are known as characteristic curves. |  |
| वर्चा/DISCUSSION:                                                                                                                                                             |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |
|                                                                                                                                                                               |  |

#### प्रयोग क्रमांक. ७ EXPERIMENT NO.7

#### उद्देश्य/OBJECTIVE:

आवर्ती पंप की विशेषताओं को निर्धारित करने और निम्नलिखित का पता लगाने के लिए:

- 1. कुल हेड
- 2. पंप की दक्षता

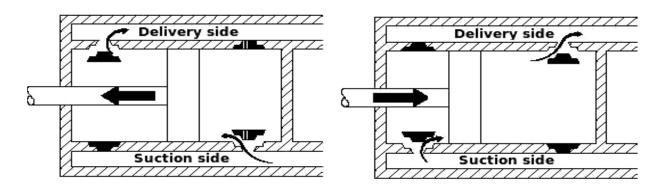
To determine the characteristics of Reciprocating Pump and to find out:

- 1. Total head
- 2. Pump efficiency

#### आवश्यक उपकरण/ APPARATUES REQUIRED

- 1. Water Supply.
- 2. Drain
- 3. Electricity 230V AC, Single Phase.
- 4. Space required: 1.6 x 0.6 m.




#### सिद्धांत /THEORY:

The hydraulic machines, which convert the mechanical energy into hydraulic energy, are called pumps. The Hydraulic energy is in the form of pressure energy. If the mechanical energy is converted into pressure energy by means of reciprocating motion, the hydraulic machine is called reciprocating pump.

जो हाइड्रोलिक मशीनें यांत्रिक ऊर्जा को हाइड्रोलिक ऊर्जा में परिवर्तित करती हैं, उन्हें पंप कहा जाता है। हाइड्रोलिक ऊर्जा दबाव ऊर्जा के रूप में होती है। यदि यांत्रिक ऊर्जा को आवर्ती गति के माध्यम से दबाव ऊर्जा में परिवर्तित किया जाए, तो उस हाइड्रोलिक मशीन को आवर्ती पंप कहा जाता है।

Reciprocating pump is a positive displacement pump, which causes a fluid to move by trapping a fixed amount of it then displacing that trapped volume into the discharge pipe. The fluid enters a pumping chamber via an inlet valve and is pushed out via an outlet valve by the action of the piston or diaphragm. They are either single acting; independent suction and discharge strokes or double acting; suction and discharge in both directions.

आवर्ती पंप एक सकारात्मक विस्थापन पंप है, जो द्रव को इस प्रकार स्थानांतरित करता है कि पहले एक निश्चित मात्रा में द्रव को फंसाया जाता है और फिर उस फंसी हुई मात्रा को डिस्चार्ज पाइप में धकेल दिया जाता है। द्रव एक इनलेट वाल्व के माध्यम से पंपिंग चैंबर में प्रवेश करता है और पिस्टन या डायाफ्राम की क्रिया के माध्यम से आउटलेट वाल्व के माध्यम से बाहर धकेला जाता है। ये या तो सिंगल एक्टिंग होते हैं, जिसमें स्वतंत्र सक्शन और डिस्चार्ज स्ट्रोक होते हैं, या डबल एक्टिंग होते हैं, जिसमें दोनों दिशाओं में सक्शन और डिस्चार्ज होता है।



Reciprocating pumps are self-priming and are suitable for very high heads at low flows. They deliver reliable discharge flows and are often used for metering duties because of constancy of flow rate. The flow rate is changed only by adjusting the rpm of the driver. These pumps deliver a highly pulsed flow. If a smooth flow is required then the discharge flow system has to include additional features such as accumulators. An automatic relief valve set at a safe pressure is used on the discharge side of all positive displacement pumps.

आवर्ती पंप स्व-प्राइमिंग होते हैं और कम प्रवाह पर बहुत अधिक हेड के लिए उपयुक्त होते हैं। ये पंप विश्वसनीय डिस्चार्ज प्रवाह प्रदान करते हैं और अक्सर मेट्रिंग कार्यों के लिए उपयोग किए जाते हैं क्योंकि इनमें प्रवाह दर स्थिर रहती है। प्रवाह दर को केवल ड्राइवर के आरपीएम को समायोजित करके बदला जा सकता है। ये पंप अत्यधिक पल्सयुक्त प्रवाह प्रदान करते हैं। यदि एक समान प्रवाह की आवश्यकता हो, तो डिस्चार्ज प्रवाह प्रणाली में अतिरिक्त सुविधाएँ जैसे एक्यूम्युलेटर्स शामिल करनी पड़ती हैं। सभी सकारात्मक विस्थापन पंपों के डिस्चार्ज साइड पर एक स्वचालित राहत वाल्व लगाया जाता है, जिसे स्रक्षित दबाव पर सेट किया जाता है।

The performance of a pump is characterized by its net head h, which is defined as the change in Bernoulli head between the suction side and the delivery Side of the pump. h is expressed in equivalent column height of water.

पंप के प्रदर्शन को इसके नेट हेड h द्वारा वर्णित किया जाता है, जिसे पंप के सक्शन साइड और डिलीवरी साइड के बीच बर्नौली हेड में परिवर्तन के रूप में परिभाषित किया जाता है। h को पानी के समकक्ष स्तंभ की ऊंचाई के रूप में व्यक्त किया जाता है।

$$h_{w} = \left(\frac{p}{\rho g} + \frac{V^{2}}{2g} + Z\right)_{delivery} - \left(\frac{p}{\rho g} + \frac{V^{2}}{2g} + Z\right)_{suction}$$

The subscripts stand for suction or delivery sides. This equation can also be Written as,

Net head, 
$$h_w = \frac{(P_{del} - P_{suc})}{\rho g} + \frac{(V^2_{del} - V^2_{suc})}{2g} + (Z_{del} - Z_{suc})$$

The velocity of water can be calculated using discharge and diameter of the Pipes. The discharge produced by the pump can be determined using the collecting tank and stopwatch setup.

$$Q = \frac{A \times R}{t}$$

The net head is proportional to the useful power actually delivered to the Fluid in the pump. Traditionally it is called the water horsepower (whp), even if the power is not measured in horsepower. It is defined as,

$$P_{out} = \rho Qgh_w \ (watt)$$

In pump terminology the external energy supplied to the pump is called the brake horsepower (bhp) of the pump, which can be calculated by considering the efficiency of the motor.

$$P_{in} = Watt meter Reading$$

The pump efficiency  $\eta_{ump}$  ump is defined as the ratio of useful power to supplied power,

$$\eta_{pump} = \frac{P_{out}}{P_{in}}$$

The theoretical discharge of a reciprocating pump can be calculated by knowing the geometrical specifications and rate of travel of the piston, since it is positive displacement type. The volume of the fluid displaced will be equal to the stoke volume of the piston inside the cylinder. For a single acting single cylinder reciprocating pump, the displaced volume of water per second is given by,

आवर्ती पंप का सैद्धांतिक डिस्चार्ज उसकी ज्यामितीय विनिर्देशों और पिस्टन की गति की दर को जानकर गणना किया जा सकता है, क्योंकि यह एक सकारात्मक विस्थापन प्रकार है। पिस्टन के सिलेंडर के भीतर स्ट्रोक वॉल्यूम के बराबर द्रव का विस्थापित आयतन होगा। एक डबल एक्टिंग सिंगल सिलेंडर आवर्ती पंप के लिए, प्रति सेकंड विस्थापित पानी का आयतन निम्नलिखित सूत्र द्वारा दिया जाता है:

$$Q_{th} = \frac{LNA}{60}$$

#### विवरण/DESCRIPTION:

Reciprocating Pump Test Rig consists of a sump, a reciprocating pump, an AC motor and measuring tank. To measure the head, Pressure and Vacuum gauges are provided. To measure the discharge, a measuring tank is provided. Flow diversion system is provided to divert flow from sump tank to measuring tank and from measuring tank to sump tank. A valve is provided in pipeline to change the rate of flow.

आवर्ती पंप परीक्षण उपकरण में एक सम्प, एक आवर्ती पंप, एसी मोटर और मापन टैंक शामिल होते हैं। हेड को मापने के लिए प्रेशर और वैक्यूम गेज लगाए गए हैं। डिस्चार्ज को मापने के लिए एक मापन टैंक प्रदान किया गया है। प्रवाह को सम्प टैंक से मापन टैंक और मापन टैंक से सम्प टैंक की ओर मोड़ने के लिए एक प्रवाह विचलन प्रणाली दी गई है। प्रवाह दर को बदलने के लिए पाइपलाइन में एक वाल्व लगाया गया है।

#### प्रायोगिक प्रक्रिया/EXPERIMENTAL PROCEDURE:

- 1. उपकरण को साफ करें और सभी टैंकों को धूल-मुक्त बनाएं।
- 2. प्रदान किए गए ड्रेन वाल्व को बंद करें।
- 3. सम्प टैंक को 3/4 तक साफ पानी से भरें और स्निश्चित करें कि उसमें कोई विदेशी कण न हो।
- 4. पानी के डिस्चार्ज लाइन पर दिए गए फ्लो कंट्रोल वाल्व और सक्शन लाइन पर दिए गए कंट्रोल वाल्व को खोलें।

- 5. पैनल पर दिए गए सभी ऑन/ऑफ स्विच को "ऑफ" स्थिति में सुनिश्चित करें।
- 6. अब मुख्य पावर सप्लाई (220 वोल्ट एसी, 50 हर्ट्ज) को चालू करें और पंप को चालू करें।
- 7. वेरिएक की मदद से मोटर/पंप की इच्छित गति सेट करें।
- 8. फ्लो कंट्रोल वाल्व को ऑपरेट करें ताकि पंप दवारा पानी के डिस्चार्ज को नियंत्रित किया जा सके।
- 9. फ्लो कंट्रोल वाल्व को ऑपरेट करें ताकि पंप के सक्शन को नियंत्रित किया जा सके।
- 10. डिस्चार्ज लाइन पर लगे प्रेशर गेज के माध्यम से डिस्चार्ज प्रेशर को रिकॉर्ड करें।
- 11. पंप के सक्शन पर लगे वैक्यूम गेज के माध्यम से सक्शन प्रेशर को रिकॉर्ड करें।
- 12. पैनल में दिए गए एनर्जी मीटर के माध्यम से पावर खपत को रिकॉर्ड करें।
- 13. स्टॉप वॉच और मापन टैंक का उपयोग करके पंप द्वारा डिस्चार्ज किए गए पानी के प्रवाह को मापें।
- 14. यही प्रक्रिया मोटर/पंप की शेष दो गति के लिए दोहराएं।
- 15. जब प्रयोग समाप्त हो जाए, तो डिस्चार्ज लाइन पर दिए गए गेट वाल्व को सही तरीके से खोलें।
- 16. पहले पंप को बंद करें।
- 17. पैनल की पावर सप्लाई को बंद करें।
- 1. Clean the apparatus and make All Tanks free from Dust.
- 2. Close the drain valves provided.
- 3. Fill Sump tank  $\frac{3}{4}$  with Clean Water and ensure that no foreign particles are there.
- 4. Open Flow Control Valve given on the water discharge line and Control valve given on suction line.
- 5. Ensure that all On/Off Switches given on the Panel are at OFF position.
- 6. Now switch on the Main Power Supply (220 V AC, 50 Hz) and switch on the Pump.
- 7. Set the desired speed of motor/pump with the help variac.
- 8. Operate the Flow Control Valve to regulate the flow of water discharge by the pump.
- 9. Operate the Flow Control Valve to regulate the suction of the pump.
- 10. Record discharge pressure by means of Pressure Gauge, provided on discharge line.
- 11. Record suction pressure by means of Vacuum Gauge, provided at suction of the pump.
- 12. Record the power consumption by means of Energy meter, provided in panel.
- 13. Measure the flow of water, discharge by the pump, using Stop Watch and Measuring Tank.
- 14. Repeat the same procedure for rest of the two speeds of motor/pump.
- 15. When experiment is over, gate valve is proper open provided on the discharge line

- 16. Switch OFF the pump first.
- 17. Switch OFF Power Supply to Panel.

#### प्रेक्षण एवं गणनाएँ/OBSERVATIONS & CALCULATIONS:

| STANDARD DATA:                                 |                                       |
|------------------------------------------------|---------------------------------------|
| Area of collecting tank A = 0.1 m <sup>2</sup> | Energy Meter Constant EMC = 3200 KWhr |
| Length of stroke L = 0.045                     |                                       |
| Diameter of bore do = 0.040 m                  |                                       |

#### **Observation table**

| S.No. | Speed of pump (N) | р <sub>d</sub> | pν | Initial<br>Water<br>level<br>(Y <sub>1</sub> ) | Initial<br>Water<br>level<br>(Y <sub>1</sub> ) | Differen<br>ce (m) | Time<br>(sec) | Watt<br>meter<br>readin<br>g | Efficiency |
|-------|-------------------|----------------|----|------------------------------------------------|------------------------------------------------|--------------------|---------------|------------------------------|------------|
| 1     |                   |                |    |                                                |                                                |                    |               |                              |            |
| 2     |                   |                |    |                                                |                                                |                    |               |                              |            |
| 3.    |                   |                |    |                                                |                                                |                    |               |                              |            |

#### गणनाएँ/CALCULATIONS:

To plot the following performance characteristics:

- 1. Head Vs Discharge
- 2. Pump efficiency Vs Discharge.

#### नामकरण/NOMENCLATURE:

| Nom                               | Column Heading                              | Units              | Type       |
|-----------------------------------|---------------------------------------------|--------------------|------------|
| Α                                 | Area of collecting tank                     | m <sup>2</sup>     | Given      |
| Р                                 | Pulses                                      | *                  | Measured   |
| $\eta_{\scriptscriptstyle motor}$ | Efficiency of Motor                         | *                  | Given      |
| Q                                 | Discharge                                   | m³/s               | Calculated |
| Q <sub>th</sub>                   | Theoretical Discharge                       | m <sup>3</sup> /s  | Calculated |
| Y                                 | Height of water collecting in tank          | m                  | Measured   |
| t                                 | Time for water collected in collecting tank | sec                | Measured   |
| Н                                 | Total Head                                  | m of water         | Calculated |
| p <sub>v</sub>                    | Vacuum Pressure                             | mm Hg              | Measured   |
| рd                                | Discharge Pressure                          | Kg/cm <sup>2</sup> | Measured   |
| ρ                                 | Density of water                            | Kg/m³              | Given      |
| N                                 | RPM of pump                                 | *                  | Measured   |
| ηρ                                | Pump Efficiency                             | %                  | Calculated |

#### सावधानियाँ एवं रखरखाव निर्देश/PRECAUTIONS & MAINTAINANCE INSTRUCTIONS:

- 1. Do not run the pump at low voltage i.e. less than 180 volts.
- 2. Never fully closed the delivery line and bypass line valves simultaneously
- 3. Always keep the apparatus free from dust.
- 4. To prevent clogging of moving parts, always run the pump once in a week.
- 5. Frequently grease/oil the rotating parts, once in three months.
- 6. Always use clean water
- 7. If the apparatus will not be in use for more than one month, drain the apparatus completely.

#### समस्या निवारण/TROUBLESHOOTING:

- 1. If the pump is not lifting any water, open the air vent provided on the pump to remove the air from pump.
- 2. If the panel is not showing input, check the fuse and main supply.

## प्रयोग क्रमांक. 8 EXPERIMENT NO.8

# उद्देश्य/OBJECTIVE:

करेंट-मीटर का अध्ययन। Study of current-meter

#### प्रयोग क्रमांक. 9 EXPERIMENT NO.9

# उद्देश्य/OBJECTIVE:

कपलान टरबाइन का अध्ययन। Study of Kaplan turbine.