मौलाना आज़ाद राष्ट्रीय प्रौद्योगिकी संस्थान भोपाल (राष्ट्रीय महत्व का एक संस्थान)

रसायनिक अभियांत्रिकी विभाग

ऊष्मा स्थानांतरण प्रयोगशाला

(हीट ट्रांसफर लैब)

प्रयोगशाला प्रमुख डॉ. सुमित हं. धवने, सहायक प्राध्यापक

प्रयोगशाला का उद्देश्य

हीट ट्रांसफर विज्ञान का अध्ययन ताप के विभिन्न रूपों (कंडक्शन, कंवेक्शन और रेडियेशन) के माध्यम से होता है, और इन प्रक्रियाओं के आधार पर ऊर्जा के प्रभावी संचालन के तरीके समझे जाते हैं। इस प्रयोगशाला का उद्देश्य छात्रों को हीट ट्रांसफर के सिद्धांतों और उनके अनुप्रयोगों से परिचित कराना है। छात्र विभिन्न प्रयोगों के माध्यम से इन प्रक्रियाओं के व्यवहार को समझेंगे।

प्रयोगशाला की सुरक्षा दिशा-निर्देश

- 1. सुरक्षित उपकरण का उपयोग करें सभी उपकरणों का उपयोग करते समय निर्देशों का पालन करें।
- 2. सुरक्षित कार्य क्षेत्र बनाए रखें प्रयोग करते समय सुनिश्चित करें कि कार्यक्षेत्र साफ और व्यवस्थित हो।
- 3. सुरक्षित बिजली कनेक्शन सभी इलेक्ट्रिक उपकरणों को सही तरीके से जोड़ें और सुनिश्चित करें कि सभी कनेक्शन सुरक्षित हैं।
- 4. व्यक्तिगत सुरक्षा उपकरण (PPE) पहनें प्रयोग करते समय सुरक्षात्मक दस्ताने, चश्मे, और अन्य PPE का उपयोग करें।

इस मैनुअल का उपयोग यह मैनुअल आपको प्रयोगों को समझने और ठीक से करने में मदद करेगा। प्रत्येक प्रयोग के लिए विधि, प्रयोगात्मक सेटअप, और आवश्यक उपकरणों का विवरण दिया गया है।

कार्यक्रम का नाम	रसायनिक अभियांत्रिकी में बी.टेक	सेमेस्टर : चत्र्थ	वर्ष : द्वितीय
Name of Program		Semester : Fourth	Year : Second
पाठ्यक्रम का नाम	ऊष्मा स्थानांतरण प्रयोगशाला		
Name of Course	Heat Transfer Lab		
पाठ्यक्रम कोड	सी.एच.ई. 226		
Course Code	CHE 226		
कोर/ऐच्छिक/अन्य	कोर		
Core/Elective/Other	Core		

	प्रयोग की सूची List of Experiment	
큙. S.No.	प्रयोग का नाम Name of Experiment	
1	तरल पदार्थ की ऊष्मीय चालकता का मापन Measurement of Thermal Conductivity of Liquid	
2	उत्सर्जन क्षमता का मापन Measurement of Emissivity	
3	मिश्रित दीवार के माध्यम से ऊष्मा स्थानांतरण का अध्ययन Study of Heat Transfer Through Composite Wall	
4	हीट पाइप प्रदर्शन Heat Pipe Demonstration	
5	प्राकृतिक संवहन में ऊष्मा स्थानांतरण का अध्ययन Study of Heat Transfer in Natural Convection	
6	पूल बॉयलिंग उपकरण का अध्ययन Study of Pool Boiling Apparatus	
7	बहु प्रभाव बाष्पीकरणकर्ता का अध्ययन Study of Multi Effect Evaporator	
8	एकल प्रभाव वाष्पीकरण का अध्ययन Study of Single Effect Evaporator	
9	शैल एवं ट्यूब हीट एक्सचेंजर का अध्ययन Study of Shell & Tube Heat Exchanger	
10	बूंद-बूंद और फिल्म-बूंद संघनन का अध्ययन Study of Drop-wise and Film-wise Condensation	
11	बलपूर्वक संवहन में ऊष्मा का अध्ययन Study of Heat in Forced Convection	
12	द्रवित-बेड में ऊष्मा स्थानांतरण का अध्ययन Study of Heat Transfer in Fluidized bed	
13	धातु छड़ की तापीय चालकता Thermal Conductivity of metal ROD	

उत्सर्जन माप उपकरण

1. उद्देश्य:

काली प्लेट और परीक्षण प्लेट द्वारा विकिरण ऊष्मा स्थानांतरण का अध्ययन।

2. लक्ष्य:

परीक्षण प्लेट की उत्सर्जन क्षमता की गणना करने के लिए।

3. परिचय:

सभी तापमान पर सभी पदार्थ तापीय विकिरण उत्सर्जित करते हैं। थर्मल विकिरण एक विद्युत चुम्बकीय तरंग है और प्रसार के लिए किसी भौतिक माध्यम की आवश्यकता नहीं होती है। सभी पिंड विकिरण उत्सर्जित कर सकते हैं और उसके पूरे हिस्से को अवशोषित करने की क्षमता भी रखते हैं, आसपास से इसकी ओर आने वाला विकिरण।

4. सिद्धांत:

एक आदर्श काली सतह वह होती है, जो परावर्तन के साथ सभी आपितत विकिरण को अवशोषित कर लेती है और संप्रेषणीयता शून्य के बराबर है। प्रित इकाई क्षेत्र से प्रित इकाई समय में दीप्तिमान ऊर्जा शरीर की सतह को उत्सर्जक शक्ति कहा जाता है और इसे आमतौर पर ई द्वारा दर्शाया जाता है। एक ही तापमान पर एक काली सतह की शक्ति सतह की उत्सर्जकता, सतह की उत्सर्जक शक्ति और उत्सर्जक शक्ति का अनुपात है। इसे 8 द्वारा दर्शाया जाता है।

ε= Ε/ΕΒ

उत्सर्जन सतह का एक गुण है जो सतह की प्रकृति और तापमान पर निर्भर करता है। $Es=EB-(QB-QS)/A*\sigma*(TS^4-TD^4)$

उपरोक्त समीकरण से हम परीक्षण प्लेट की उत्सर्जकता ज्ञात कर सकते हैं, जहाँ EB ब्लैक बाडी की उत्सर्जकता है। QB, QS, ब्लैक प्लेट और टेस्ट प्लेट के ताप इनपुट हैं। A ऊष्मा का क्षेत्र है स्थानांतरण । स्टीफन बोल्ट्ज़मान स्थिरांक है, टीएस, टीडी सतह का तापमान हैं और आसपास का तापमान।

विवरण:

प्रायोगिक सेट अप में दो प्लेटें होती हैं, परीक्षण प्लेट में एक अभ्रक हीटर होता है। काली प्लेट परीक्षण प्लेट के समान होती है, लेकिन इसकी सतह काली हो जाती है। सभी के रूप में भौतिक गुण, आयाम और तापमान समान हैं। दोनों प्लेटें समर्थित हैं

स्थिरता सुनिश्चित करने के लिए एक साइड ग्लास के साथ लकड़ी के बाड़े में अलग-अलग ब्रैकेट वातावरणीय स्थितियां। मापने के लिए तापमान सेंसर प्रदान किए जाते हैं प्रत्येक प्लेट और आसपास का तापमान। माध्यम से हीटरों को सप्लाई दी जाती है वेरिएक को अलग करें ताकि दोनों का तापमान बराबर रखा जा सके और मापा जा सके डिजिटल वाल्टमीटर और डिजिटल एमीटर के साथ।

6. आवश्यक उपयोगिताएँ:

- 6.1. विद्युत आपूर्ति: एकल चरण, 220 वी एसी, 50 हर्ट्ज, 5-15 एम्पियर संयुक्त सॉकेट पृथ्वी कनेक्शन के साथ।
- 6.2. आवश्यक बेंच क्षेत्र: 1 मी x 1 मी

7. प्रायोगिग विधि:

7.1. आरंभिक प्रक्रिया:

- 7.1.1. सुनिश्चित करें कि पैनल पर दिया गया मुख्य चालू/बंद स्विच बंद स्थिति में है और डिमर स्टेट शून्य स्थिति पर है।
- 7.1.2. विद्युत आपूर्ति को सेट अप से कनेक्ट करें।
- 7.1.3. मेन ऑन/ऑफ स्विच चालू करें।
- 7.1.4. रेंज में डिमर स्टेट, वोल्टमीटर द्वारा टेस्ट प्लेट हीटर इनप्ट सेट करें 40-100 VI
- 7.1.5. ब्लैक प्लेट हीटर इनपुट को डिमर स्टेट, वोल्टमीटर, 2 वोल्ट से ऊपर सेट करें परीक्षण प्लेट हीटर।
- 7.1.6. 0.5 घंटे के बाद. काली प्लेट की सतह के तापमान में अंतर का निरीक्षण करें और परीक्षण प्लेट, दोनों बनाने के लिए काली प्लेट के हीटर इनपुट को समायोजित करें सेंसर की रीडिंग समान है।
- 7.1.7. ब्लैक प्लेट हीटर इनपुट बदलने के बाद हर बार 5 मिनट तक प्रतीक्षा करें और यदि आवश्यक हो तो फिर से इनपुट बदलें।

7.1.8. समान सतह के तापमान पर वोल्टमीटर, एम्पीयर मीटर और तापमान सेंसर की रीडिंग नोट करें।

7.2. समापन प्रक्रिया:

- 7.2.1. जब प्रयोग समाप्त हो जाए तो डिमर स्टेट को शून्य स्थिति पर सेट करें।
- 7.2.2. मेन ऑन/ऑफ स्विच को बंद कर दें।
- 7.2.3. सेट अप की विद्युत आपूर्ति बंद कर दें।

8. अवलोकन एवं गणना:

8.1. ਤੇਟਾ:	
स्टीफ़न बोल्टज़मैन स्थिरांक σ =	काली प्लेट DB का व्यास = 0.16m
5.67 x 10-8 W/M ² K ⁴	
काली प्लेट EB की उत्सर्जनशीलता= 1	परीक्षण प्लेट डीएस का व्यास = 0.16 मीटर

	8.2. अवलोकन तालिका:									
S.	V	I	T 1	T ₂	Тз	T4	T 5	T 6	T 7	Т8
no.	(Volt)	(AMP)	(°C)	(°C)	(°C)	(°C)	(°C)	(°C)	(°C)	(°C)

8.3. गणना: (T1=T2 पर)

QB=VB*IB (W)

Qs=Vs*Is (W)

A= $\pi/4$ Ds² (m²)

Ts= T1+ 273.15 (K)

TD= T3+ 273.15 (K)

Es= EB- (QB- Qs)/ $A*\sigma*(Ts^4- TD^4)$

गणना तालिका:						
क्रैमांक	QB (W)	Qs (W)	Ts (K)	Ts (K)	Es	

9. नामपद्धति:

नामपद्धति	स्तम्भ शीर्षक	इकाई	प्रकार
Α	डिस्क का ताप स्थानांतरण क्षेत्र	m²	Calculated
Dв	काली प्लेट का व्यास	М	Given
Ds	परीक्षण प्लेट का व्यास	m	Given
Ев	काली प्लेट की उत्सर्जनता		Given
Es	परीक्षण प्लेट की उत्सर्जनता		Calculated
Ів	काली प्लेट की एमीटर रीडिंग	Amp	Measured
Is	परीक्षण प्लेट की एमीटर रीडिंग	Amp	Measured
Qв	ब्लैक प्लेट में हीट इनपुट	W	Calculated
Qs	परीक्षण प्लेट में हीट इनपुट	W	Calculated
T1	काली प्लेट की सतह का तापमान	°C	Measured
T2	परीक्षण प्लेट की सतह का तापमान	°C	Measured
Т3	बाड़े का परिवेश तापमान	°C	Measured
TD	बाड़े का परिवेश तापमान	К	Calculated
Ts	डिस्क की सतह का तापमान	К	Calculated
VB	काली प्लेट की वोल्टमीटर रीडिंग	Volts	Measured
Vs	टेस्ट प्लेट की वोल्टमीटर रीडिंग	Volts	Measured
σ	स्टीफ़न बोल्ट्ज़मान स्थिरांक	W/m ² K ⁴	Given

10. सावधानी एवं रखरखाव निर्देश:

- 10.1. यदि बिजली की आपूर्ति 200 वोल्ट से कम और 230 वोल्ट से अधिक है तो उपकरण कभी न चलाएं
- 10.2. सभी चाल्/बंद सुनिश्चित करने से पहले कभी भी मुख्य बिजली आपूर्ति चालू न करें पैनल पर दिए गए स्विच ऑफ स्थिति में हैं।
- 10.3. तापमान संकेतक के चयनकर्ता स्विच को धीरे से संचालित करें।
- 10.4. उपकरण को हमेशा धूल से म्क्त रखें।

11. समस्या निवारण:

- 11.1. यदि विद्युत पैनल मुख्य लाइट पर इनपुट नहीं दिखा रहा है, तो मुख्य आपूर्ति की जांच करें।
- 11.2. यदि वोल्टमीटर हीटर को दिए गए वोल्टेज को दिखाता है लेकिन एम्पीयर मीटर नहीं दिखाता है, नियंत्रण कक्ष में हीटर के कनेक्शन की जाँच करें।

12. संदर्भ:

- 12.1. होल्मन, जे.पी. (2008)। गर्मी का हस्तांतरण। 9वां संस्करण. एनडी: मैकग्रा हिल। पीपी 371-378
- 12.2. सेन्गेल, वाई.ए. (2007)। ऊष्मा एवं द्रव्यमान स्थानांतरण। तीसरा संस्करण. एनडी: टाटा मैकग्रा हिल। पीपी 27-29

समग्र दीवार के माध्यम से ऊष्मा स्थानांतरण

1. उद्देश्य:

समग्र दीवार में चालन के माध्यम से गर्मी हस्तांतरण का अध्ययन करना।

2. लक्ष्य:

- 2.1. समग्र दीवार के कुल थर्मल प्रतिरोध की गणना करने के लिए।
- 2.2. समग्र दीवार की कुल तापीय चालकता की गणना करने के लिए।
- 2.3. मिश्रित दीवार में एक सामग्री की तापीय चालकता की गणना करना।
- 2.4. समग्र दीवार के साथ तापमान प्रोफ़ाइल को प्लॉट करने के लिए।

3. परिचय:

जब किसी शरीर में तापमान प्रवणता मौजूद होती है, तो उच्च से ऊर्जा स्थानांतरण होता है, तापमान क्षेत्र से निम्न तापमान क्षेत्र तक। ऊर्जा का स्थानांतरण चालन द्वारा होता है और प्रति इकाई क्षेत्र ताप अंतरण दर सामान्य तापमान प्रवणता के समानुपाती होती है:

q/A α $\Delta T/\Delta X$

जब आनुपातिकता स्थिरांक डाला जाता है,

 $q=-kA \Delta T/\Delta X$

ऊष्मा प्रवाह की दिशा में q ऊष्मा स्थानांतरण की मात्रा है और $\Delta T/\Delta X$ तापमान प्रवणता है। स्थिरांक k को पदार्थ की तापीय चालकता कहा जाता है।

4. सिद्धांत:

फूरियर के नियम का प्रत्यक्ष अनुप्रयोग समतल दीवार है। फूरियर का समीकरण:

Q=- $kA/\Delta X$ (T2-T1)

जहां तापीय चालकता को स्थिर माना जाता है। दीवार की मोटाई 🗆 X, Q, A क्रमशः ऊष्मा स्थानांतरण है और ऊष्मा स्थानांतरण क्षेत्र की मात्रा हैं। T1 और T2 तापमान सतह हैं।यदि एक से अधिक सामग्री मौजूद है, जैसे बहुपरत दीवार में, विश्लेषण

निम्नान्सार आगे बढ़ेंगे:

तीन सामग्रियों (ए, बी, सी) में तापमान प्रवणता, गर्मी प्रवाह लिखा जा सकता है।

Q=- $kA A \Delta TA/\Delta XA = - kB A \Delta TB/\Delta XB = - kC A \Delta TC/\Delta XC$

q=Q/A

सामग्री के लिए तापीय चालकता की गणना निम्नान्सार की जा सकती है:

 $ka = q\Delta Xa/\Delta Ta$

5. विवरण:

उपकरण में दो एस्बेस्टस शीटों के बीच एक हीटर लगा होता है। तीन हीटर के दोनों तरफ अलग-अलग सामग्री के स्लैब दिए गए हैं, जो एक मिश्रण संरचना बनाते हैं। स्लैब के बीच सही संपर्क सुनिश्चित करने के लिए एक छोटा प्रेस-फ्रेम प्रदान किया जाता है। हीटर के इनपुट को अलग-अलग करने और इनपुट की माप के लिए एक वेरिएक प्रदान किया जाता है, बिजली एक डिजिटल वोल्टमीटर और डिजिटल एमीटर द्वारा संचालित की जाती है। आठ तापमान सेंसर सतह पर तापमान को पढ़ने के लिए, स्लैब के आंतरिक सतहों के बीच एम्बेडेड होते हैं।

6. आवश्यक उपयोगिताएँ:

- 6.1. विद्युत आपूर्ति: एकल चरण, 220 वी एसी, 50 हर्ट्ज, 5-15 एम्पियर संयुक्त सॉकेट पृथ्वी कनेक्शन के साथ।
- 6.2. आवश्यक बेंच क्षेत्र: 1 मी x 1 मी।

7. प्रायोगिग विधि:

7.1. आरंभिक प्रक्रिया:

- 7.1.1. सुनिश्चित करें कि पैनल पर दिया गया मुख्य चालू/बंद स्विच बंद स्थिति में है और डिमर स्टेट शून्य स्थिति पर है।
- 7.1.2. विद्युत आपूर्ति को सेट अप से कनेक्ट करें।
- 7.1.3. मेन ऑन/ऑफ स्विच चालू करें।

- 7.1.4. हीटर इनपुट को डिमर स्टेट, वोल्टमीटर द्वारा 40 से 100 वोल्ट की रेंज में सेट करें।
- 7.1.5. 1.5 घंटे के बाद. वोल्टमीटर, एम्पीयर मीटर और की रीडिंग नोट करें, हर 10 मिनट के बाद अवलोकन तालिका में तापमान सेंसर तापमान की लगातार रीडिंग में परिवर्तन देखने तक का अंतराल (±) 0.2 ओसी) ।

7.2. समापन प्रक्रिया:

- 7.2.1. जब प्रयोग समाप्त हो जाए तो डिमर स्टेट को शून्य स्थिति पर सेट करें।
- 7.2.2. मेन ऑन/ऑफ स्विच को बंद कर दें।
- 7.2.3. सेट अप की बिजली आपूर्ति बंद कर दें।

8. अवलोकन एवं गणना:

8.1. डेटा:	
कच्चा लोहा की तापीय चालकता	कच्चे लोहे की मोटाई X1 = 0.02 m
k1 = 52 w/m°C	
बैकेलाइट की तापीय चालकता	बैकेलाइट की मोटाई X2 = 0.015 m
k2 =1.4 w/m°C	
स्लैब d का व्यास = 0.25 m	प्रेस लकड़ी की मोटाई X3 = 0.012 m

	8.2. अवलोकन तालिका:									
S.	V	I	T 1	T2	Тз	T4	T 5	T ₆	T 7	Т8
no.	(Volt)	(AMP)	(°C)	(°C)	(°C)	(°C)	(°C)	(°C)	(°C)	(°C)

8.3. **गणना:**

$$W=V*I(W)$$

$$Q=W/2$$
 (W)

$$A = \pi/4d^2 (m^2)$$

$$q = Q/A (W/m^2)$$

$$\Delta T = (T_1 - T_7) + (T_2 - T_8)/2 (^{\circ}C)$$

Rt=
$$\Delta T/q$$
 (°Cm²/W)

$$\Delta X = X_1 + X_2 + X_3$$
 (m)

$$Keff= q*\Delta X/\Delta T \text{ (W/m °C)}$$

$$K_3 = X_3/[\Delta T/q - (X_1/K_1 + X_1/K_1)]$$
 (W/m°c)

$$XA=0$$
 (m)

$$X_{A1} = X_A + X_1 (m)$$

$$X_{A2} = X_A + X_1 + X_2 (m)$$

$$X_{A3} = X_A + X_1 + X_2 + X_3$$
 (m)

$$T_{A1} = (T_1 + T_2)/2 (^{\circ}C)$$

$$TA2 = (T3 + T4)/2 (^{\circ}C)$$

Ta3=
$$(T_5+T_6)/2$$
 (°C)

$$TA4 = (T7 + T8)/2 (^{\circ}C)$$

गणना	तालिका:								
S.	Q	ΔΤ	Rt	Keff	К3	TA1	TA1	TA1	TA1
no.	(W/m²)	(°C)	(°cm²/W)	(W/m°C)	(W/m°C)	(°c)	(°c)	(°c)	(°c)

लंबाई (XA, XA1, XA2, XA3) बनाम तापमान (TA1, TA2, TA3, TA4) का ग्राफ़ बनाने के लिए।

9. नामपद्धति:

नामपद्धति	स्तंभ शीर्षक	इकाई	प्रकार
A	ऊष्मा स्थानांतरण का क्षेत्र	m²	Calculated
D	स्त्रैब का व्यास	m	Given
I	एमीटर रीडिंग	Amp	Measured
Keff	समग्र दीवार की कुल तापीय चालकता	W/m°c	Calculated
k1	कच्चा लोहा की तापीय चालकता	W/m°c	Given
K2	बैक्लाइट की तापीय चालकता	W/m°c	Given
K3	प्रेस की लकड़ी की तापीय चालकता	W/m°c	Calculated
Q	ऊष्मा स्थानांतरण की मात्रा	W	Calculated
q	गर्मी का प्रवाह	W/m²	Calculated
Rt	मिश्रित दीवार का कुल तापीय प्रतिरोध	°Cm²/W	Calculated
T1- T2	कच्चा लोहा और हीटर का इंटरफ़ेस तापमान	°C	Measured
T3- T4	कच्चा लोहा और बैक्लाइट का इंटरफ़ेस तापमान	°C	Measured
T5- T6	बैक्लाइट और प्रेस लकड़ी का इंटरफ़ेस तापमान	°C	Measured
T7- T8	प्रेस लकड़ी की ऊपरी सतह का तापमान	°C	Measured
TA1	कच्चा लोहा के इंटरफ़ेस पर औसत तापमान	°C	Calculated
	स्लैब और हीटर		

TA2	कच्चा लोहा के इंटरफ़ेस पर औसत	°C	Calculated
	तापमानस्लैब और बैक्लाइट स्लैब		
TA3	बैकेलाइट के इंटरफ़ेस पर औसत तापमान स्लैब	°C	Calculated
	और प्रेस लकड़ी का स्लैब		
TA4	प्रेस लकड़ी की सतह पर औसत तापमान	°C	Calculated
	पटिया		
V	वोल्टमीटर रीडिंग	Volt	Measured
W	हीटर द्वारा आपूर्ति की गई ऊष्मा	W	Calculated
X1	कच्चे लोहे की मोटाई	m	Given
X2	बैकेलाइट की मोटाई	m	Given
X3	लकड़ी की मोटाई दबाएं	m	Given
XA	दूरियाँ मापने के लिए संदर्भ बिंदु	m	Calculated
XA1	कच्चे लोहे के जोड़ों से संबंधित बिंदु की दूरी	m	Calculated
XA2	बैकेलाइट स्लैब से संदर्भ बिंदु की दूरी	m	Calculated
XA3	लकड़ी के स्लैब को दबाने के लिए संदर्भ बिंदु	m	Calculated
	की दूरी		
ΔΤ	कुल मिलाकर तापमान में अंतर	°C	Calculated
ΔΧ	दीवार की कुल मोटाई	m	Calculated

10. सावधानी एवं रखरखाव निर्देश:

- 10.1. यदि बिजली की आपूर्ति 200 वोल्ट से कम और 230 वोल्ट से अधिक है तो उपकरण कभी न चलाएं
- 10.2. सभी चाल्/बंद सुनिश्चित करने से पहले कभी भी मुख्य बिजली आपूर्ति चाल् न करें, पैनल पर दिए गए स्विच ऑफ स्थिति में हैं।
- 10.3. तापमान संकेतक के चयनकर्ता स्विच को धीरे से संचालित करें।
- 10.4. उपकरण को हमेशा धूल से मुक्त रखें।

11. समस्या निवारण:

- 11.1. यदि विद्युत पैनल मुख्य लाइट पर इनपुट नहीं दिखा रहा है, तो मुख्य की आपूर्ति जांच करें।
- 11.2. यदि वोल्टमीटर हीटर को दिए गए वोल्टेज को दिखाता है लेकिन एम्पीयर मीटर नहीं दिखाता है, नियंत्रण कक्ष में हीटर के कनेक्शन की जाँच करें।

12. सन्दर्भ:

- 12.1. होल्मन, जे.पी. (2008)। गर्मी का हस्तांतरण। 9वां संस्करण. एनडी: मैकग्रा हिल। पीपी 23-24।
- 12.2. केर्न, डी.क्यू (2007)। प्रक्रिया ऊष्मा अंतरण. 16वाँ संस्करण. एनडी: मैकग्रा हिल। पीपी 14-15।
- 12.3. डोमकुंडवार ए (2003)। ऊष्मा एवं द्रव्यमान स्थानांतरण में एक पाठ्यक्रम। छठा संस्करण. एनवाई: एस.सी धनपत राय एंड कंपनी (पी) लिमिटेड पीपी ए.4 ए.5।

हीट पाइप प्रदर्शनकर्ता

उद्देश्य:

दो अन्य पाइपों की त्लना के साथ हीट पाइप के बारे में अध्ययन करना।

उद्देश्य:

 तांबे और स्टेनलेस स्टील के दो अन्य ज्यामितीय रूप से समान पाइपों के साथ एक हीट पाइप की प्रदर्शन विशेषताओं की त्लना करना।

परिचय:

हीट पाइप एक ऐसा उपकरण है, जो एक सिरे पर तरल पदार्थ को उबालकर तथा पाइप के दूसरे सिरे पर उसे संघनित करके ऊष्मा स्थानांतिरत करता है। वाष्पीकरण तथा संघनन प्रक्रियाएँ हीट पाइप के लगभग समतापी कार्य के लिए उत्तरदायी हैं। हीट पाइप विशेष रूप से ऊर्जा संरक्षण उपकरणों में उपयोगी होते हैं, जहाँ वायु प्रीहीट या पूरक तापन अनुप्रयोगों के लिए गर्म गैसों से ऊष्मा प्राप्त करना वांछित होता है। कुछ मामलों में हीट पाइप पंप, पाइपिंग तथा दोहरे ताप एक्सचेंजर विन्यास के अधिक महंगे संयोजनों की जगह ले सकता है।

लिखित:

ताप पाइपों के प्रदर्शन का अध्ययन पाइप की लंबाई के साथ वितरित तापमान और प्रत्येक ताप पाइप के लिए स्थिर अवस्था के तहत प्रत्येक पाइप की ऊष्मा हस्तांतरण विशेषताओं को मापकर किया जा सकता है।

समय पर हीटर में ऊर्जा इनपुट Q=V imes I

पानी में स्थानांतरित ऊष्मा,
$$Q_{_W} = m_{_C} imes C_{_W} imes \left(T_{_{final}} - T_{_{initial}}
ight)$$

विवरण:

यह एक अतिचालक युक्ति है और इसमें तरल पदार्थ के उबलने और संघनन के द्वारा ऊष्मा का स्थानांतरण होता है और इस प्रकार ऊष्मा का स्थानांतरण लगभग समतापी स्थिति में होता है। इस उपकरण में ऊष्मा पाइप की तुलना ऊष्मा के अच्छे संवाहक के रूप में तांबे के पाइप से और निर्माण की समान सामग्री के रूप में स्टेनलेस स्टील पाइप से की जाती है। ज्यामिति की दृष्टि से इसमें तीन समान बेलनाकार चालक होते हैं। इनमें से एक छोर को विद्युत रूप से गर्म किया जाता है जबिक दूसरे छोर पर ऊष्मा सिंक के रूप में कार्य करने वाले छोटे क्षमता वाले टैंक होते हैं। इस इकाई में एक ऊष्मा पाइप, एक तांबे का पाइप और एक स्टेनलेस स्टील का पाइप होता है। तापमान वितरण को मापने के लिए लंबाई के साथ तापमान सेंसर लगाए गए हैं और ऊष्मा स्थानांतरण दर को ऊष्मा सिंक टैंकों में तापमान वृद्धि के रूप में नोट किया गया है। अतिचालक युक्ति के रूप में ऊष्मा पाइप के प्रदर्शन का किसी निश्चित क्षण में लंबाई के साथ तापमान वितरण के रूप में अच्छे से अध्ययन किया जा सकता

प्रायोगिक प्रक्रिया:

- 1. उपकरण को साफ करें और तीन हीट सिंक में पानी की ज्ञात मात्रा भरें और उसका प्रारंभिक तापमान मापें।
- 2. मुख्य पाइप को चालू करें और प्रत्येक हीटर को तीन पाइपों के माध्यम से समान विद्युत इनप्ट प्रदान करें।
- 3. अमीटर और वोल्टमीटर की रीडिंग नोट करें।
- 4. सेंसर 1-4 की रीडिंग लें (पैनल के पीछे दिए गए सॉकेट से) नियमित अंतराल पर (लगभग 50-60 मिनट)
- 5. स्थिर अवस्था तक पह्ंचने के लिए कुछ समय तक प्रतीक्षा करें।
- 6. तीन हीट सिंक में पानी का अंतिम तापमान मापें।
- 7. वैरिएक के माध्यम से हीटर में विभिन्न पावर इनपुट पर यही प्रक्रिया दोहराई जा सकती है।

विशेष विवरणः

पाइप: 1: स्टेनलेस स्टील से बना हीट पाइप

2: तांबे से बना.

3: स्टेनलेस स्टील से बना है।

आकार: 32 मिमी व्यास, 350 मिमी लंबाई (लगभग)

हीट सिंक: सामग्री स्टेनलेस स्टील

ऊष्मा पाइप में कार्यशील द्रव्य : आसुत जल

हीटर: निक्रोम वायर बैंड प्रकार (3 संख्या)

तापमान सेंसर: आरटीडी पीटी-100 प्रकार 12 नग।

नियंत्रण पैनलः डिजिटल वोल्टमीटरः 0-300 वोल्ट.,

डिजिटल अमीटर. : 0.2 एम्प.

वेरिएक: 0-230 V, 2 A,

डिजिटल तापमान सूचक: 0-200°C, मल्टी-चैनल स्विच के साथ,

ऑन ऑफ स्विच, मेन्स इंडिकेटर आदि,

आवश्यक सुविधाएं:

बिजली आपूर्ति : 1 फेज. 220 V AC, 6A.

फर्श क्षेत्र : 2 मी x 0.6 मी

डेटा: सभी पाइपों का OD d $_{\circ}$ = 0.032 मीटर पाइप की लंबाई L=0.350 मीटर जल की विशिष्ट ऊष्मा=4.2 Kj/kg $^{\circ}$ C

सारणीकरण एवं गणना:-

तांबे के पाइप के लिए:

वोल्टेज(V)	वर्तमान(।)	लंबाई में	लंबाई में	लंबाई में	सिंक तापमान
		एल=50 मिमी	एल=100 मिमी	एल=300 मि मी	
		टी 1	टी 2	टी₃	टी ₄

एसएस पाइप के लिए:

वोल्टेज(V)	वर्तमान(।)	लंबाई में	लंबाई में	लंबाई में	सिंक तापमान
		एल=50 मिमी	एल=100 मिमी	एल=300 मि मी	
		टी 1	टी 2	टी ₃	टी 4

हीट पाइप के लिए:

वोल्टेज(V)	वर्तमान(।)	लंबाई में	लंबाई में	लंबाई में	सिंक तापमान
		एल=50 मिमी	एल=100 मिमी	एल=300 मिमी	
		टी 1	टी 2	टी₃	टी ₄

सूत्र:

ठण्डे पानी से प्राप्त ऊष्मा

$$Q_{C} = m_{C} \times C_{Pc} \times \left(T_{final} - T_{initial}\right)$$

जहाँ, m c= ठंडे पानी की द्रव्यमान प्रवाह दर

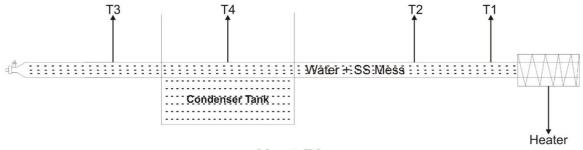
 $m_c = \frac{\textit{amount of water taken in } \sin k \, \tan k}{\textit{time taken to reach final temperature}}$

С _{рс} = ं ठंडे पानी की विशिष्ट ऊष्मा=4.2 Kj/kg ° С

प्रदर्शन विशेषताओं के वक्र के लिए विभिन्न लंबाइयों पर समय बनाम तापमान के बीच ग्राफ बनाएं।

हीट पाइप की तुलना अन्य दो पाइपों से करें।

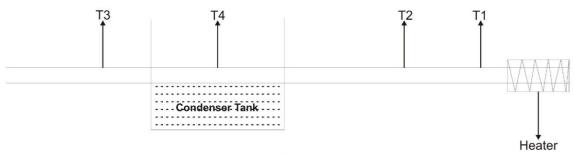
सावधानियाँ एवं रखरखाव निर्देश:


- 1. यदि बिजली की आपूर्ति 180 वोल्ट से कम और 230 वोल्ट से अधिक हो तो उपकरण को कभी न चलाएं।
- 2. केवल स्थिर एसी एकल चरण आपूर्ति का उपयोग करें।
- 3. यह सुनिश्चित किए बिना कि पैनल पर दिए गए सभी ON/OFF स्विच OFF स्थिति में हैं, कभी भी मुख्य विद्युत आपूर्ति को चालू न करें।
- 4. समस्त सभा को अविचलित रखें।
- 5. तापमान सूचक के चयनकर्ता स्विच को धीरे से संचालित करें।
- 6. उपकरण को हमेशा धूल से मुक्त रखें।

समस्या निवारणः

- 1. यदि विद्युत पैनल मुख्य प्रकाश पर इनपुट नहीं दिखा रहा है, तो मुख्य आपूर्ति की जांच करें।
- 2. यदि किसी सेंसर का तापमान डीटीआई में प्रदर्शित नहीं होता है, तो कनेक्शन की जांच करें।

निष्कर्षः


तांबे के पाइप और एसएस पाइप की त्लना में हीट पाइप की गर्मी हस्तांतरण दर अधिक होगी

Heat Pipe

Copper Pipe

S.S Pipe

अवलोकन एवं गणन	π:				
तांबे के पाइप के लिए	<i>ī</i> :				
वोल्टेज(V)	वर्तमान(।)	लंबाई में	लंबाई में	लंबाई में	सिंक तापगान
		एल=50 मिमी	एल=100 मिमी	एल=300 मि मी	
		टी 1	टी 2	टी₃	टी 4
64.8	1.12	65.3	52.6	37.6	36.4
		एसएस पाइप	ा के लिए:		
वोल्टेज(V)	वर्तमान(।)	लंबाई में	लंबाई में	लंबाई में	सिंक तापगान
पाल्टज(४)	परानाग(।)				ारापर सामगान
		एल=50 मिमी	एल=100 मिमी	एल=300 मिमी	

टी 1

76.2

64.8

1.12

टी 2

51.1

टी ₃

34.7

टी 4

33

हीट पाइप के लिए:

वोल्टेज(V)	वर्तमान(।)	लंबाई में	लंबाई में	लंबाई में	सिंक तापमान
		एल=50 मिमी	एल=100 मिमी	एल=300 मिमी	
		टी₁	टी₂	टी₃	टी₄
64.8	1.12	80	71	39.4	38

सूत्र:

फो

ठण्डे पानी से प्राप्त ऊष्मा

$$Q_C = m_C \times C_{Pc} \times \left(T_{final} - T_{initial}\right)$$

जहाँ, m c= ठंडे पानी की द्रव्यमान प्रवाह दर

 $m_c = \frac{\textit{amount of water taken in } \sin k \, \tan k}{\textit{time taken to reach final temperature}}$

$$m_c = \frac{500}{80} = 6.25 \, ml \, / \sec = 0.00625 \, kg \, / \sec$$

C _{pc} = ं ठंडे पानी की विशिष्ट ऊष्मा =4.2 Kj/kg ° C

तांबे के पाइप के लिए

$$Q_C = m_C \times C_{Pc} \times \left(T_{final} - T_{initial}\right)$$

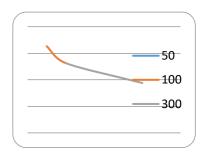
$$Q_C = 0.00625 \times 4.2 \times \left(36.4 - 29\right) = 0.19425 \quad kw$$

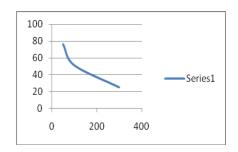
एसएस पाइप के लिए

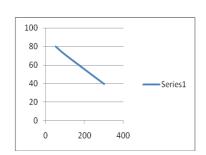
$$Q_C = m_C \times C_{Pc} \times (T_{final} - T_{initial})$$

$$Q_C = 0.00625 \times 4.2 \times (33 - 29) = 0.105$$
 kw

गर्मी पाइप के लिए


$$Q_C = m_C \times C_{Pc} \times (T_{final} - T_{initial})$$


$$Q_C = 0.00625 \times 4.2 \times (38 - 29) = 0.23625 \quad kw$$


विभिन्न पाइपों के लिए दूरी बनाम तापमान के बीच ग्राफ प्लॉट करें

हीट पाइप की तुलना अन्य दो पाइपों से करें।

		तापमान वितरण	
दूरी			
	तांबे के पाइप के	एसएस पाइप के	हीट पाइप के
एक्स	लिए	लिए	लिए
50	65.3	76.2	80
100	52.6	51.1	71
300	37.6	24.7	39.4

प्राकृतिक संवहन में ऊष्मा स्थानांतरण

1. उद्देश्य:

प्राकृतिक संवहन में ऊष्मा स्थानांतरण का अध्ययन करना।

2. लक्ष्य:

प्राकृतिक के तहत उध्वीधर सिलेंडर के औसत गर्मी हस्तांतरण गुणांक की गणना करने के लिए संवहन।

3. परिचय:

संवहन को अणुओं की सराहनीय गित द्वारा ऊष्मा स्थानांतरण की प्रक्रिया के रूप में पिरिभाषित किया गया है। संवहन ताप स्थानांतरण को आगे प्राकृतिक संवहन और मजबूर के रूप में वर्गीकृत किया गया है। यदि मिश्रण की गित घनत्व में अंतर के कारण होती है तापमान प्रवणता, तो ऊष्मा स्थानांतरण की प्रक्रिया को ऊष्मा स्थानांतरण के रूप में जाना जाता है प्राकृतिक या मुक्त संवहन। यदि मिश्रण गित किसी बाहरी माध्यम से प्रेरित होती है जैसे एक पंप या ब्लोअर के रूप में तो इस प्रक्रिया को मजबूर संवहन द्वारा गर्मी हस्तांतरण के रूप में जाना जाता है।

4. सिद्धांत:

प्राकृतिक संवहन घटना के बीच तापमान अंतर के कारण सतह होता है और तरल पदार्थ और किसी बाहरी एजेंसी द्वारा नहीं बनाया गया है। सेटअप डिज़ाइन किया गया है और एक उध्वीधर सिलेंडर से प्राकृतिक संवहन घटना का अध्ययन करने के लिए निर्मित किया गया औसत ताप अंतरण गुणांक की शर्तें। औसत उष्मा अंतरण गुणांक द्वारा दिया जाता है: h=Qa / A (Ts - Ta)

जहां Qa, Ts, Ta और A ऊष्मा स्थानांतरण की मात्रा, सतह का तापमान, परिवेश तापमान और ऊष्मा स्थानांतरण का क्षेत्र हैं।

5. विवरण:

उपकरण में एक परीक्षण पाइप होता है जो एक आयताकार वाहिनी में लंबवत रूप से फिट किया जाता है, परीक्षण पाइप के मध्य में हीटर प्रदान किया गया है। डक्ट ऊपर और नीचे खुला होता है, एक घेरा बनाता है और आसपास के वातावरण को अबाधित रखने के उद्देश्य को पूरा करता है। सात परीक्षण पाइप की सतह के तापमान को मापने के लिए तापमान सेंसर प्रदान किए जाते हैं, एक डक्ट सतह के लिए है। वेरिएक के साथ डिजिटल एमीटर और डिजिटल वोल्टमीटर प्रदान किए जाते हैं, हीटर द्वारा दिए गए ताप इनपुट को मापें।

6. आवश्यक उपयोगिताएँ:

- 6.1. विद्युत आपूर्ति: एकल चरण, 220 वी एसी, 50 हर्ट्ज, 5-15 एम्पियर संयुक्त सॉकेट पृथ्वी कनेक्शन के साथ।
- 6.2. आवश्यक बेंच क्षेत्र: 1 मी x 1 मी

7. प्रायोगिग विधि:

7.1. आरंभिक प्रक्रिया:

- 7.1.1. सुनिश्चित करें कि पैनल पर दिया गया मुख्य चालू/बंद स्विच बंद स्थिति में है और डिमर स्टेट शून्य स्थिति पर है।
- 7.1.2. विद्युत आपूर्ति को सेट अप से कनेक्ट करें।
- 7.1.3. मेन ऑन/ऑफ स्विच चालू करें।
- 7.1.4. हीटर इनपुट को डिमर स्टेट, वोल्टमीटर द्वारा 40 से 100 वोल्ट की रेंज में सेट करें।
- 7.1.5. 1.5 घंटे के बाद. वोल्टमीटर, एम्पीयर मीटर और की रीडिंग नोट करें हर 10 मिनट के बाद अवलोकन तालिका में तापमान सेंसर तापमान की लगातार रीडिंग में परिवर्तन देखने तक का अंतराल (±) 0.2 ओसी)

7.2. समापन प्रक्रिया:

- 7.2.1. जब प्रयोग समाप्त हो जाए तो डिमर स्टेट को शून्य स्थिति पर सेट करें।
- 7.2.2. मेन ऑन/ऑफ स्विच को बंद कर दें।
- 7.2.3. सेट अप की विद्युत आपूर्ति बंद कर दें।

8. अवलोकन एवं गणना:

8.1. **डेटा:**

बेलन L की लंबाई = 0.5 मीटर

बेलन का व्यास d = 0.038 मीटर

	8.2. अवलोकन तालिका:									
S.	V	I	T 1	T ₂	Тз	T4	T 5	T 6	T 7	Т8
no.	(Volt)	(AMP)	(°C)	(°C)	(°C)	(°C)	(°C)	(°C)	(°C)	(°C)

8.3. गणना:

$$A= \pi dL (m^2)$$

$$Ts= T1+ T2+ T3+ T4+ T5+ T6+ T7/ 7 (°C)$$

h= Q/ A (Ts- Ta)
$$(W/m^2$$
°C)

	गणना तालिका:					
Sr. No.	h (W/m2 °C)					

9. नामपद्धति:

नामपद्धति	स्तम्भ शीर्षक	इकाई	प्रकार
A	ऊष्मा अंतरण क्षेत्र	m²	Calculated
D	सिलेंडर का व्यास	m	Given
h	औसत ताप अंतरण गुणांक	W/m²°C	Calculated
I	एम्पीयर पढ़ना	Amp	Measured
L	सिलेंडर की लंबाई	М	Given
Q	ऊष्मा स्थानांतरण की मात्रा	W	Calculated
T1-T7	परीक्षण पाइप की सतह का तापमान	°C	Measured
Т8/Та	वाहिनी में हवा का तापमान	°C	Measured
Ts	परीक्षण पाइप का औसत सतह तापमान	°C	Calculated
V	वोल्टमीटर रीडिंग	Volts	Measured

10. सावधानी एवं रखरखाव निर्देश:

- 10.1. यदि बिजली की आपूर्ति 200 वोल्ट से कम और 230 वोल्ट से अधिक है तो उपकरण कभी न चलाएं।
- 10.2. सभी चाल्/बंद सुनिश्चित करने से पहले कभी भी मुख्य बिजली आपूर्ति चालू न करें पैनल पर दिए गए स्विच ऑफ स्थिति में हैं।

- 10.3. तापमान संकेतक के चयनकर्ता स्विच को धीरे से संचालित करें।
- 10.4. उपकरण को हमेशा धूल से मुक्त रखें।

11. समस्या निवारण:

- 11.1. यदि विद्युत पैनल मुख्य लाइट पर इनपुट नहीं दिखा रहा है, तो मुख्य की आपूर्ति जांच करें।
- 11.2. वोल्टमीटर हीटर को दिए गए वोल्टेज को दिखाता है लेकिन एम्पीयर मीटर नहीं दिखाता है, नियंत्रण कक्ष में हीटर का कनेक्शन।

12. संदर्भ:

- 12.1. मैककेबे, स्मिथ, हैरियट (2005)। केमिकल इंजीनियरिंग की इकाई संचालन। 7 ईडी। एनवाई: मैकग्रा हिल। पीपी 296, 376-379
- 12.2. सेन्गेल, वाई.ए., (2007)। ऊष्मा एवं द्रव्यमान स्थानांतरण। तीसरा संस्करण. एनडी: टाटा मैकग्रा हिल। पीपी 25-26

शेल एवं ट्यूब हीट एक्सचेंजर

1. उद्देश्य:

शेल और ट्यूब हीट एक्सचेंजर में गर्मी हस्तांतरण का अध्ययन करना।

2. लक्ष्य:

- 2.1. LMTD की गणना करने के लिए।
- 2.2. ऊष्मा अंतरण दर की गणना करने के लिए।
- 2.3. समग्र ताप अंतरण गुणांक की गणना करने के लिए।

3. परिचय:

हीट एक्सचेंजर वह उपकरण है जिसमें ऊष्मा को एक तरल पदार्थ से दूसरे तरल पदार्थ में स्थानांतिरत किया जाता है। ऐसा करने की आवश्यकता अनेक औद्योगिक अनुप्रयोगों में उत्पन्न होती है। सामान्य हीट एक्सचेंजर्स के उदाहरण कार के रेडिएटर, कार के पीछे कंडेनसर घरेलू रेफ्रिजरेटर हैं और थर्मल पावर प्लांट का स्टीम बॉयलर। हीट एक्सचेंजर्स को तीन श्रेणियों में वर्गीकृत किया गया है:

- 3.1 स्थानांतरण प्रकार
- 3.2 भंडारण प्रकार
- 3.3 सीधा संपर्क प्रकार

4. सिद्धांत:

स्थानांतरण प्रकार का हीट एक्सचेंजर वह होता है जिस पर दोनों तरल पदार्थ एक साथ उपकरण के माध्यम से गुजरते हैं और गर्मी को अलग-अलग दीवारों के माध्यम से स्थानांतरित किया जाता है। व्यवहार में, अधिकांश उपयोग किए जाने वाले हीट एक्सचेंजर्स स्थानांतरण प्रकार वाले होते हैं। स्थानांतरण प्रकार के एक्सचेंजर्स को प्रवाह व्यवस्था के अनुसार आगे वर्गीकृत किया गया है -

- 4.1 सिंगल पास
- 4.2 मल्टीपल पास

हीट एक्सचेंजर के स्थानांतरण प्रकार का एक सरल उदाहरण ट्यूब प्रकार के रूप में हो सकता है ऐसी व्यवस्था जिसमें एक तरल पदार्थ आंतरिक ट्यूब से बह रहा है और दूसरा तरल पदार्थ इसके आसपास के वलय के माध्यम से। ऊष्मा का स्थानांतरण दीवारों भीतरी ट्यूब के आर-पार होता है। ऊष्मा अंतरण दर, LMTD और समग्र ऊष्मा अंतरण गुणांक की गणना इस प्रकार की जा सकती है:

Q= M CP (To- Ti)

 $\Delta T_{m} = \Delta T_{o} - \Delta T_{i} / I_{n} \Delta T_{o} / \Delta T_{i}$

 $U = Q/A \Delta Tm$

जहां Q ऊष्मा स्थानांतरण की मात्रा है, U समग्र ऊष्मा स्थानांतरण गुणांक है और ΔTm लॉग औसत तापमान अंतर है। M, CP, To, Ti द्रव्यमान प्रवाह दर, विशिष्ट ताप, आउटलेट, तापमान और इनलेट तापमान हैं। ΔTo , ΔTi और A आउटलेट तापमान अंतर, इनलेट तापमान अंतर और गर्मी हस्तांतरण क्षेत्र हैं।

5. विवरण:

उपकरण में निर्मित खोल होता है जिसके अंदर बाहरी तरफ बैफल्स वाली ट्यूब होती हैं लगे हुए हैं। उपकरण में निर्मित खोल होता है जिसके अंदर बाहरी तरफ बैफल्स वाली ट्यूब लगे हुए हैं। वर्तमान सेट-अप 1-2 पास शेल और ट्यूब हीट एक्सचेंजर है।गरम पानी भीतरी ट्यूब से बहें जबिक ठंडा पानी खोल की तरफ से बहे। वाल्व गर्म और ठंडे पानी के प्रवाह दर को नियंत्रित करने के लिए प्रदान किए जाते हैं। प्रवाह माप के लिए

ठंडे पानी के इनलेट और गर्म पानी की लाइन के आउटलेट पर रोटामीटर उपलब्ध कराए जाते हैं। एक चुंबकीय पुनर्नवीनीकरण प्रकार के पानी के टैंक से गर्म पानी को प्रसारित करने के लिए ड्राइव पंप दिया जाता है, जो कि हीटर है और डिजिटल तापमान नियंत्रक से सुसज्जित।

6. आवश्यक उपयोगिताएँ:

- 6.1. बिजली की आपूर्ति: एकल चरण, 220 वी एसी, 50 हर्ट्ज, 32 एम्प एमसीबी अर्थ कनेक्शन के साथ।
- 6.2. जल आपूर्ति: 1 बार पर 5 एलपीएम पर निरंतर।
- 6.3. फर्श ड्रैन की आवश्यकता है।
- 6.4. आवश्यक फर्श क्षेत्र: 1.5 मीटर x 0.75 मीटर।

7. प्रायोगिग विधि:

7.1. आरंभिक प्रक्रिया:

- 7.1.1. सभी वाल्व V1-V6 बंद करें।
- 7.1.2. गर्म पानी की टंकी का ढक्कन खोलें, टंकी में पानी भरें और ढक्कन वापस रख दें।
- 7.1.3. स्निश्चित करें कि पैनल पर दिए गए स्विच बंद स्थिति में हैं।
- 7.1.4. विद्युत आपूर्ति को सेट अप से कनेक्ट करें।
- 7.1.5. वृद्धि को संचालित करके डीटीसी में वांछित पानी का तापमान निर्धारित करें या डीटीसी का डिक्रीमेंट और सेट बटन।
- 7.1.6. बाय पास वाल्व V3 खोलें और पंप चालू करें।
- 7.1.7. हीटर चालू करें और वांछित तापमान प्राप्त होने तक प्रतीक्षा करें।
- 7.1.8. ठंडा पानी की आपूर्ति को सेट अप से कनेक्ट करें।
- 7.1.9. हीट एक्सचेंजर से ठंडा पानी के आउटलेट को नाली से कनेक्ट करें।
- 7.1.10. ठंडे पानी के संचलन के लिए वाल्व V1 खोलें और प्रवाह दर को समायोजित करें।
- 7.1.11. हीट एक्सचेंजर के माध्यम से गर्म पानी को बहने दें और प्रवाह दर को समायोजित वाल्व V2-V3 करें।
- 7.1.12. स्थिर अवस्था (स्थिर तापमान) पर तापमान और प्रवाह दर रिकॉर्ड करें गर्म और ठंडे पानी का।
- 7.1.13. गर्म और ठंडे पानी की अलग-अलग प्रवाह दर के लिए प्रयोग दोहराएं।
- 7.1.14. डीटीसी के विभिन्न तापमानों के लिए प्रयोग दोहराएं।

7.2. समापन प्रक्रिया:

- 7.2.1. जब प्रयोग समाप्त हो जाए तो हीटर बंद कर दें।
- 7.2.2. पंप बंद कर दें।
- 7.2.3. वाल्व V1 बंद करके ठंडा पानी की आपूर्ति बंद करें।
- 7.2.4. वाल्व V6 खोलकर गर्म पानी की टंकी से पानी निकाल दें।
- 7.2.5. वाल्व V5 खोलकर शेल की तरफ से पानी निकाल दें।
- 7.2.6. वाल्व V4 खोलकर ट्यूब की तरफ से पानी निकाल दें।

8. अवलोकन एवं गणना:

8.1. **डेटा:**

ट्यूब L की लंबाई = 0.5 मीटर

ट्यूबों की संख्या N = 24

ट्यूब का बाहरी व्यास Do = 0.016 मीटर

ट्यूब Di का आंतरिक व्यास = 0.013 मीटर

8.2. अवलोकन तालिका :								
क्रमांक	गः	र्म पानी की इ	ओर	ठंडे पानी की ओर				
	Fh	T1 (°C)	T2 (°C)	FC	T3 (°C)	T4 (°C)		
	(LPH)			(LPH)				

8.3. **गणना:**

Th= T1+T2/2 ($^{\circ}$ C)

Tc= T3+T4/2 (°C)

तापमान Th पर पानी (ρh, Cph) और तापमान Tc पर (ρc, Cpc) के गुण डेटा बुक से जात करें।

 $\rho h = \underline{\qquad} (kg/m^3)$

 $\mathsf{Cph=} \; \underline{\hspace{1cm}} \; (\mathsf{J/kg}^{\circ}\mathsf{C})$

 $\rho c =$ (kg/m³)

Cpc= ______ (J/kg°C)

Mh= FH* ρ h / 3600*1000 (kg/sec)

Qh= Mh Cph (T1- T2) (W)

Mc= Fc ρ c/ 3600*1000 (kg/sec)

Qc= Mc Cpc (T4- T3) (W)

Q= Qh+ Qc/2 (W) Δ T1= T1- T3 (°C) Δ T2= T2- T4 (°C) Δ TM= Δ T1- Δ T2/ In Δ T1/ Δ T2

Ai= π Di L (m²)

Ao= π Do L (m²)

Ui= Q/ Ai Δ TM (W/m²°C)

गणना तालिका :							
क्रमांक	Qc (W)	Qh (W)	Q (W)	ΔTm(°C)	Ui (W/m²°C)	Uo (W/m²°C)	

9. नामपद्धति:

नामपद्धति	स्तम्भ शीर्षक	इकाई	प्रकार
Ai	गर्मी हस्तांतरण क्षेत्र के अंदर	m²	Calculated

Ao	गर्मी हस्तांतरण क्षेत्र के बाहर	m²	Calculated
Срс	औसत तापमान पर ठंडे पानी की विशिष्ट ऊष्मा	J/kg°C	Calculated
Cph	औसत तापमान पर गर्म पानी की विशिष्ट ऊष्मा	J/kg°C	Calculated
Di	ट्यूब का भीतरी व्यास	m	Given
Do	ट्यूब का बाहरी व्यास	m	Given
Fc	ठंडे पानी की प्रवाह दर	LPH	Measured
Fh	गर्म पानी की प्रवाह दर	LHP	Measured
L	ट्यूब की लंबाई	М	Given
Мс	ठंडे पानी की द्रव्यमान प्रवाह दर	Kg/sec	Calculated
Mh	गर्म पानी की द्रव्यमान प्रवाह दर	Kg/sec	Calculated
N	ट्यूबों की संख्या	*	Given
Q	सिस्टम से औसत ताप स्थानांतरण	W	Calculated
Qc	ठंडे पानी से गर्मी प्राप्त हुई	W	Calculated
Qh	गर्म पानी से गर्मी का नुकसान	W	Calculated
T1	गर्म पानी का प्रवेश तापमान	°C	Measured
T2	गर्म पानी का आउटलेट तापमान	°C	Measured
Тз	ठंडे पानी का प्रवेश तापमान	°C	Measured
T4	ठंडे पानी का आउटलेट तापमान	°C	Measured
Тс	ठंडे पानी का माध्य तापमान	°C	Calculated
Th	गर्म पानी का औसत तापमान	°C	Calculated

Ui	समग्र गर्मी हस्तांतरण गुणांक के अंदर	W/m²°C	Calculated
Uo	समग्र गर्मी हस्तांतरण गुणांक के बाहर	W/m²°C	Calculated
ρς	औसत तापमान पर ठंडे पानी का घनत्व	Kg/m³	Calculated
ρh	औसत तापमान पर गर्म पानी का घनत्व	Kg/m³	Calculated
Δ Τ1	गर्म पानी के प्रवेश पर तापमान का अंतर	°C	Calculated
Δ Τ2	गर्म पानी के आउटलेट पर तापमान का अंतर	°C	Calculated
Δ Tm	लॉग माध्य तापमान अंतर	°C	Calculated

^{*}प्रतीक इकाईहीन होते हैं

10. सावधानी एवं रखरखाव निर्देश:

- 10.1. यदि बिजली की आपूर्ति 200 वोल्ट से कम और 230 वोल्ट से अधिक है तो उपकरण कभी न चलाएं।
- 10.2. सभी चाल्/बंद सुनिश्चित करने से पहले कभी भी मुख्य बिजली आपूर्ति चालू न करें, पैनल पर दिए गए स्विच ऑफ स्थिति में हैं।
- 10.3. ऑपरेटर चयनकर्ता तापमान संकेतक को धीरे से बंद कर देता है।
- 10.4. उपकरण को हमेशा धूल से मुक्त रखें।

11. समस्या निवारण:

11.1. यदि विद्युत पैनल मुख्य लाइट पर इनपुट नहीं दिखा रहा है, तो मुख्य आपूर्ति की जांच करें।

12. संदर्भ:

- 12.1. होल्मन, जे.पी. (2008)। गर्मी का हस्तांतरण। 9वां संस्करण. एनडी: मैकग्रा हिल। पीपी 525-527, 528-531
- 12.2. मैककेबे, स्मिथ, हैरियट (2005)। केमिकल इंजीनियरिंग की इकाई संचालन। 7 ईडी। एनवाई: मैकग्रा हिल। पीपी 441-447

12.3. डोमकुंडवार ए (2003)। ऊष्मा एवं द्रव्यमान स्थानांतरण में एक पाठ्यक्रम। छठा संस्करण. एनवाई: एस.सी धनपत राय एंड कंपनी (पी) लिमिटेड पी ए.6

बलपूर्वक संवहन में ऊष्मा स्थानांतरण

1. उद्देश्य:

बलपूर्वक संवहन में ऊष्मा स्थानांतरण का अध्ययन करना।

2. लक्ष्य:

- 2.1. मजबूर संवहन द्वारा एक पाइप के लिए सतह गर्मी हस्तांतरण गुणांक की गणना करने के लिए।
- 2.2. विभिन्न वायु प्रवाह दरों और ऊष्मा प्रवाह की दरें के लिए ऊष्मा स्थानांतरण गुणांक की तुलना करना।

3. परिचय :

संवहन को ऊष्मा चालन की संयुक्त क्रिया द्वारा ऊष्मा स्थानांतरण की प्रक्रिया के रूप में पिरिभाषित किया गया है और मिश्रण गित। संवहन ऊष्मा स्थानांतरण को आगे प्राकृतिक संवहन के रूप में वर्गीकृत किया गया है और बलपूर्वक संवहन। यदि मिश्रण की गित घनत्व में अंतर के कारण होती है तापमान प्रवणता के अनुसार, ऊष्मा स्थानांतरण की प्रक्रिया को प्राकृतिक या मुक्त के रूप में जाना जाता है। यदि मिश्रण गित किसी बाहरी साधन जैसे पंप या से प्रेरित होती है, ब्लोअर के अनुसार ऊष्मा स्थानांतरण की प्रक्रिया को मजबूरन कन्वेंशन के रूप में जाना जाता है।

4. सिद्धांत:

बहुत अधिक प्रवाह दर के साथ गर्म पाइप में हवा बहने से गर्मी हस्तांतरण दर बढ़ जाती है। ठंडी हवा थोक तापमान से तापमान लेती है और तापमान बढ़ा देती है। इस प्रकार, वायु द्वारा ऊष्मा प्रवाह दर को तापमान अंतर के रूप में व्यक्त किया जाता है हवा के इनलेट से आउटलेट तापमान तक।

$$q = m C_P (T_2 - T_1)$$

ऊष्मा स्थानांतरण ग्णांक की गणना निम्नलिखित द्वारा की जा सकती है:

जहां Ta, Ts क्रमशः आसपास का तापमान और सतह का तापमान हैं।

A ऊष्मा अंतरण क्षेत्र है, q ऊष्मा प्रवाह दर है और U समग्र ऊष्मा अंतरण गुणांक है। $Fx=2bAV^2$

5. विवरण:

उपकरण में परीक्षण पाइप के साथ लगी ब्लोअर इकाई शामिल है। परीक्षण अनुभाग है नाइक्रोम हीटर से घिरा हुआ। वह परीक्षण अनुभाग नाइक्रोम हीटर से घिरा हुआ है। परीक्षण में चार तापमान सेंसर लगे हुए हैं प्रवेश द्वार पर वायु धारा में अनुभाग और दो तापमान सेंसर लगाए गए हैं परीक्षण अनुभाग से बाहर निकलें। टेस्ट पाइप ब्लोअर के डिलीवरी साइड से छिद्र के साथ जुड़ा हुआ है।हीटर को इनपुट एक डिमरस्टेट के माध्यम से दिया जाता है और वोल्ट मीटर और एम्पीयर मीटर द्वारा मापा जाता है। मापने के लिए डिजिटल तापमान संकेतक प्रदान किया गया है। वायु प्रवाह को छिद्र मीटर की सहायता से मापा जाता है और जल मैनोमीटर बोर्ड पर लगाया गया। प्रवाह दर को नियंत्रित करने के लिए नियंत्रण वाल्व प्रदान किया जाता है।

6. आवश्यक उपयोगिताएँ:

- 6.1. विद्युत आपूर्तिः एकल चरण, 220 वी एसी, 50 हर्ट्ज, 5-15 एम्पियर संयुक्त सॉकेट पृथ्वी कनेक्शन के साथ।
- 6.2. आवश्यक फर्श क्षेत्र: 1.5 मीटर x 0.5 मीटर।

7. प्रायोगिग विधि:

7.1. आरंभिक प्रक्रिया:

- 7.1.1. सुनिश्चित करें कि पैनल पर दिया गया मुख्य चालू/बंद स्विच बंद स्थिति में है और डिमर स्टेट शून्य स्थिति पर है।
- 7.1.2. विद्युत आपूर्ति को सेट अप से कनेक्ट करें।
- 7.1.3. मैनोमीटर में PU पाइप खोलकर स्केल के आधे भाग तक पानी भरें, वायु प्रवाह पाइप से कनेक्शन करें और ऐसा करने के बाद पाइप को वापस उसकी स्थिति में कनेक्ट करें।
- 7.1.4. मेन ऑन/ऑफ स्विच चालू करें।
- 7.1.5. हीटर इनपुट को डिमर स्टेट, वोल्टमीटर द्वारा 40 से 100 वोल्ट की रेंज में सेट करें।
- 7.1.6. ब्लोअर चालू करें।

- 7.1.7. वाल्व V1 को संचालित करके हवा का प्रवाह निर्धारित करें।
- 7.1.8. 0.5 घंटे के बाद. वोल्टमीटर, एम्पीयर मीटर की रीडिंग नोट करें, हर 10 मिनट के अंतराल पर मैनोमीटर और तापमान सेंसर (तक) तापमान की लगातार रीडिंग में परिवर्तन का अवलोकन ±0.2 oC)।
- 7.1.9. वाय् की भिन्न प्रवाह दर के लिए प्रयोग दोहराएँ।

7.2. समापन प्रक्रिया:

- 7.2.1. जब प्रयोग समाप्त हो जाए तो डिमर स्टेट को शून्य स्थिति पर सेट करें।
- 7.2.2. ब्लोअर बंद कर दें।
- 7.2.3. मेन ऑन/ऑफ स्विच को बंद कर दें।
- 7.2.4. सेट अप की बिजली आपूर्ति बंद कर दें।

8. अवलोकन एवं गणना:

8.1. **डेटा:**

पाइप डीपी का व्यास = 0.028 मीटर

छिद्र का व्यास = 0.014 मीटर

परीक्षण खंड एल की लंबाई = 0.4 मीटर

डिस्चार्ज सह का गुणांक = 0.64

पानी का घनत्व $\rho w = 1000 \text{ kg/m}^3$

8.2. अवलोकन तालिका:

	T	Т	Т	Τ	T			Τ	T	
S.no	V	I	T ₁ (°C)	T ₂ (°C)	T ₃ (°C)	T ₄ (°C)	T ₅ (°C)	T ₆ (°C)	h1	h2
	(volts)	(amp)							(cm)	(cm)

8.3. **गणना:**

गणना तालिका:							
S.no.	Q (m3/sec)	Qa (W)	U (W/m2 °C)				

9. नामपद्धति:

नामपद्धति	स्तम्भ शीर्षक	इकाई	प्रकार

А	ऊष्मा अंतरण क्षेत्र	m²	Calculated
ao	छिद्र का क्रॉस-अनुभागीय क्षेत्र	m²	Calculated
ар	पाइप का क्रॉस-सेक्शनल क्षेत्र	m²	Calculated
Со	निर्वहन का गुणांक	*	Given
Ср	वायु की विशिष्ट ऊष्मा	kJ/kg°C	Calculated
do	छिद्र का व्यास	m	Given
dp	पाइप का व्यास	m	Given
h1-h2	मैनोमीटर रीडिंग	cm	Measured
I	एमीटर रीडिंग	Amp	Measured
L	परीक्षण अनुभाग की लंबाई	m	Given
М	वायु की द्रव्यमान प्रवाह दर	Kg/sec	Calculated
Q	वायु प्रवाह दर	m³/sec	Calculated
Qa	वायु द्वारा ली गई ऊष्मा	W	Calculated
T1	वायु प्रवेश तापमान	°C	Measured
T2-T5	परीक्षण अनुभाग की सतह का तापमान	°C	Measured
Т6	वायु आउटलेट तापमान	°C	Measured
Та	हवा का औसत तापमान	°C	Calculated
Ts	परीक्षण पाइप का औसत सतह तापमान	°C	Calculated
U	गर्मी हस्तांतरण गुणांक	W/m²°C	Calculated
V	वोल्टमीटर रीडिंग	Volt	Measured
ρα	हवा का घनत्व	Kg/m³	Calculated
ρ w	पानी का घनत्व	Kg/m³	Given

ΔΗ	शीर्ष क्षति	m	Calculated

*प्रतीक इकाईहीन मात्रा का प्रतिनिधित्व करते हैं।

10. सावधानी एवं रखरखाव निर्देश:

- 10.1. यदि बिजली की आपूर्ति 200 वोल्ट से कम और 230 वोल्ट से अधिक है तो उपकरण कभी न चलाएं।
- 10.2. सभी चालू/बंद सुनिश्चित करने से पहले कभी भी मुख्य बिजली आपूर्ति चालू न करें पैनल पर दिए गए स्विच ऑफ स्थिति में हैं।
- 10.3. तापमान संकेतक के चयनकर्ता स्विच को धीरे से संचालित करें।
- 10.4. उपकरण को हमेशा धूल से मुक्त रखें।

11. समस्या निवारण:

- 11.1. यदि विद्युत पैनल मुख्य लाइट पर इनपुट नहीं दिखा रहा है, तो मुख्य की जांच आपूर्ति करें।
- 11.2. वोल्टमीटर हीटर को दिए गए वोल्टेज को दिखाता है लेकिन एम्पीयर मीटर नहीं दिखाता है नियंत्रण कक्ष में हीटर का कनेक्शन।

12. संदर्भ:

- 12.1. मैककेबे, स्मिथ, हैरियट (2005)। केमिकल इंजीनियरिंग की इकाई संचालन। 7 ईडी। एनवाई: मैकग्रा हिल। पीपी 296, 357-363
- 12.2. सेन्गेल, वाई.ए. (2007)। ऊष्मा एवं द्रव्यमान स्थानांतरण। तीसरा संस्करण. एनडी: टाटा मैकग्रा हिल। पीपी पृष्ठ 25-26
- 12.3. डोमकुंडवार ए (2003)। ऊष्मा एवं द्रव्यमान स्थानांतरण में एक पाठ्यक्रम। छठा संस्करण. एनवाई: एस.सी धनपत राय एंड कंपनी (पी) लिमिटेड पीपी ए.6, ए.10

द्रवीकृत बेड गर्मी स्थानांतरण इकाई

1. उद्देश्यः

को अध्ययन गर्मी हस्तांतरण ए द्रवीकृत बेड।

2. लक्ष्य :

को calculate गर्मी स्थानांतरण गुणक का द्रवीकृत बेड।

3. परिचयः

द्रवीकरण ठोस कणों के एक बेड को एक विस्तारित, निलंबित द्रव्यमान में परिवर्तित करता है है अनेक एक के गुण तरल. यह द्रव्यमान है शून्य कोण विश्राम की तलाश में, अपना स्वयं का स्तर और युक्त पोत का आकार ग्रहण करता है। द्रवित बिस्तरों का उपयोग उत्प्रेरक और गैर उत्प्रेरक दोनों प्रक्रियाओं की बहुलता में सफलतापूर्वक किया जाता है।

4. लिखितः

द्रवीकृत बेड ऊष्मा अंतरण इकाई एक संपर्कात्मक ऊष्मा अंतरण उपकरण है और इसे इस तरह से बनाया गया है कि ठोस चरण में कण पदार्थ सीधे हीटिंग या कूलिंग माध्यम के संपर्क में आते हैं। ऊष्मा अंतरण के लिए तापमान अंतर इनलेट द्रव तापमान और आउटलेट द्रव तापमान है। ऊर्ध्वाधर द्रवीकृत बेड का थर्मल प्रदर्शन गर्मी स्थानांतरण इकाई आधारित पर गर्मी स्थानांतरण गुणक . गर्मी स्थानांतरण गुणक सूत्र द्वारा गणना की जाती है:

$$v=rac{ au}{ au}$$
 v (alc/मी 2 °C)
 Δz

कहाँ एच है गर्मी स्थानांतरण गुणांक और ए है क्षेत्र ट्यूब का. ΔT है तरल पदार्थ के इनलेट और आउटलेट तापमान के बीच तापमान अंतर क्रमशः।

5. विवरण:

इस सेट अप में सिलिका रेत से भरा एक ग्लास कॉलम होता है। नीचे की ओर हवा भरी जाती है स्तंभ। वायु है आपूर्ति के माध्यम से ए कंप्रेसर. प्रवाह दर हवा का है मापा ऑरिफिसमीटर और मैनोमीटर का उपयोग करके। रेत को हीटर का उपयोग करके गर्म किया जाता है। हीटर इनपुट होना नियंत्रित द्वारा डिजिटल तापमान नियंत्रक. तापमान सेंसर हैं प्रदान किया वायु इनलेट , वायु आउटलेट और रेत के तापमान को मापने के लिए ।

6. उपयोगिताओं आवश्यकः

- 6.1.1 बिजली आपूर्ति: अकेला चरण, 220 वी एसी, 50 हर्ट्ज, 5 -15 एम्प संयुक्त पृथ्वी कनेक्शन के साथ सॉकेट। पृथ्वी वोल्टेज 5 वोल्ट से कम होना चाहिए।
- 6.2.1 मंजिल आवश्यक क्षेत्र: 1.0 एम एक्स 0.75 एम
- 6.3.1 संपीड़ित वायु आपूर्ति: @ 1 सीएफएम पर 1 बार.

7. प्रयोगात्मक प्रक्रियाः

7.1श्रुआत प्रक्रिया:

- 7.1.1 बंद करना वाल्व वी $_1$.
- 7.1.2 संपीड़ित कनेक्ट करें हवा की आपूर्ति को स्थापित करना।
- 7.1.3 सुनिश्चित करना जो स्विच दिया गया है पर पैनल बंद है पद।
- 7.1.4 बिजली कनेक्ट करें आपूर्ति को स्थापित करना।
- 7.1.5 डीटीसी के वृद्धि या कमी और सेट बटन को संचालित करके डीटीसी में रेत का वांछित तापमान सेट करें।
- 7.1.6 बदलना पर हीटर और प्रतीक्षा करें तक इच्छित तापमान प्राप्त करता है .
- 7.1.7 वायु प्रवाह से पीयू पाइप कनेक्शन खोलकर, मैनोमीटर में आधे पैमाने तक पानी भरें ऐसा करने के बाद पाइप को वापस उसकी स्थिति में जोड़ दें।
- 7.1.8 बेड के माध्यम से हवा को बहने देने के लिए वाल्व V 1 खोलें और इसे समायोजित करें एक तरलीकृत ऊंचाई बनाए रखें.

7.1.9 तापमान रिकॉर्ड करें (P v को T 3 के रूप में दर्ज किया जाता है , रेत का तापमान) और स्थिर अवस्था (निरंतर तापमान की स्थिति) पर मैनोमीटर रीडिंग।

7.2समापन प्रक्रिया:

- 7.2.1 कब प्रयोग है ओवर स्विच बंद हीटर.
- 7.2.2 बदलना बंद मुख्य बिजली की आपूर्ति।
- 7.2.3 रुकना दबा हुआ हवा की आपूर्ति।

8. अवलोकन और गणनाः

8.1 डेटा :					
व्यास का छिद्र डी _ओ	= 0.0045 एम				
व्यास का ट्यूब डी	= 0.05 मी.				
व्यास का पाइप डी _{भी}	= 0.0095 एम				
गुणक का का निर्वहन ऑरिफिसमीटर सी _ओ = 0.64					
त्वरण देय को गुरुत्वाकर्षण जी	= 9.81 मी/सेकंड ²				
घनत्व का पानी ρ _{डब्ल्यू}	= 1000 किग्रा/मी ³				

8.2 अवलोकन मेज़ :					
सीनियर नहीं।	एच 1 (सेमी)	एच ₂ (सेमी)	टी 1 (^ओ सी)	टी 2 (^ओ सी)	टी 3 (^ओ सी)
			•		

8.3 गणना:

$$T = \frac{T_1 + T_2}{\text{(°C)}}$$

Find the properties of air $(\rho_{a},\,k,\,C_{p)}$ at temperature $\,\mathcal{T}$ from data book.

$$\rho_a = \underline{\qquad} (kg/m^3)$$

$$C_p = __(J/kg \circ C)$$

$$\Delta T' = T_3 - T_1$$
 (°C)

2

$$a = \frac{\pi}{p} d^2$$

$$\Delta h = \frac{100}{\rho_a} \left(\frac{\rho_w}{\rho_a} \right)$$
 (m)

$$q = C_o \frac{a_p a_o \sqrt{2g\Delta h}}{\sqrt{a_p^2 - a_o^2}} \text{ (m}^3/\text{sec)}$$

$$m = q \times \rho_a$$
 (kg/sec)

$$Q=mc_p \Delta T^{'}$$
 (W)

$$A = \frac{\pi D^2}{4}$$
 (m)

$$\Delta T = T_2^{} T_1$$
 (°C)

$$h = \frac{Q}{A\Delta T} \text{ (W/m}^2 \, ^{\circ}\text{C)}$$

गणना मेज़: **क्र.**सं. क्यू (डब्ल्यू) △टी (^ओ सी) एच (डब्ल्यू/एम ^{2 ओ} सी)

- 1		
- 1		
- 1		
- 1		

9. नामपद्धति

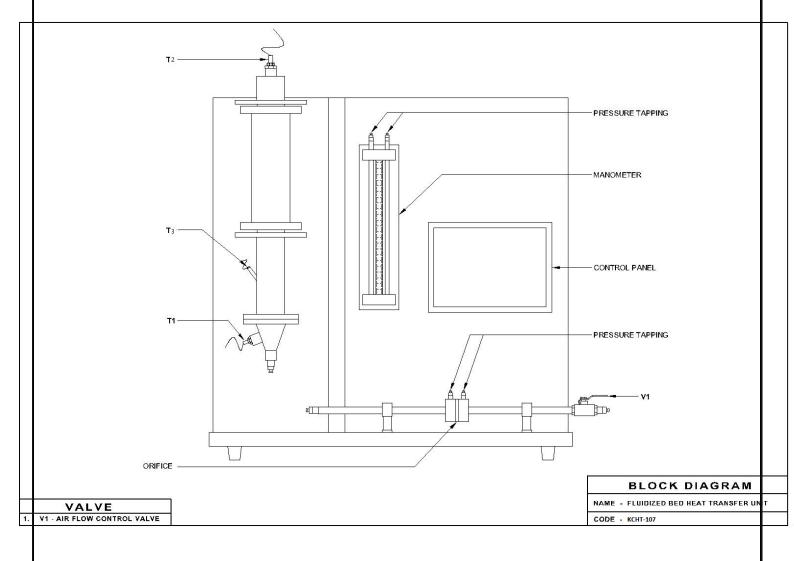
नोम	कॉलम शीर्षक	इकाइयों	प्रकार
ए	क्षेत्रफल नली	मी ²	परिकलित
ए ओ	पार करना- अनुभागीय क्षेत्र का छिद्र	मी ²	परिकलित
एक _{पी}	पार करना - अनुभागीय क्षेत्र का पाइप	मी ²	परिकलित
सी ओ	गुणांक निर्वहन का का छिद्र मीटर		दिया गया
सी _{पी}	विशिष्ट गर्मी का वायु	जूल/ किग्रा º	परिकलित
		सी	

डी	व्यास का नली	एम	दिया गया
करना	व्यास का छिद्र	एम	दिया गया
डी _{पी}	व्यास का पाइप	एम	दिया गया
जी	त्वरण देय को गुरुत्वाकर्षण	मी/सेकंड ²	दिया गया
एच	गर्मी स्थानांतरण गुणक	डब्लू/एम ^{2 ओ}	परिकलित
		सी	
एच ₁ -	दबाव नापने का यंत्र पढ़ना पर दोनों अंक	सेमी	मापा
एच ₂			
Δh	ऊंचाई अंतर का मैनोमेट्रिक तरल पदार्थ	एम	परिकलित
क	थर्मल चालकता का वायु	डब्ल्यू/ एम	परिकलित
		^ओ सी	
एम	द्रव्यमान प्रवाह का मूल्य वायु	किलोग्राम/से	परिकलित
		कंड	
क्यू	का मूल्य गर्मी का हस्तांतरण	डब्ल्यू	परिकलित

क्यू	प्रवाह दर का वायु	मी ³ /सेकेंड	परिकलित
टी	औसत तापमान का वायु	^आ सी	परिकलित
टी 1	इनलेट तापमान का वायु	^आ सी	मापा
टी 2	दुकान तापमान का वायु	^आ सी	मापा
टी 3	रेत तापमान	^आ सी	मापा
∆टी	ड्राइविंग बल	^आ सी	परिकलित
∆टी'	तापमान अंतर	^आ सी	परिकलित
ρψ	घनत्व का वायु	किग्रा/मी ³	परिकलित
ρа	घनत्व का पानी	किग्रा/मी ³	दिया गया

10. एहतियात और रखरखाव निर्देश:

- 10.1 बिजली की आपूर्ति बंद हो तो उपकरण को कभी न चलाएं 200 वोल्ट से कम और 230 वोल्ट से अधिक है।
- 10.2 कभी नहीं बदलना पर मेन्स शक्ति आपूर्ति पहले यह सुनिश्चित करना वह सभी पैनल पर दिए गए ON/OFF स्विच OFF स्थिति में हैं।
- 10.3 प्रचालन चयनकर्ताओं बदलना का तापमान सूचक धीरे से.
- 10.4 हमेशा रखें उपकरण म्कत से धूल।


11. समस्या निवारणः

11.1 अगर इलेक्ट्रिक पैनल है नहीं दिखा रहा इनपुट पर मुख्य प्रकाश, जाँच मुख्य आपूर्ति।

12. संदर्भ :

- 12.1 क्लसन, जे.एम., रिचर्डसन, जे.एफ. (1998). *केमिकल इंजीनियरिंग वॉल्यूम* 2. 4 ^{वां} संस्करण. एन.डी.: एशियन बुक्स लिमिटेड. पृ. 224-228, 260-261, 274-275.
- 12.2 मैककेबे, स्मिथ, हेरियट (2005). *इकाई संचालन का रासायनिक इंजीनियरिंग* . 7 ^{वां} संस्करण. एनवाई: मैकग्रा हिल। पीपी 177-182.
- 12.3 डोमकुंडवार ए (2003). *ए अविध में गर्मी और द्रव्यमान स्थानांतरण करना* । 6 ^{वां} एड. न्यूयॉर्क: एससी धनपत राय एंड कंपनी (पी) लिमिटेड पृ. ए.10-ए.11.
- 12.4 पेरीज़ रासायनिक इंजीनियर्स' पुस्तिका. 8 ^{वां} एड. न्यूयॉर्क: मैकग्रा पहाड़ी। पीपी 11.29 -11.30.

13. अवरोध पैदा करना आरेख:

अध्ययन के लिए टेस्ट-रिग

ग्रेडिएंट माप

क्रिस्टलीय सामग्री

(ऊष्मीय चालकता

धातु की छड़)

इस मैनुअल के बारे में महत्वपूर्ण जानकारी

सुरक्षा हेतु अनुस्मारक

उपकरण में संशोधन :

इस उपकरण में कोई बदलाव नहीं किया जाना चाहिए। बदलाव से इसके प्रदर्शन, सुरक्षा या व्यवधान पर असर पड़ सकता है। इसके अलावा, बदलाव के कारण होने वाली क्षति या प्रदर्शन संबंधी समस्याओं को वारंटी के तहत कवर नहीं किया जा सकता है।

सावधानियाँ और रखरखाव:

इसका उपयोग किसी ऐसे खतरे की उपस्थिति को इंगित करने के लिए किया जाता है जो आपके उपकरण को मामूली या मध्यम व्यक्तिगत चोट या क्षति पहुंचा सकता है। जोखिम से बचने या उसे कम करने के लिए, प्रक्रियाओं का सावधानीपूर्वक पालन किया जाना चाहिए।

उद्देश्य :

धात् की छड़ में चालन के माध्यम से ऊष्मा स्थानांतरण का अध्ययन करना

उद्देश्य :

- 1. धात् की छड़ की तापीय चालकता की गणना करना।
- 2. छड़ की लंबाई के अनुरूप तापमान वितरण का आरेख बनाना।

परिचय:

पदार्थ की ऊष्मीय चालकता एक भौतिक गुण है, जिसे पदार्थ की ऊष्मा का संचालन करने की क्षमता के रूप में परिभाषित किया जाता है। पदार्थ की ऊष्मीय चालकता रासायनिक संरचना, पदार्थ की अवस्था, ठोस की क्रिस्टलीय संरचना, तापमान, दबाव और मौसम पर निर्भर करती है।

लिखित:

हीटर रॉड को उसके एक सिरे पर गर्म करेगा और रॉड के ज़िरए दूसरे सिरे तक गर्मी पहुंचाई जाएगी। चूंकि रॉड बाहर से इंसुलेट की गई है, इसलिए यह सुरक्षित रूप से माना जा सकता है कि तांबे की रॉड के साथ गर्मी हस्तांतरण मुख्य रूप से अक्षीय चालन के कारण होता है और स्थिर अवस्था में संचालित गर्मी ठंडे सिरे पर पानी द्वारा अवशोषित गर्मी के बराबर होगी। स्थिर अवस्था में संचालित गर्मी रॉड के भीतर एक तापमान प्रोफ़ाइल बनाएगी। (T = f (x)) रॉड के पिछले सिरे पर स्थिर अवस्था गर्मी संतुलन है:

ठण्डे जल द्वारा अवशोषित ऊष्मा,

$$Q=MC_{\scriptscriptstyle P}\Delta T$$

अक्षीय दिशा में छड़ के माध्यम से संचालित ऊष्मा:

$$Q = -KA \frac{dT}{dX}$$

स्थिर अवस्था में:

$$Q = -KA\frac{dT}{dX} = MC_P \Delta T$$

छड़ की तापीय चालकता को इस प्रकार व्यक्त किया जा सकता है:

$$K = \frac{MC_p \Delta T}{-A \left(\frac{dT}{dX}\right)}$$

विवरण :

इस उपकरण में एक धातु की छड़ होती है, जिसका एक सिरा इलेक्ट्रिक हीटर द्वारा गर्म किया जाता है जबिक छड़ का दूसरा सिरा कूलिंग वॉटर जैकेट के अंदर प्रोजेक्ट करता है। छड़ का मध्य भाग एस्बेस्टस इंसुलेटिंग पाउडर से भरे बेलनाकार खोल से घिरा होता है। अलग-अलग सेक्शन में छड़ के तापमान को मापने के लिए छह तापमान सेंसर दिए गए हैं। हीटर में हीट इनपुट को नियंत्रित करने के लिए एक डिमर स्टेट दिया गया है। निरंतर हेड स्थितियों के तहत पानी जैकेट के माध्यम से प्रसारित होता है और इसके प्रवाह दर और तापमान वृद्धि को पानी के इनलेट और आउटलेट पर दिए गए दो तापमान सेंसर द्वारा नोट किया जाता है।

आवश्यक स्विधाएं:

- 1. विद्युत आपूर्ति: एकल चरण, 220 V AC, 50 Hz, 5-15 Amp संयुक्त सॉकेट पृथ्वी कनेक्शन के साथ।
- 2. जल आपूर्ति: 1 बार पर 2 एलपीएम पर निरंतर
- 3. फर्श नाली आवश्यक है.
- 4. आवश्यक फर्श क्षेत्र: 1मी x 1मी.
- 5. स्टॉप वॉच.

प्रायोगिक प्रक्रियाः

- 1. सभी वाल्व बंद करें.
- जल कक्ष के इनलेट में निरंतर जल आपूर्ति को जोड़ें

3.	सुनिश्चित करें कि पैनल पर दिया गया मेन्स ऑन/ऑफ स्विच ऑफ स्थिति पर है और डिमर
	शून्य स्थिति पर है
4.	बिजली की आपूर्ति को सेट अप से जोड़ें।
5.	मुख्य स्विच को चालू/बंद करें।
6.	डिमर स्टेट, वोल्टमीटर द्वारा ताप इनपुट को 40 से 70 वोल्ट की सीमा में सेट करें।
7.	वाल्व खोलें और रोटामीटर की मदद से पानी का प्रवाह शुरू करें।
8.	स्टॉप वॉच चालू करें और पानी को मापने वाले सिलेंडर में इकट्ठा करें।
9.	पानी का समय और मात्रा नोट करें।
10.	तापमान सेंसर की रीडिंग को नोट करें (तापमान की लगातार रीडिंग में ± 0.2° C परिवर्तन देखने
	तक)
11.	जब प्रयोग समाप्त हो जाए तो डिमर स्टेट को शून्य स्थिति पर सेट करें
12.	जब प्रयोग समाप्त हो जाए तो वाल्व बंद करके पानी की आपूर्ति बंद कर दें
13.	मुख्य ऑन/ऑफ स्विच को बंद करें।
14.	सेट अप की विद्युत आपूर्ति बंद करें।
भवलोकन	एवं गणनाः
014(111)	
मानक डे	टा:
जल की वि	वेशिष्ट ऊष्मा Cp = 4186 जूल/किग्रा ° C

पानी का घनत्व ρw = 1000 किग्रा/मी ³

छड़ का व्यास d = 0.025 मीटर

1 के एक छोर बिंदु से पहले तापमान सेंसर (T 1) की दूरी = 0.035 मी.

2 के एक छोर बिंदु से दूसरे तापमान सेंसर (T 2) की दूरी = 0.075 मी.

3 के एक छोर बिंदु से तीसरे तापमान सेंसर (T 3) की दूरी = 0.115 मी.

4के एक छोर बिंदु से चौथे तापमान सेंसर (T 4) की दूरी = 0.155 मी.

5 के एक छोर बिंदु से पांचवें तापमान सेंसर (T 5) की दूरी = 0.195 मी.

6 के एक छोर बिंदु से छठे तापमान सेंसर (T 6) की दूरी = 0.235 मी.

अवलोकन तालिका:-

क्रमांक	एफ	टी 1	एफ	टी	टी 1	टी 2	टी ₃	टी ₄	टी ₅	टी ₆ (°C)	टी 7	टी 8
ı	(एमए	(सेकं	डब्ल्यू	(सेकंड)	(°C)	(°C)	(°C)	(°C)	(°C)		(°C)	(°C)
	ત)	ਤ)	(एलपी									
			एच)									
1												
2												

गणनाः

$$M = \frac{F \times \rho_w \times 10^{-6}}{t_1}$$

$$Q = MC_P(T_8 - T_7)$$

$$A = \frac{\pi}{4} \times (d)^2$$

तापमान (T 1, T 2, T 3, T 4, T 5, T 6) बनाम लंबाई (X 1, X 2, एक्स 3, एक्स 4, एक्स 5, एक्स 6)

और ढलान का पता लगाएं $\left(rac{dT}{dX}
ight)$

$$k = \frac{Q}{-A \times \left(\frac{dT}{dX}\right)}$$

गणना तालिका:-

क्रमांक।	क्यू (डब्ल्यू)	केल्विन (वाट/मी° सेल्सियस)
1		
2		
3		

नामपद्धतिः

नोम	कॉलम शीर्षक	इकाइयों	प्रकार
ए	धातु की छड़ का अनुप्रस्थ काट क्षेत्रफल	मी ²	परिकलित
सी 🕆	जल की विशिष्ट ऊष्मा	जूल/किलोग्राम °C	दिया गया

डी	छड़ का व्यास	एम	दिया गया
$\frac{dT}{dX}$	ग्राफ का ढलान तापमान (टी 1, टी 2, टी 3, टी 4, टी 5, टी 6) बनाम लंबाई (एक्स 1, एक्स 2, एक्स 3, एक्स 4, एक्स 5, एक्स 6)	°C/मी	परिकलित
एफ	प्रवाह माप के लिए एकत्रित पानी की मात्रा	एमएल	परिकलित
क	धातु की छड़ की ऊष्मीय चालकता	डब्ल्यू/एम°C	परिकलित
एम	शीतलन जल की द्रव्यमान प्रवाह दर	किलोग्राम/सेकंड	परिकलित
क्यू	जल द्वारा प्राप्त ऊष्मा	डब्ल्यू	परिकलित
टी	समय	सेकंड	मापा
ਟੀ ₁- ਟੀ 6	हीटर से क्लिंग जैकेट तक की लंबाई के साथ धातु की छड़ का तापमान	डिग्री सेल्सियस	मापा
टी 7	ठंडे पानी का इनलेट तापमान	डिग्री सेल्सियस	मापा
टी 🛭	ठंडे पानी का आउटलेट तापमान	डिग्री सेल्सियस	मापा
टी 1	पानी की मात्रा एकत्रित करने में लगा समय	सेकंड	मापा
वी	वोल्ट मीटर रीडिंग	वोल्ट	मापा
एक्स 1	पाइप के एक छोर बिंदु से पहले तापमान सेंसर (T1) की दूरी	एम	दिया गया
एक्स 2	पाइप के एक छोर बिंदु से दूसरे तापमान सेंसर (T2) की दूरी	एम	दिया गया
एक्स 2	पाइप के एक छोर बिंदु से तीसरे तापमान सेंसर (ТЗ) की दूरी	एम	दिया गया
एक्स 2	पाइप के एक छोर बिंदु से चौथे तापमान सेंसर (Т4) की दूरी	एम	दिया गया
एक्स 2	पाइप के एक छोर बिंदु से पांचवें तापमान सेंसर (Т5) की दूरी	एम	दिया गया
एक्स 2	पाइप के एक छोर बिंदु से छठे तापमान सेंसर (T1) की दूरी	एम	दिया गया
ρ _ā	पानी का घनत्व	किग्रा/मी ³	दिया गया

सावधानियां एवं रखरखाव निर्देश:

- 7. बिजली की आपूर्ति 200 वोल्ट से कम और 230 वोल्ट से अधिक हो तो उपकरण को कभी न चलाएं
- यह सुनिश्चित किए बिना कि पैनल पर दिए गए सभी ON/OFF स्विच OFF स्थिति में हैं, कभी भी मुख्य विद्युत आपूर्ति को चालू न करें ।
- 9. तापमान सूचक के चयनकर्ता स्विच को धीरे से संचालित करें।
- 10. उपकरण को हमेशा धूल से मुक्त रखें।

निवारण :

- 1. यदि विद्युत पैनल मुख्य प्रकाश पर इनपुट नहीं दिखा रहा है, तो मुख्य आपूर्ति की जांच करें।
- यदि वोल्टमीटर हीटर को दिया गया वोल्टेज दिखा रहा है, लेकिन एम्पियर मीटर नहीं दिखा रहा है,
 तो नियंत्रण पैनल में हीटर के कनेक्शन की जांच करें।

संदर्भ:

डीएस कुमार, "हीट एंड मास ट्रांसफर", 7वां संस्करण, एसके कटारिया एंड संस, एनडी, 2008, पृष्ठ