मौलाना आज़ाद राष्ट्रीय प्रौद्योगिकी संस्थान भोपाल (राष्ट्रीय महत्व का एक संस्थान)

रसायनिक अभियांत्रिकी विभाग

यांत्रिक संचालन प्रयोगशाला

(मैकेनिकल ऑपरेशन लैब)

प्रयोगशाला प्रमुख डॉ. राजीव परमार , सहायक प्राध्यापक

प्रयोगशाला का उद्देश्य:

यह लैब रसायनिक अभियांत्रिकी के विभिन्न मेकैनिकल ऑपरेशन्स को समझने और उनका अनुप्रयोग सिखाने के लिए स्थापित की गई है। इसमें छात्रों को विभाजन प्रक्रियाएँ, क्रिशंग, साइजिंग, और फ्लुइड फ्लो जैसे ऑपरेशन्स के बारे में व्यावहारिक ज्ञान प्राप्त होता है।

C	0 -0 '00' 10'	(0 0
कार्यक्रम का नाम	रसायनिक अभियांत्रिकी में बी.टेक सेमेस्टर : तृतीय	वर्ष : द्वितीय
Name of Program	B.Tech in Chemical Engineering Semester : Third	Year: Second
पाठ्यक्रम का नाम	यांत्रिक संचालन प्रयोगशाला	
Name of Course	Mechanical Operation Lab	
पाठ्यक्रम कोड	सी.एच.ई. 217	
Course Code	CHE 217	
कोर/ऐच्छिक/अन्य	कोर	
Core/Elective/Other	Core	
क्र.	प्रयोग का नाम	Page No.
S.No.	Name of Experiment	पृष्ठ संख्या
4	जॉ क्रशर के संचालन का अध्ययन	3-8
1	Study of Operation of Jaw Crusher	
	रिबन मिक्सर के संचालन का अध्ययन	9-11
2	Study of Operation of Ribbon Mixer	
	रोटैप सीव शेकर के संचालन का अध्ययन	12-17
3	Study of Operation of Rotap Sieve Shaker	
	छलनी शेकर के संचालन का अध्ययन	18-28
4	Study of Operation of Sieve Shaker	
	बॉल मिल के संचालन का अध्ययन	29-35
5	Study of Operation of A Ball Mill	23 33
		26.40
6	झाग प्लवन सेल के कार्य सिद्धांत का अध्ययन	36-40
	Study of Working Principle of Froth Flotation Cell	
7	चक्रवात विभाजक के संचालन का अध्ययन	41-45
	Study of Operation of Cyclone Separator	
8	बैच अवसादन प्रक्रिया का अध्ययन	46-52
	Study of Batch Sedimentation Process	
	हैमर मिल के संचालन का अध्ययन	53-58
9	Study of Operation of Hammer Mill	
40	प्लेट और फ्रेम फिल्टर प्रेस के संचालन का अध्ययन	59-65
10	Study of Operation of Plate And Frame Filter Press	
	· · · · · · · · · · · · · · · · · · ·	1

जॉ क्रशर

1. उद्देश्य:

जॉ क्रशर के संचालन का अध्ययन करना।

2. लक्ष्य:

ज्ञात कार्य सूचकांक की सामग्री को क्रशिंग (कुचलने) के लिए क्रशर की दक्षता निर्धारित करना (W_i) ।

3. परिचय:

जॉ क्रशर ठोस पदार्थ के बड़े टुकड़ों को छोटे गांठें टुकड़ों में तोड़ने का भारी काम करते हैं। बड़ी मात्रा में मोटे अनाज को कम करने के लिए उद्योग में जॉ क्रशर का ठोस पदार्थों का व्यापक रूप से उपयोग किया जाता है। वे संपीड़न द्वारा संचालित होते हैं और बहुत कठोर पदार्थों की बड़ी सामग्री गांठों को तोड़ सकते हैं, जैसे कि चट्टानों और अयस्कों की प्राथमिक और माध्यमिक आकर को कम करना । इसका उपयोग उद्योग में बहुत सामान्य हैं और उनका व्यापक उपयोग होता है।

4. सिद्धांत:

एक जॉ क्रशर में जात आकार के वितरण को दो जबड़ों के बीच प्रवेश कराया जाता है, जिसे सेट किया जाता है शीर्ष पर एक V खुला बनाएं। यह एक उत्केन्द्र (eccentric) द्वारा संचालित होता है जिससे कि एक महान संपीड़न बल होता है जॉ के बीच फंसे ठोस पदार्थों की गांठों पर लगाया जाता है। बीच में बड़ी-बड़ी गांठें फंस गईं जॉ के ऊपरी हिस्से टूट जाते हैं, नीचे संकरी जगह में गिर जाते हैं और फिर से कुचल जाते हैं अगली बार जॉ बंद हो जाएं। जॉ क्रशर का सबसे आम प्रकार ब्लेक क्रशर है। इस मशीन में एक उत्केन्द्र (eccentric) दो टॉगल से जुड़े पिटमैन को चलाता है, जिनमें से एक है एक को फ्रेम पर और दूसरे को झूलते हुए जॉ पर पिन किया गया। धुरी बिंदु सबसे ऊपर है जॉ के खुलने की मध्य रेखा पर गतिशील जॉ या जबड़े के शीर्ष के ऊपर। गित की सबसे बड़ी मात्रा वी V_1 के निचले भाग में है, जिसका अर्थ है कि वहां बहुत कम है इस प्रकार के जॉ क्रशर में जाम होने की प्रवृत्ति होती है।

बांड क्रशिंग नियम और कार्य सूचकांक:

कुचलने और पीसने के लिए आवश्यक शक्ति का अनुमान लगाने की एक अधिक यथार्थवादी विधि है

$$\frac{P}{m} = \frac{K_b}{\sqrt{D_p}} \tag{1}$$

जहाँ Kb एक स्थिरांक है जो मशीन के प्रकार और सामग्री पर निर्भर करता है कुचला हुआ, Dp मिलीमीटर में कण आकार है, P किलोवाट में शक्ति है और M द्रव्यमान प्रवाह दर है प्रति घंटे टन में।

 W_i को किलोवाट घंटे प्रति टन फ़ीड में सकल ऊर्जा आवश्यकताओं के रूप में परिभाषित किया गया है एक बहुत बड़े फ़ीड को कम करने की आवश्यकता है। यह परिभाषा Kb और W_i के बीच संबंध की ओर ले जाती है।

$$K_b = 0.3162 * W_i$$
 ----- (2)

यदि फ़ीड का 80 प्रतिशत D_{pa} mm आकार के जाल से गुजरता है और उत्पाद का 80 प्रतिशत D_{pb} mm आकार का जाल, यह समीकरण (1) और (2) से अनुसरण करता है।

$$\frac{P}{m} = 0.3162 \times W_i \left(\frac{1}{\sqrt{D_{Pb}}} - \frac{1}{\sqrt{D_{Pa}}} \right)$$

$$P = m \times 0.3162 \times W_i \left(\frac{1}{\sqrt{D_{Pb}}} - \frac{1}{\sqrt{D_{Pa}}} \right)$$
 -----(3)

5. विवरण:

यह सेट-अप एक ब्लेक जॉ क्रशर है, इसमें कठोर स्टील के दो जॉ होते हैं और एक जॉ स्थिर होता है और दूसरा चल रहा है। सामग्री (कच्चा माल) डालने के लिए शीर्ष पर एक हॉपर प्रदान किया गया है। जॉ का मुंह समायोज्य है। मोटर को ट्रिपल `V' बेल्ट इाइव के माध्यम से मशीन से जोड़ा जाता है। एक हैंडल प्रदान किया गया है।

6. आवश्यक उपयोगिताएँ:

- 6.1. विद्युत आपूर्ति: एकल चरण, 220 वी एसी, 50 हर्ट्ज, 5-15 एम्पियर संयुक्त सॉकेट पृथ्वी कनेक्शन के साथ
- 6.2. आवश्यक फर्श क्षेत्र: 1 मी x 1 मी।
- 6.3. फ़ीड के लिए कच्चा माल (अधिकतम आकार 50 मिमी)
- 6.4. विश्लेषण के लिए छलनी शेकर के साथ छलनी का सेट।

7. प्रायोगिक विधि:

7.1. आरंभिक प्रक्रिया:

- 7.1.1. किसी ठोस पदार्थ का उपयुक्त फीडस्टॉक तैयार करें।
- 7.1.2. इसके आकार वितरण को मापें।
- 7.1.3. जॉ के मूंह को समायोज्य करें।
- 7.1.4. बिजली की आपूर्ति चालू करें।
- 7.1.5. मशीन को बिना किसी लोड स्थिति के चालू करें और ऊर्जा मीटर की 10-20 पल्स तक लगने वाले समय को रिकॉर्ड करें।
- 7.1.6. ठोस पदार्थ (सामग्री) को हॉपर द्वारा स्थिर दर से डालना शुरू करें।
- 7.1.7. ऊर्जा मीटर के 10-20 पल्स के लिए लिया गया समय फिर से रिकॉर्ड करें।
- 7.1.8. जॉ को अलग-अलग ओपनिंग के लिए प्रयोग दोहराएँ।

7.2. समापन प्रक्रिया:

7.2.1. जब प्रयोग समाप्त हो जाए तो बिजली की आपूर्ति बंद कर दें।

8. अवलोकन एवं गणनाः

8.1. डेटा:	
ऊर्जा मीटर स्थिरांक EMC = 3200 पल्स/र्ग	केलोवाट
कुछ सामान्य खनिजों के कार्य सूचकांक	
सामग्री	कार्य सूचकांक (Wi)
बॉक्साइट (sp.gr =2.20)	8.78
सीमेंट क्लिमकर (sp.gr =3.15)	13.45
कोयला (sp.gr =1.40)	13.00
कोक (एसपी.जीआर =1.31)	15.13
बजरी (sp.gr =2.66)	16.06
जिप्सम चट्टान (एसपी.जीआर =2.69)	6.73
चूना पत्थर (sp.gr =2.66)	12.74
क्वार्टज़ (sp.gr =2.65)	13.57

अवलोकन:

8.2. अवलोकन तालिका:

P1	tP1	P2	tP2

8.3. गणना:

$$P_{NL} = \frac{P_1 \times 3600}{t_{p1} \times EMC} \text{ (kW)}$$

$$P_{L} = \frac{P_2 \times 3600}{t_{p2} \times EMC} \text{ (kW)}$$

$$P_{act} = P_L - P_{NL}$$
 (kW)

$$m = \frac{W_f}{t_c} \times \frac{3600}{1000} \quad \text{(tons/h)}$$

$$K_b = 0.3162 \times W_i$$
 (kWh/tons)

$$P_{cal} = m \times K_b \times \left[\frac{1}{\sqrt{D_{Pb}}} - \frac{1}{\sqrt{D_{Pa}}} \right]$$
 (kW)

$$\eta = \frac{P_{act}}{P_{cal}} \times 100 \text{ (\%)}$$

9. नामपद्धति:

नामपद्धति	स्तम्भ शीर्षक	इकाई	प्रकार
D _{pa}	औसत फ़ीड आकार	mm	Measured
D _{pb}	औसत उत्पाद का आकार	mm	Measured
EMC	ऊर्जा मीटर स्थिरांक	Pulses/kWh	Given
Kb	बांड स्थिरांक	kWh/tons	Calculated
m	फीड दर	tons/h	Calculated
P ₁	बिना लोड की स्थिति में गणना की गई	*	Measured
	दालों की संख्या		
P ₂	भरी ह्ई स्थिति में गिनती की गई दालों	*	Measured
	की संख्या		
Pact	कुचलने के लिए आवश्यक वास्तविक	kW	Calculated
	शक्ति		
P _{cal}	कुचलने के लिए आवश्यक शक्ति की	kW	Calculated
	गणना		
PL	भरी हुई स्थिति में मशीन द्वारा बिजली	kW	Calculated
	की खपत		
PNL	मशीन द्वारा बिना लोड के बिजली की	kW	Calculated
	खपत स्थिति		
tc	कुचलने का समय	sec	Measured
tp ₁	P1 पल्स के लिए समय	sec	Measured
tp ₂	P2 पल्स के लिए समय	sec	Measured
W _f	लिए गए फीड का वजन	kg	Measured
Wi	सामग्री का कार्य सूचकांक	kWh/tons	Given
η	कुचलने की दक्षता	%	Calculated

^{*} प्रतीक इकाई रहित हैं।

10. सावधानी एवं रखरखाव निर्देश:

10.1. यदि बिजली की आपूर्ति 180 वोल्ट से कम और 230 वोल्ट से अधिक है तो उपकरण कभी न चलाएं।

11. समस्या निवारण:

11.1. यदि विद्युत पैनल मुख्य लाइट पर इनपुट नहीं दिखा रहा है, तो मुख्य आपूर्ति की जांच करें।

12. संदर्भ:

- 12.1. मैककेबे, वॉरेन एल. स्मिथ, जूलियन सी. हैरियट, पीटर (2005)। की इकाई संचालन केमिकल इंजीनियरिंग। 7वाँ संस्करण. एनवाई: मैकग्रा-हिल। पीपी 985-986, 988
- 12.2. ब्राउन, जॉर्ज ग्रेंजर (1995)। इकाई संचालन. प्रथम संस्करण. एनडी: सीबीएस प्रकाशक और वितरक पीपी 27-28

रिबन मिक्सर

1. उद्देश्य:

रिबन मिक्सर के संचालन का अध्ययन करना।

2. लक्ष्य:

रिबन मिक्सर के कार्य सिद्धांत का अध्ययन करना।

3. परिचय:

मिश्रण का अध्ययन करना और उसका ठीक से वर्णन करना अधिक कठिन कार्य है। शब्द मिश्रण का उपयोग विभिन्न प्रकार के कार्यों में किया जाता है, जो एकरूपता की डिग्री में व्यापक रूप से मिश्रित सामग्री भिन्न होते हैं। एक मामले में, दो गैसों पर विचार करें जिन्हें एक साथ लाया जाता है और पूरी तरह से मिश्रित किया जाता है, और दूसरे मामले में, रेत, बजरी, सीमेंट और पानी हैं जो बहुत देर तक घूमते ड्रम में गिरता रहा हैं। दोनों ही मामलों में अंतिम उत्पाद को मिश्रित कहा जाता है।

4. सिद्धांत:

रिबन मिक्सर: रिबन मिक्सर में एक क्षैतिज गर्त होता है जिसमें एक केंद्रीय शाफ्ट और एक पेचदार रिबन उत्तेजक (helical ribbon agitator) होता है। दो प्रतिरोधी रिबन एक ही शाफ्ट पर लगे होते हैं, एक ठोस को एक दिशा में धीरे-धीरे ले जाता है, दूसरा उसे तेजी से दूसरी दिशा में ले जाता है। रिबन निरंतर हो सकते हैं। मिश्रण से प्रेरित "अशांति" का परिणाम होता है

आंदोलनकारियों का प्रतिकार करना, केवल गर्त के माध्यम से ठोस पदार्थों की गित से नहीं। कुछ रिबन मिक्सर बैच के अनुसार संचालित होता है, ठोस पदार्थों को चार्ज किया जाता है और संतोषजनक होने तक मिश्रित किया जाता है; अन्य लगातार मिश्रण करते रहते हैं, ठोस पदार्थों को कुंड के एक छोर से डाला जाता है और बाहर निकाल दिया जाता है। हल्की ड्यूटी के लिए कुंड खुला या हल्का ढका हुआ, बंद और भारी दीवार वाला दबाव या निर्वात में संचालन होता है। रिबन मिक्सर पतले पेस्ट के लिए प्रभावी मिक्सर हैं और उन पाउडरों के लिए जो आसानी से नहीं बहते। कुछ बैच इकाइयाँ बहुत बड़ी हैं, जो 9,000 गैलन सामग्री टिकती हैं।

विवरण:

वर्तमान सेटअप में दो यू आकार का मिक्सर होते है और साथ में पेचदार आकार के रिबन ब्लेड होता है। ब्लेडों को कमी के साथ गियर तंत्र की सहायता से संचालित किया जाता है

गियर बॉक्स जिसे आगे 1 एचपी सिंगल फेज इलेक्ट्रिक मोटर के साथ जोड़ा गया है। शाफ़्ट लीक प्रूफ ऑपरेशन के लिए रिबन ब्लेड को टेफ्लॉन ग्रंथियों द्वारा सील कर दिया जाता है। निर्वहन हेत् उत्पाद के निचले हिस्से में एक विशेष वेंट प्रदान किया गया है।

6. आवश्यक उपयोगिताएँ:

- 6.1. विद्युत आपूर्ति: एकल चरण, 220 वी एसी, 50 हर्ट्ज, 5-15 एम्पियर संयुक्त सॉकेट पृथ्वी कनेक्शन के साथ। अर्थ वोल्टेज 5 वोल्ट से कम होना चाहिए।
- 6.2. आवश्यक फर्श क्षेत्र: 1 मी x 1 मी।
- 6.3. फीड के लिए सामग्री।

7. प्रायोगिग विधि:

7.1. आरंभिक प्रक्रिया:

- 7.1.1. चारे के रूप में दो अलग-अलग सामग्री लें।
- 7.1.2. मिक्सर का ढक्कन हटाकर फ़ीड सामग्री को मिक्सर में डालें।
- 7.1.3. बिजली की आपूर्ति चालू करें।
- 7.1.4. मिक्सर चालू करें।
- 7.1.5. कुछ देर बाद मिक्सर का ढक्कन हटा कर मिश्रण देखें और दोबारा डाल दें।
- 7.1.6. मोटर चालू करें और 15 मिनट तक प्रतीक्षा करें।
- 7.1.7. मिश्रण के अलग-अलग समय के लिए प्रयोग को दोहराएँ।

7.2. समापन प्रक्रिया:

- 7.2.1. जब प्रयोग समाप्त हो जाए तो मिक्सर और फिर मोटर बंद कर दें।
- 7.2.2. बिजली की आपूर्ति बंद कर दें।
- 7.2.3. सामग्री को मिक्सर से अच्छी तरह निकाल लें।

8. सावधानी एवं रखरखाव निर्देश:

- 8.1. यदि बिजली की आपूर्ति 180 वोल्ट से कम और 230 वोल्ट से अधिक है तो उपकरण कभी न चलाएं।
- 8.2. दाना सामग्री पाउडर प्रकार की होनी चाहिए।
- 8.3. यह सुनिश्चित करने से पहले कि तेल गियरबॉक्स में भरा हुआ है, गियरबॉक्स से जुड़ी मोटर को न चलाएं।
- 8.4. रिबन मिक्सर के घूमने वाले शाफ्ट पर लगी ग्रंथि पर तेल लगाना आवश्यक है।

9. समस्या निवारण:

9.1. यदि कोई लीकेज हो तो उस हिस्से को टाइट कर दें या टेफ्लॉन टेप लपेटकर दोबारा ठीक कर लें।

10. संदर्भ:

10.1. मैककेबे, वॉरेन एल. स्मिथ, जूलियन सी. हैरियट, पीटर (2005)। की इकाई संचालन केमिकल इंजीनियरिंग। 7वाँ संस्करण. एनवाई: मैकग्रा-हिल। पृष्ठ 979

रोटैप छलनी शेकर

1. उद्देश्य:

रोटैप छलनी शेकर के संचालन का अध्ययन करना।

2. लक्ष्य:

- 2.1. रोटैप छलनी शेकर की कार्यप्रणाली का प्रदर्शन करना।
- 2.2. स्क्रीनिंग विश्लेषण करने के लिए।

3. परिचय:

रोटैप छलनी शेकर परीक्षण छलनी को देखते हुए गोलाकार और टैपिंग गित को पुन: उत्पन्न करता है हाथ से छानना लेकिन यह एक समान यांत्रिक क्रिया के साथ होता है। एक महत्वपूर्ण विशेषता रोटैप का अर्थ है कि गित और स्ट्रोक दोनों निश्चित हैं और समायोज्य नहीं हैं। रोटैप सुसज्जित है एक समय में 1 से 13 छलनी को संभालने के लिए और स्वचालित रूप से टाइमर से सुसज्जित है किसी भी पूर्व निर्धारित समय के बाद परीक्षण समाप्त कर देता है।

4. सिद्धांत:

मानक स्क्रीन का उपयोग 3-0.0015 इंच के बीच आकार सीमा में कणों के आकार को मापने के लिए किया जाता है (76 मिमी से 38 μm)। परीक्षण छलनी बुने हुए तारों की स्क्रीन से बनी होती है जिसके आयामों को सावधानीपूर्वक मानकीकृत किया गया है। उदघाटन चौकोर हैं। प्रत्येक स्क्रीन प्रति इंच जाल में पहचाना जाता है। किसी भी स्क्रीन के वास्तविक जाल आयाम का अन्पात अगली छोटी स्क्रीन का तो 1.41 है। किसी विश्लेषण को मानक का एक सेट बनाने में स्क्रीन को एक स्टैक में क्रमिक रूप से व्यवस्थित किया जाता है, जिसमें शीर्ष पर सबसे बड़ा सबसे नीचे और सबसे छोटी जाली होती है। नमूना को शीर्ष स्क्रीन पर रखा जाता है और स्टैक को हिलाया जाता है यंत्रवत् समय की एक निश्चित अविध के लिए, शायद 20 मिनट। प्रत्येक स्क्रीन को हटा दिया जाता है और अलग-अलग स्क्रीन के द्रव्यमान का वजन किया जाता है वृद्धि को कुल नमूने के द्रव्यमान अंशों या द्रव्यमान प्रतिशत में परिवर्तित किया जाता है। कोई भी कण जो बेहतरीन स्क्रीन से ग्जरता है, उसे स्टैक के निचले भाग में एक पैन में पकड़ लिया जाता है। कच्चे माल या तैयार उत्पादों पर नियंत्रण के रूप में सुखी छलनी विश्लेषण किया जाता है कई उदयोगों में नियमित रूप से बाहर। इसका उपयोग अयस्कों, दुर्दम्य सामग्रियों के लिए किया जा सकता है। खनिज सम्च्चय, रंगद्रव्य, चूर्णित कोयला, साब्न, सीमेंट, छत सामग्री, प्लास्टिक मोल्डिंग पाउडर, धात् पाउडर और संक्षेप में फार्मास्युटिकल उद्योग में, कहीं भी छानना लगाया जाता है।

विवरण:

रोटैप छलनी शेकर में विभिन्न छिद्रों वाली छह छलनी की एक श्रृंखला होती है। एक एफएचपी मोटर द्वारा चलाया जाता है। चलने वाले हिस्से तेल में काम करते हैं। मशीन की स्थापना के लिए किसी विशेष आधार की आवश्यकता नहीं है। 0-60 मिनट का समय स्विच प्रदान किया गया है।

6. आवश्यक उपयोगिताएँ:

- 6.1. विद्युत आपूर्ति: एकल चरण, 220 वी एसी, 50 हर्ट्ज, 5-15 एम्पियर संयुक्त सॉकेट पृथ्वी कनेक्शन के साथ. अर्थ वोल्टेज 5 वोल्ट से कम होना चाहिए।
- 6.2. आवश्यक फर्श क्षेत्र: 2 मीटर x 1 मीटर।
- 6.3. इलेक्ट्रॉनिक वज़न तराजू: क्षमता 2 किलो (न्यूनतम गणना 1 ग्राम)।
- 6.4. फीडके लिए कच्चा माल।

7. प्रायोगिग विधि:

7.1. आरंभिक प्रक्रिया:

- 7.1.1. विभिन्न आकार के कणों का दाना मिश्रण तैयार करें।
- 7.1.2. दाना मिश्रण का वजन नोट कर लें।
- 7.1.3. छलनी को कम खुलेपन के साथ ऊपर से नीचे तक लंबवत व्यवस्थित करें स्क्रीन का आकार।
- 7.1.4. समायोजन पेंच को ढक्कन के साथ ठीक से कस लें।
- 7.1.5. ऊपरी छलनी को दाना मिश्रण से भरें।
- 7.1.6. विशेष समय अंतराल (30-60 मिनट) के लिए मशीन को चलाने के लिए टाइमर सेट करें।
- 7.1.7. बिजली की आपूर्ति चालू करें
- 7.1.8. स्क्रीनिंग पूरी होने के बाद प्रत्येक स्क्रीन के सभी नमूनों का वजन करें ठीक से और उनका वजन नोट कर लें।

7.2. समापन प्रक्रिया:

- 7.2.1. जब प्रयोग समाप्त हो जाए तो बिजली की आपूर्ति बंद कर दें।
- 7.2.2. स्क्रीन से सामग्री ठीक से हटा दें।

7.2.3. व्यवस्था हटा दीजिए, छलनी अलग कर दीजिए।

_	•		•	
8.	अवल	कन	एव	गणना:

8.1. डेटा:	
क्र.सं	चलनी की स्क्रीन ओपनिंग Soi (mm)
	0

प्रयोग में आखिरी छलनी पैन वाली होनी चाहिए और पैन का स्क्रीन ओपनिंग हमेशा शून्य होगा।

\sim	^	
X.	. 7.	अवलाकन:

M= ____ gm

अवलोकन तालिका:	
क्र.सं	Mi (gm)

8.3. **गणना:**

$$D_{pi} = \frac{S_{o(i-1)} + S_{oi}}{2}$$
 (mm) [Where i = 2, 3....]

$$m_i = \frac{M_i}{M}$$
 [Where i = 1, 2....]

गणना तालिका:		
क्र.सं	D _{pi} (mm)	m i
	*	

* प्रतीक लागू मात्रा का प्रतिनिधित्व नहीं करते हैं।

$$C_{p1} = \sum m_i$$

$$C_{pi} = C_{p(i-1)} - m_i$$
 [Where i = 2, 3....]

गणन	ा तालिका:				
क्र.सं	Soi (mm)	Mi (gm)	mi	Dpi (mm)	Срі
				*	

* प्रतीक लागू मात्रा का प्रतिनिधित्व नहीं करते हैं।

9. नामपद्धति:

नामपद्धति	स्तम्भ शीर्षक	इकाई	प्रकार
Cp1	पहली स्क्रीन के नमूने का संचयी द्रव्यमान	*	Calculated
	अंश		
Срі	स्क्रीन के नमूने का संचयी द्रव्यमान अंश i	*	Calculated
Dpi	स्क्रीन का औसत कण व्यास i	mm	Calculated
М	फ़ीड नमूने का कुल द्रव्यमान	gm	Measured
Mi	स्क्रीन की स्क्रीनिंग के बाद नमूने का	gm	Measured
	द्रव्यमान i		
mi	स्क्रीन की स्क्रीनिंग के बाद नमूने का	*	Calculated
	द्रव्यमान अंश i		
Soi	छलनी का स्क्रीन खुलना i	mm	Given
i	क्रमांक का मान	*	Given

^{*} प्रतीक इकाई रहित मात्रा का प्रतिनिधित्व करते

10. सावधानी एवं रखरखाव निर्देश:

- 10.1. यदि बिजली की आपूर्ति 180 वोल्ट से कम और 230 वोल्ट से अधिक है तो उपकरण कभी न चलाएं
- 10.2. हमेशा निर्दिष्ट आकार के फ़ीड का उपयोग करें
- 10.3. गियरबॉक्स में बोल्ट के साथ रॉड पर निशान तक तेल भरा होना चाहिए।

11. समस्या निवारण:

11.1. सेट अप की उचित सफाई और तेल लगाना आवश्यक है।

12. संदर्भ:

- 12.1. ब्राउन, जॉर्ज ग्रेंजर (1995)। इकाई संचालन. प्रथम संस्करण. एनडी: सीबीएस प्रकाशक और वितरक पीपी 10-13, 15, 18-19
- 12.2. मैककेबे, वॉरेन एल. स्मिथ, जूलियन सी. हैरियट, पीटर (2005)। की इकाई संचालन केमिकल इंजीनियरिंग। 7वाँ संस्करण. एनवाई: मैकग्रा-हिल। पीपी 971-972, 1000-1005।

	छलनी विश्लेषण और स्क्रीन की प्रभावशीलता
	छलना विश्वपण आर स्क्रान का प्रमावशालता
`	
उद्देश्य:	
एक छलनी शेकर के लि	ए विभेदक और संचयी विश्लेषण द्वारा विशिष्ट सतह क्षेत्र, आयतन सतह औसत व्यास और कण की संख्या निर्धारित
एक छलनी शेकर के लि	ए विभेदक और संचयी विश्लेषण द्वारा विशिष्ट सतह क्षेत्र, आयतन सतह औसत व्यास और कण की संख्या निर्धारित करके ईंट के लिए जाली स्क्रीन की प्रभावशीलता निर्धारित करना
एक छलनी शेकर के लि छलनी शेकर का उपयोग	
एक छलनी शेकर के लि	
एक छलनी शेकर के लि छलनी शेकर का उपयोग उपकरण/सामग्री: 1. उपकरण	करके ईंट के लिए जाली स्क्रीन की प्रभावशीलता निर्धारित करना
एक छलनी शेकर के लि छलनी शेकर का उपयोग उपकरण/सामग्री: 1. उपकरण यूनिट प्रयोगशाल	करके ईंट के लिए जाली स्क्रीन की प्रभावशीलता निर्धारित करना
एक छलनी शेकर के लि छलनी शेकर का उपयोग उपकरण/सामग्री: 1. उपकरण यूनिट प्रयोगशाल वजन तराजू	करके ईंट के लिए जाली स्क्रीन की प्रभावशीलता निर्धारित करना
एक छलनी शेकर के लि छलनी शेकर का उपयोग उपकरण/सामग्री: 1. उपकरण यूनिट प्रयोगशाल वजन तराजू स्टॉप वॉच	करके ईंट के लिए जाली स्क्रीन की प्रभावशीलता निर्धारित करना
एक छलनी शेकर के लि छलनी शेकर का उपयोग उपकरण/सामग्री: 1. उपकरण यूनिट प्रयोगशाल वजन तराजू	करके ईंट के लिए जाली स्क्रीन की प्रभावशीलता निर्धारित करना
एक छलनी शेकर के लि छलनी शेकर का उपयोग उपकरण/सामग्री: 1. उपकरण यूनिट प्रयोगशाल वजन तराजू स्टॉप वॉच 2. सामग्री	करके ईंट के लिए जाली स्क्रीन की प्रभावशीलता निर्धारित करना
एक छलनी शेकर के लि छलनी शेकर का उपयोग उपकरण/सामग्री: 1. उपकरण यूनिट प्रयोगशाल वजन तराजू स्टॉप वॉच 2. सामग्री	करके ईंट के लिए जाली स्क्रीन की प्रभावशीलता निर्धारित करना
एक छलनी शेकर के लि छलनी शेकर का उपयोग उपकरण/सामग्री: 1. उपकरण यूनिट प्रयोगशाल वजन तराजू स्टॉप वॉच 2. सामग्री ईट	करके ईंट के लिए जाली स्क्रीन की प्रभावशीलता निर्धारित करना

छलनी विश्लेषण:

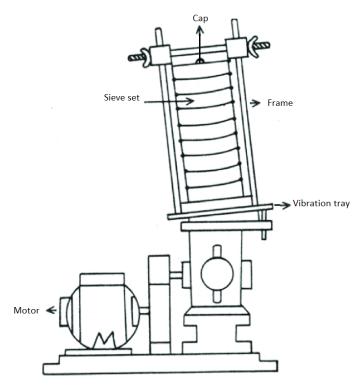


Fig. 1 Schematic of Gyratory Sieve Shaker

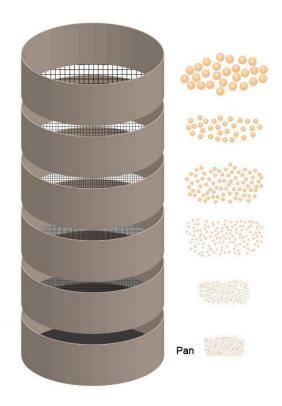


Fig. 2 Sieving Operation

कण को केवल आकार के अनुसार अलग करने की विधि को स्क्रीनिंग कहा जाता है। औद्योगिक स्क्रीन धातु की सलाखों, बुने हुए तार के कपड़े, रेशम बोल्टिंग कपड़े, छिद्रित या स्लॉटेड धातु प्लेटों से बनाई जाती हैं। इसका उपयोग विशिष्ट कण आकार सीमाओं को पूरा करने के लिए वाणिज्यिक या प्रक्रिया ग्रेड का उत्पादन करने के लिए किया जाता है।

आदर्श स्क्रीन वह है जो फीड मिश्रण को इस तरह से अलग करती है कि ओवरफ्लो में सबसे छोटा कण अंडरफ्लो में सबसे बड़े कण से थोड़ा बड़ा होता है। इसकी दक्षता 100% है

क्षमता पदार्थ का वह द्रव्यमान है जिसे प्रति इकाई समय में स्क्रीन के एक इकाई क्षेत्र में डाला जा सकता है।

विश्लेषण करने के लिए टायलर मानक स्क्रीन श्रृंखला या यूएस छलनी श्रृंखला की मानक स्क्रीन का उपयोग किया जाता है

छलनी विश्लेषण गणना

अनियमित आकार के कणों के लिए,

$$V_p \propto d_p^3$$

$$V_p = ad_p^3$$

भी,

$$S_p \propto 6d_p^2$$

$$S_p = 6bd_p^2$$

अब,

$$\frac{S_p}{V_p} = \frac{6}{ad_p}$$

अनियमित आकार के कण के लिए,

$$\frac{S_p}{V_p} = \frac{6b}{ad_p} = \frac{6\lambda}{d_p}$$

जहाँ $\lambda = 6/a$; $1/\lambda$ को गोलाकारता कहा जाता है।

छलनी तार की जाली से बने निश्चित आकार के छिद्र होते हैं। छलनी विश्लेषण में हम प्रत्येक स्क्रीन पर बचे कणों की मात्रा का पता लगाने की कोशिश करते हैं। स्क्रीन को वांछित पृथक्करण के आधार पर रखा जाता है। A_w सतह क्षेत्र/ग्राम पर विशिष्ट सतह क्षेत्र है और N_w कणों की संख्या/ग्राम है।

हम वह जानते हैं,

$$V_p = ad_p^3$$

N कणों के लिए,

$$NV_p = \frac{m}{\rho}$$

जहाँ m कुल द्रव्यमान है और ho कणों का औसत घनत्व है।

इस तरह,

$$\frac{1}{aS_p[\frac{\Phi_1}{d_{p1}^3} + \frac{\Phi_1}{d_{p2}^3} + \dots]} = \frac{N}{M}$$

$$N_w = \frac{N}{M} = \frac{1}{aS_p \sum_{i=1}^{n} \frac{\Phi_i}{d_{ni}^3}}$$

जहाँ, $\Phi_{i=1}$ का द्रव्यमान अंश

इसी प्रकार,

$$\frac{S_p}{V_p} = \frac{6\lambda}{d_p}$$

$$S_p = \frac{6\lambda V_p}{d_p}$$

कुल सतह क्षेत्र,
$$A=NS_p=rac{6\lambda}{d_p} imes NV_p=rac{6\lambda M}{
ho_p d_p}$$

$$A_w = \frac{A}{M} = \frac{6\lambda}{S_p \sum_{i=1}^{n} \frac{\Phi_i}{d_{ni}^3}}$$

$_{\rm W}$ और $N_{\rm W}$ ज्ञात करने के लिए दो तरीकों का उपयोग किया जाता है

विभेदक स्क्रीन विश्लेषण को सारणीबद्ध रूप में रिपोर्ट किया जा सकता है। किसी विशेष स्क्रीन पर रखी गई सामग्री के औसत कण आकार की गणना अंश प्राप्त करने के लिए उपयोग किए जाने वाले दो स्क्रीन उद्धाटन के अंकगणितीय माध्य के रूप में की जाती है।

संचयी विश्लेषण, प्रत्येक स्क्रीन पर रखी गई सामग्री के व्यक्तिगत भार अंशों को संचयी रूप से जोड़कर, सबसे बड़े जाल पर रखी गई सामग्री से शुरू करके और अंतिम जोड़ी जाने वाली स्क्रीन के स्क्रीन उद्घाटन के विरुद्ध संचयी योगों को सारणीबद्ध या प्लॉट करके, विभेदक विश्लेषण से प्राप्त किया जाता है।

स्क्रीन की प्रभावशीलता

संचयी विश्लेषण प्रत्येक स्क्रीन पर रखी गई सामग्री के अलग-अलग वजन अंशों को संचयी रूप से जोड़कर विभेदक विश्लेषण से प्राप्त किया जाता है, जो सबसे बड़े जाल पर रखी गई सामग्री से शुरू होता है और अंतिम जोड़ी जाने वाली स्क्रीन के रिटेनिंग स्क्रीन के उद्घाटन के विरुद्ध संचयी योगों को सारणीबद्ध या प्लॉट करता है। x जाल स्क्रीन के लिए प्रभावशीलता है,

$$E = \frac{(x_F - x_B)(x_D - x_F)(x_D)(1 - x_B)}{(x_D - x_B)(x_D - x_B)(x_F)(1 - x_F)} \times 100$$

जहाँ X F = फ़ीड का द्रव्यमान अंश

X D = अतिप्रवाह का द्रव्यमान अंश

एक्स 🗐 = अंडरफ़्लो का द्रव्यमान अंश

अवलोकन :

_		
1	फ़ीड की मात्रा	= ग्राम
	% ମାର ଏହା ମ ାସା	— yı ң

2. आकार कारक (λ)

3. कण घनत्व (ho_p) = ग्राम/सेमी 3

अवलोकन तालिका:

विभेदक और संचयी दृष्टिकोण के लिए (तालिका संख्या 1):

क्र. सं.	जाल नं.	स्क्रीन खोलना डी ्री (मिमी)	औसत कण $\overline{D_p}$ (मिमी)	द्रव्यमान (ग्राम)	द्रव्यमान अंश (X i)	(x _i / d _p) (1/मिमी)	(x i /d p ³) (1/मिमी ³)
1	4						
2	6						
3	8						
4	12						
5	14						
6	18						
7	30						
8	100						
9	120						
10	150						
11	कड़ाही						
				Σ	Σ	Σ	Σ

स्क्रीन की प्रभावशीलता के लिए (तालिका संख्या 2):

क्र. सं.	जाल नं.	फ़ीड अंश (संचयी)	ओवरसाइज़ अंश (संचयी)	अंडरसाइज़ अंश (संचयी)
1	4			
2	6			

3	8		
4	12		
5	14		
6	18		
7	30		
8	100		
9	120		
10	150		
11	कड़ाही		

गणना:

विभेदक स्क्रीन विश्लेषण के लिए:

1. विशिष्ट सतह क्षेत्र (A_w) ,

$$A_w = \frac{A}{M} = \frac{6\lambda}{\rho_p \sum_{i=1}^{n} \frac{x_i}{D_{pi}}}$$

= _____ सेमी 2 /ग्राम

2. फ़ीड के लिए आयतन सतह औसत व्यास ($\overline{D_S}$)

$$\overline{D_s} = \frac{6\lambda}{A_w \rho_p}$$

= _____ सेमी

3. मिश्रण में कणों की संख्या/इकाई द्रव्यमान

$$N = \frac{1}{\lambda \rho_p \sum_{1}^{n} \frac{x_i}{D_{pi}^3}}$$

संचयी स्क्रीन विश्लेषण के लिए:

1. विशिष्ट सतह क्षेत्र (A_w) ,

$$A_w = \frac{A}{M} = \frac{6\lambda}{\rho_p \int_0^1 \frac{x_i}{D_{pi}}}$$

- = _____ सेमी 2 /ग्राम
 - 2. फ़ीड के लिए आयतन सतह औसत व्यास ($\overline{D_S}$)

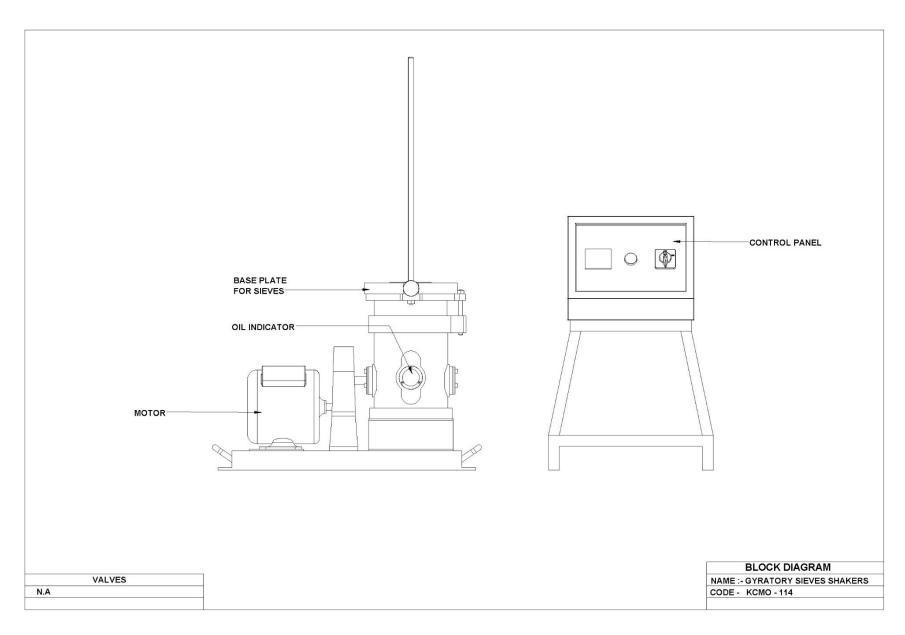
$$\overline{D_s} = \frac{6\lambda}{A_w \rho_p}$$

- = _____ सेमी
 - 3. मिश्रण में कणों की संख्या/इकाई द्रव्यमान

$$N = \frac{1}{\lambda \rho_p \int_0^1 \frac{x_i}{D_{pi}^3}}$$

स्क्रीन की प्रभावशीलता के लिए: मेष 14

$$E = \frac{(x_F - x_B)(x_D - x_F)(x_D)(1 - x_B)}{(x_D - x_B)(x_D - x_B)(x_F)(1 - x_F)} \times 100$$


ग्राफ़:

छलनी विश्लेषण के लिए प्लॉट $1/D_{pi} v/sx_i$ और $1/dp_i^3 v/sx_i$

परिणाम:

निष्कर्ष:

ब्लॉक आरेख:

आवश्यक सुविधाएं:

- \circ विद्युत आपूर्ति: एकल चरण, 220 वी एसी, 50 हर्ट्ज, 5-15 एम्प संयुक्त सॉकेट पृथ्वी कनेक्शन के साथ।
- o फर्श क्षेत्र: 1.0 मी x 0.5 मी
- ० ईंट सामग्री
- इलेक्ट्रॉनिक तौल संतुलन.

प्रायोगिक प्रक्रिया:

शुरुआत प्रक्रिया:

- 1. छलनी के सबसे ऊपरी छलनी पर 100 ग्राम ईंट का चूर्ण लें।
- 2. समायोजन स्क्रीन को ढक्कन सहित ठीक से कस लें।
- 3. मशीन को चलाने के लिए टाइमर को विशेष अंतराल (5-10 मिनट) पर सेट करें।
- 4. बिजली की आपूर्ति चालू करें.
- 5. छनाई पूरी होने के बाद प्रत्येक छलनी के सभी नमूनों का वजन ठीक से तौलें और वजन नोट कर लें।

समापन प्रक्रिया:

- 1. जब प्रयोग समाप्त हो जाए तो बिजली की आपूर्ति बंद कर दें।
- 2. स्क्रीन से सामग्री को ठीक से हटाएँ।
- 3. व्यवस्था हटाओ.

सावधानी और रखरखाव निर्देश:

- 1. यदि बिजली की आपूर्ति 180 वोल्ट से कम और 230 वोल्ट से अधिक हो तो उपकरण कभी न चलाएं।
- 2. हमेशा निर्दिष्ट आकार फ़ीड का उपयोग करें.
- 3. गियरबॉक्स को बोल्ट के साथ रॉड पर निशान तक तेल से भरा जाना चाहिए।

समस्या निवारण:

1. सेटअप की उचित सफाई और तेल लगाना आवश्यक है।

परिशिष्ट

क्र. सं.	जाल नं. (बीएसएस)	आकार, मिमी
1	4	4
2	6	2.8
3	8	2
4	12	1.4
5	14	1.18
6	18	0.85
7	30	0.5
8	100	0.15
9	120	0.12
10	150	0.106

बॉल मिल

(परिवर्तनीय गति)

1. उद्देश्य:

बॉल मिल के संचालन का अध्ययन करना।

2. लक्ष्य:

- 2.1. ज्ञात कार्य सूचकांक की किसी सामग्री को पीसने के लिए बॉल मिल की दक्षता की गणना करना (Wi)।
- 2.2. बॉल मिल की बिजली खपत पर आरपीएम के प्रभाव का अध्ययन करना।
- 2.3. बॉल मिल की क्रांतिक गति (nc) की गणना करने के लिए।

3. परिचय:

आम तौर पर बॉल मिलों को द्वितीयक आकार कटौती उपकरण के रूप में जाना जाता है। बॉल मिल कई प्रकार और आकारों में बनाई जाती है और इसका उपयोग कई प्रकार के सॉफ्ट पर किया जा सकता है किसी भी अन्य प्रकार की मशीन की तुलना में सामग्री। फ़ीड गैर-अपघर्षक होना चाहिए और साथ में 1.5 या उससे कम की कठोरता होनी चाहिए। बॉल मिल में एक बेलनाकार खोल होता है जो धीरे-धीरे घूमता है क्षैतिज अक्ष और इसके आयतन का लगभग 1/4 भाग ठोस पीसने वाले माध्यम (अर्थात्) से भरा जाता है (यानी धातु की बॉल आदि)। जब बॉल मिल को घुमाया जाता है, तो पीसने वाले तत्व (बॉल) को ले जाया जाता है, खोल के किनारे तक लगभग शीर्ष तक, जहाँ से; वे नीचे के कणों पर गिरते हैं गुरुत्वाकर्षण। बॉल मिल में अधिकांश आकार में कमी प्रभाव द्वारा की जाती है। ऊर्जा का विस्तार हुआ पीसने वाली इकाइयों को उठाने में कणों के आकार को कम करने में उपयोग किया जाता है। बॉल मिल कर सकते हैं 12 मिमी या उससे कम का फ़ीड आकार स्वीकार करें और 50µm की सीमा में उत्पाद का आकार वितरित करें। बॉल मिल की गति 60 से 70 RPM के बीच होती है। जैसे-जैसे उत्पाद का आकार बारीक होता जाता है मिल की क्षमता कम होने से ऊर्जा की आवश्यकता बढ़ जाती है।

4. सिद्धांत:

बॉल मिल में एक बेलनाकार खोल होता है जो क्षेतिज अक्ष के चारों ओर धीरे-धीरे घूमता है और भर जाता है ठोस पीसने वाले माध्यम (धातु की गेंदें, लकड़ी की गेंदें या रबर की गेंदें) के साथ। बॉल मिल में सबसे ज्यादा आकार में कमी प्रभाव द्वारा की जाती है।

बॉल मिल की क्रांतिक गति (nc):

$$n_c = \frac{1}{2\pi} \times \sqrt{\frac{g}{R - r}} \tag{1}$$

जहाँ nc क्रांतिक घूणीं गित है, R बॉल मिल की त्रिज्या है और r इसकी त्रिज्या है। मिल के प्रभावी संचालन के लिए मिल को 65 से 80% क्रिटिकल रफ़्तार पर संचालित किया जाना चाहिए। जैसे-जैसे उत्पाद का आकार महीन होता जाता है, मिल की क्षमता और ऊर्जा कम होती जाती है आवश्यकता बढ़ जाती है। जैसे ही मिल की गित nc से अधिक हो जाती है (अर्थात मिल सेंट्रीफ्यूज कर रही है आकार घटाने की क्षमता घट जाती है।)

बांड क्रशिंग कानून और कार्य सूचकांक:

कुचलने और पीसने के लिए आवश्यक शक्ति का अनुमान लगाने की एक अधिक यथार्थवादी विधि है

$$\frac{P}{m} = \frac{K_b}{\sqrt{D_p}} \qquad -----(2)$$

जहाँ Kb एक स्थिरांक है जो मशीन के प्रकार और सामग्री पर निर्भर करता है कुचला हुआ, डीपी मिलीमीटर में, पी किलोवाट में और मी टन प्रति घंटे में है।

Wi को किलोवाट घंटे प्रति टन फ़ीड में सकल ऊर्जा आवश्यकताओं के रूप में परिभाषित किया गया है एक बहुत बड़े फ़ीड को कम करने की आवश्यकता है। यह परिभाषा Kb और Wi के बीच संबंध की ओर ले जाती है।

$$K_b = 0.3162 * W_i$$
 -----(3)

यदि फ़ीड का 80 प्रतिशत DPA मिमी के जाल आकार से गुजरता है और उत्पाद का 80 प्रतिशत DPB मिमी का जाल, यह समीकरण (1) और (2) से अनुसरण करता है।

$$\frac{P}{m} = 0.3162 \times W_i \left(\frac{1}{\sqrt{D_{Pb}}} - \frac{1}{\sqrt{D_{Pa}}} \right)$$

$$P = m \times 0.3162 \times W_i \left(\frac{1}{\sqrt{D_{Pb}}} - \frac{1}{\sqrt{D_{Pa}}} \right)$$
 -----(4)

5. विवरण:

वर्तमान प्रयोगशाला बॉल मिल में मोटे स्टील से बना एक खोल होता है। इसमें बॉल शामिल है। घुमावों की संख्या ज्ञात करने के लिए एक क्रांति काउंटर प्रदान किया गया है। सुरक्षा उद्देश्यों के लिए गियर पर एक गार्ड उपलब्ध कराया गया है। सामग्री को खिलाने और उतारने के लिए खोल का केंद्र में खोलने और कसने की व्यवस्था प्रदान की गई है। क्षैतिज गियरबॉक्स के साथ युग्मित पावर HP मोटर द्वारा दी जाती है। RPM को बदलने के लिए ड्राइव प्रदान की जाती है। एक आरपीएम सूचक सेट-अप में प्रॉक्सिमिटी स्विच प्रदान किया गया है।

6. आवश्यक उपयोगिताएँ:

- 6.1. बिजली आपूर्ति: एकल चरण, 220 वी एसी, 50 हर्ट्ज, 5-15 एम्पियर संयुक्त सॉकेट पृथ्वी कनेक्शन के साथ
- 6.2. आवश्यक फर्श क्षेत्र 1.5 मीटर x 1 मीटर।
- 6.3. फ़ीड के लिए कच्चा माल (आकार 5-8 मिमी)।
- 6.4. विश्लेषण के लिए छलनी शेकर के साथ छलनी का सेट।

7. प्रायोगिग विधि:

7.1. आरंभिक प्रक्रिया:

- 7.1.1. छलनी शेकर का उपयोग करके फ़ीड के लिए एक समान आकार की सामग्री तैयार करें (लगभग 5 मिमी से 8 मिमी)।
- 7.1.2. दिए गए गोले से खोल भरें।
- 7.1.3. स्निश्चित करें कि पैनल पर दिए गए सभी स्विच बंद स्थिति में हैं।
- 7.1.4. अब म्ख्य बिजली आपूर्ति चालू करें।
- 7.1.5. क्रांति काउंटर को शून्य स्थिति पर सेट करें।
- 7.1.6. मशीन चलाने के लिए एमसीबी और फिर स्टार्टर चालू करें।

- 7.1.7. 10 या 20 का समय निर्धारित कर मशीन को बिना लोड वाली स्थिति में चलायें ऊर्जा मीटर पर स्पंदन।
- 7.1.8. स्टार्टर और फिर एमसीबी बंद कर दें।
- 7.1.9. बॉल मिल में फ़ीड भरें।
- 7.1.10. मशीन चलाने के लिए एमसीबी और फिर स्टार्टर चालू करें।
- 7.1.11. 10 या 20 का समय निर्धारित कर मशीन को लोड स्थिति में चलायें ऊर्जा मीटर पर स्पंदन।
- 7.1.12. भिन्न RPM के लिए प्रयोग दोहराएँ।

7.2. समापन प्रक्रिया:

7.2.1. जब प्रयोग समाप्त हो जाए तो बिजली की आपूर्ति बंद कर दें।

8. अवलोकन एवं गणना:

8.1. डेटा:
बॉल की त्रिज्या r = 0.011 m
बॉल मिल की त्रिज्या R = 0.1375 m
गुरुत्वीय त्वरण g = 9.81 m/sec²
ऊर्जा मीटर स्थिरांक EMC = 3200 पल्स/किलोवाट

कुछ सामान्य खनिजों के कार्य सूचकांक				
सामग्री	कार्य सूचकांक (Wi)			
बॉक्साइट (sp.gr =2.20)	8.78			
सीमेंट क्लिमकर (एसपी.जीआर =3.15)	13.45			
कोयला (sp.gr =1.40)	13.00			
कोक (एसपी.जीआर =1.31)	15.13			

बजरी (sp.gr =2.66)	16.06
जिप्सम चट्टान (एसपी.जीआर =2.69)	6.73
चूना पत्थर (sp.gr =2.66)	12.74
क्वार्टज़ (sp.gr =2.65)	13.57

अवलोकन:

Wf = ____ kg

tc = ____ sec

Dpa = ____ mm

Dpb = ____ mm

8.2. अवलोकन तालिका:					
P1	tp1 (sec)	P1	tp2 (sec)		

8.3. **गणना:**

$$P_{NL} = \frac{P_1 \times 3600}{t_{p1} \times EMC} \text{ (kW)}$$

$$P_{L} = \frac{P_2 \times 3600}{t_{p2} \times EMC} \text{ (kW)}$$

$$P_{act} = P_L - P_{NL}$$
 (kW)

$$m = \frac{W_f}{t_c} \times \frac{3600}{1000}$$
 (tons/h)

$$K_b = 0.3162 \times W_i$$
 (kWh/tons)

$$P_{cal} = m \times K_b \times \left[\frac{1}{\sqrt{D_{Pb}}} - \frac{1}{\sqrt{D_{Pa}}} \right]$$
 (kW)

$$\eta = \frac{P_{act}}{P_{cal}} \times 100 \text{ (\%)}$$

$$n_c = \frac{1}{2\pi} \times \sqrt{\frac{g}{R-r}} \times 60$$
 (RPM)

9. नामपद्धति:

नामपद्धति	स्तम्भ शीर्षक	इकाई	प्रकार
Dpa	औसत फ़ीड आकार	mm	Measured
Dpb	औसत उत्पाद का आकार	Mm	Measured
EMC	ऊर्जा मीटर स्थिरांक	Pulses/kWh	Given
g	गुरुत्वाकर्षण के कारण त्वरण	m/sec²	Given
Kb	बांड स्थिरांक	kWh/tons	Calculated
m	फीड दर	tons/h	Calculated
Nc	बॉल मिल की क्रांतिक गति	RPM	Calculated
P1	बिना लोड की स्थिति में गणना की गई	*	Measured
	दालों की संख्या		

P2	भरी हुई स्थिति में गिनती की गई दालों की	*	Measured
	संख्या		
Pact	कुचलने के लिए आवश्यक वास्तविक शक्ति	kW	Calculated
Pcal	कुचलने के लिए आवश्यक शक्ति की	kW	Calculated
	गणना		
PL	भरी ह्ई स्थिति में मशीन द्वारा बिजली की	kW	Calculated
	खपत		
PNL	मशीन द्वारा बिना लोड की स्थिति में	kW	Calculated
	बिजली की खपत		
R	बॉल मिल की त्रिज्या	m	Given
r	बॉल की त्रिज्या	m	Given
tc	कुचलने का समय	sec	Measured
tp1	P1 दालों के लिए समय	sec	Measured
tp2	P2 दालों के लिए समय	sec	Measured
Wf	लिए गए फीड का वजन	kg	Measured
Wi	सामग्री का कार्य सूचकांक	kWh/tons	Given
η	कुचलने की दक्षता	%	Calculated

^{*} प्रतीक इकाई रहित हैं।

10. सावधानी एवं रखरखाव निर्देश:

- 10.1. यदि बिजली की आपूर्ति 180 वोल्ट से कम या 230 वोल्ट से अधिक हो तो उपकरण कभी न चलाएं
- 10.2. प्रारंभ से पहले क्रांति काउंटर शून्य होना चाहिए।
- 10.3. बॉल मिल कपलिंग को जोड़ने के बाद कपलिंग फिक्सिंग पिन को लगाया जाना चाहिए।
- 10.4. प्रयोग के दौरान कपलिंग को जोड़ें या अलग न करें।

11. समस्या निवारण:

11.1. यदि मोटर काम नहीं कर रही है तो बिजली कनेक्शन की जांच करें।

12. संदर्भ:

12.1. मैककेबे, वॉरेन एल. स्मिथ, जूलियन सी. हैरियट, पीटर (2005)। की इकाई संचालन केमिकल इंजीनियरिंग। 7वाँ संस्करण. एनवाई: मैकग्रा-हिल। पीपी 985-986, 992-993।

फ्रॉथ प्लवन कोशिका

1. उद्देश्य:

फ्राँथ उत्प्लावन कोशिका के कार्य सिद्धांत का अध्ययन करना।

2. लक्ष्य:

कोयला-रेत मिश्रण से फ्रॉथ प्लवन सेल में कोयले की प्रतिशत पुनर्प्राप्ति की गणना करना।

3. परिचय:

फ्राँथ प्लवन कोशिकाओं का उपयोग हल्के घनत्व वाले कणों को उच्चतर घनत्व कण से अलग करने के लिए किया जाता है, उनकी सतह तनाव गुणों के आधार पर यानी सामंजस्य और आसंजन गुण। प्लवनशीलता सेल वह उपकरण है जिसमें सामग्री वास्तव में अवशिष्ट अवशेषों से अलग या तैरता होती है। इसमें एक पोत या टैंक शामिल होता है जो कि एक सिरे पर फीड, फ्राँथ हटाने के लिए एक ओवरफ्लो और दूसरे सिरे पर टैल के लिए एक डिस्चार्ज विपरीत छोर, फ्राँथ निर्माण और हलचल के लिए हवा लाने के प्रावधान के साथ प्रदान किया जाता है।

4. सिद्धांत:

प्लवन एक ऐसा ऑपरेशन है जिसमें एक विधि का उपयोग करके किसी एक घटक को अलग किया जाता है जो सतह तनाव गुणों शामिल सामग्री में अंतर पर निर्भर करता है। इस विधि में बारीक विभाजित ठोस पदार्थों के मिश्रण को निलंबित करना शामिल है पानी में जो वातित होता है तािक हवा के बुलबुले इनमें से किसी एक से अधिमानतः चिपक सकें घटक: जिसे गीला करना किठन होता है तथा इसका प्रभावी स्पष्ट घनत्व होता है इस हद तक कम हो जाता है कि यह फ्राँथ के रूप में सतह पर आ जाता है, और एक जो अधिक आसानी से अवशोषित हो जाता है, जल चरण पानी से घिर जाता

है और डूब जाता है। यदि एक तरल में उपयुक्त फ्राँथ एजेंट मिलाया जाता है, तो कण सतह पर बने रहेंगे एक स्थिर फ्राँथ का साधन जब तक उन्हें डिस्चार्ज नहीं किया जा सकता। फेन प्लवनशीलता का व्यापक रूप से धातुकर्म उद्योगों में उपयोग किया जाता है, जहां आम तौर पर अयस्क को गीला करना मुश्किल होता है और अवशिष्ट मिट्टी आसानी से गीली हो जाती है।

5. विवरण:

फ्राँथ प्लवन कोशिका में शीर्ष पर खुला एक उत्तेजित बर्तन होता है। कक्ष में, शाफ्ट से जुड़ा एक प्रित करनेवाला एक स्थिर विसारक में तय किया गया है। आंदोलनकारी रास्ता को हवा प्रदान की जाती है। उपकरण को चलाने के लिए मोटर दी गई है। संग्राहक लेपित खनिज कण उभरते हुए बुलबुलों से चिपक जाते हैं और उन्हें हटाने के लिए कोशिका के शीर्ष पर झाग उत्पाद टैंक में ले जाया जाता है। जल निकासी के उद्देश्य से वाल्व प्रदान किया गया है।

6. आवश्यक उपयोगिताएँ:

- 6.1. विद्युत आपूर्तिः एकल चरण, 220 वी एसी, 50 हर्ट्ज, 5-15 एम्पियर संयुक्त सॉकेट पृथ्वी कनेक्शन के साथ।
- 6.2. संपीड़ित वाय् आपूर्ति: @ 1 सीएमएच 2 kg/cm² पर।
- 6.3. जल आपूर्ति (प्रारंभिक भराव)।
- 6.4. फर्श ड्रैन की आवश्यकता है।
- 6.5. आवश्यक फर्श क्षेत्र: 1.5 मीटर x 1 मीटर।
- 6.6. इलेक्ट्रॉनिक्स वज़न संतुलन: क्षमता 2 किलो, न्यूनतम गिनती 1 ग्राम।
- 6.7. उत्पाद को स्खाने के लिए ओवन।
- 6.8. रसायन:-

कोयला : 100 ग्राम

रेत : 900 ग्राम

पाइन तेल : 10 मि.ली

मिट्टी का तेल : 10 मि.ली

7. प्रायोगिग विधि:

7.1. आरंभिक प्रक्रिया:

- 7.1.1. कोयले (100 ग्राम) और रेत (900 ग्राम) का ज्ञात वजन लें और कोयले का वजन नोट करें।
- 7.1.2. उपरोक्त सामग्री का दाना मिश्रण तैयार करें।
- 7.1.3. वांछित अन्पात में पाइन तेल और मिट्टी के तेल का मिश्रण तैयार करें।
- 7.1.4. वाल्व V1 बंद करें।
- 7.1.5. फ़ीड मिश्रण को प्लवन कक्ष में रखें और तब तक पानी डालें जब तक वह प्लवन कक्ष से बाहर न आ जाए।
- 7.1.6. संपीड़ित वायु आपूर्ति को कनेक्ट करें।
- 7.1.7. स्टिरर चालू करें।
- 7.1.8. बिजली की आपूर्ति चालू करें
- 7.1.9. प्लवन कक्ष में पाइन तेल और मिट्टी के तेल का मिश्रण डालें।
- 7.1.10. घोल की सतह पर कोयला प्राप्त होने तक प्रतीक्षा करें।
- 7.1.11. धातु की पट्टी की सहायता से कोयला एकत्र करें।
- 7.1.12. इसे फिल्टर कपड़े से छान लें।
- 7.1.13. इसे स्खाकर तौल लें।
- 7.1.14. कोयले का वजन नोट करें।
- 7.1.15. पाइन तेल और मिट्टी के तेल के भिन्न मिश्रण अनुपात के लिए प्रयोग दोहराएँ।

7.2. समापन प्रक्रिया:

- 7.2.1. जब प्रयोग समाप्त हो जाए तो हिलानेवाला बंद कर दें।
- 7.2.2. बिजली की आपूर्ति बंद कर दें।
- 7.2.3. संपीड़ित वायु आपूर्ति बंद करें।
- 7.2.4. वाल्व V1 खोलकर बर्तन से पानी निकालें।

8. अवलोकन एवं गणना:

8.1. अवलोकन तालिका:								
क्र.सं.	P (ml)	K (ml)	WF (gm)	WP (gm)				

8.2. गणना:

$$R = \frac{W_P}{W_F} \times 100 \text{ (\%)}$$

क्र.सं.	R (%)

9. नामपद्धति:

नामपद्धति	स्तंभ शीर्षक	इकाई	प्रकार
K	मिट्टी के तेल की मात्रा	ml	Measured
Р	पाइन तेल की मात्रा	ml	Measured
R	कोयले की प्रतिशत वस्ली	%	Calculated
WF	चारे में कोयले का वजन	gm	Measured
W P	फ्रॉथ उत्प्लावन के बाद प्राप्त कोयले का	gm	Measured
	वजन		

10. सावधानी एवं रखरखाव निर्देश:

- 10.1. यदि बिजली की आपूर्ति 180 वोल्ट से कम और 230 वोल्ट से अधिक है तो उपकरण कभी न चलाएं
- 10.2. ड्रैन के वाल्व को ठीक से बंद कर दें।
- 10.3. उत्पाद को नियमित रूप से कलेक्टर में एकत्रित करें।
- 10.4. स्टिरर की गति अधिक नहीं होनी चाहिए।

11. समस्या निवारण:

11.1. यदि पंप जाम हो जाए तो पंप का पिछला कवर खोलें और शाफ्ट को मैन्युअल रूप से घुमाएं।

12. संदर्भ:

- 12.1. कॉल्सन, जे एम और रिचर्डसन, जे एफ (1991)। केमिकल इंजीनियरिंग खंड-
 - 2. चौथा संस्करण. रा: एशियन ब्क्स प्रा. लिमिटेड पीपी 47-51
- 12.2. ब्राउन, जॉर्ज ग्रेंजर (1995)। इकाई संचालन. प्रथम संस्करण. एनडी: सीबीएस प्रकाशक और वितरक. पीपी 99-103

चक्रवात विभाजक

1. उद्देश्य:

चक्रवात विभाजक के संचालन का अध्ययन करना।

2. लक्ष्य:

- 2.1. किसी दिए गए चक्रवात विभाजक की संग्रह दक्षता की गणना करने के लिए।
- 2.2. संग्रह दक्षता पर इनलेट गैस वेग के प्रभाव का अध्ययन करना।

3. परिचय:

चक्रवात केन्द्रापसारक बल का उपयोग करने वाले गैस-ठोस विभाजक के प्रमुख प्रकार हैं, और व्यापक रूप से उपयोग किया जाता है। वे मूलतः सरल निर्माण हैं; चौड़े से बनाया जा सकता है सामग्री की श्रेणी और उच्च तापमान और दबाव संचालन के लिए डिज़ाइन की गई। चक्रवात ठोस पदार्थों को तरल पदार्थों से अलग करने के लिए भी बड़े पैमाने पर उपयोग किया जाता है, विशेष रूप से इस उद्देश्य वर्गीकरण के लिए।

4. सिद्धांत:

धूल या गैसों से धुंध को अलग करने के लिए चक्रवात सबसे व्यापक रूप से इस्तेमाल किया जाने वाला केन्द्रापसारक पृथक्करण उपकरण है। इसमें एक शंक्वाकार तल, एक स्पर्शरेखीय इनलेट वाला शीर्ष के निकट एक उध्वीधर सिलेंडर होता है, और शंकु के निचले भाग में धूल के लिए एक आउटलेट। आने वाली धूल से लदी हुई हवा चक्रवात के बेलनाकार शरीर के चारों ओर और नीचे एक सिप्ल पथ में यात्रा करती है। भंवर में विकसित केन्द्रापसारक बल कणों को रेडियल रूप से दिशा की ओर ले जाता है, और दीवार तक पहुंचने वाले कण शंकु में नीचे खिसक जाते हैं और एकत्रित हो जाते हैं। चक्रवात मूल रूप से एक निपटान उपकरण है जिसमें एक मजबूत केन्द्रापसारक बल, रेडियल रूप से कार्य करता है इसका उपयोग उध्वीधर रूप से कार्य करने वाले अपेक्षाकृत कमजोर ग्रुत्वाकर्षण बल के स्थान पर किया जाता है।

विवरण:

सेटअप में आई.डी. ब्लोअर शामिल जो चक्रवात विभाजक के डिस्चार्ज पक्ष से जुड़ा हुआ है। हवा के प्रवाह को मापने के लिए मैनोमीटर के साथ फ्लो मीटर प्रदान किया जाता है। ठोस कण एकत्र के लिए कलेक्टर को प्रदान किया जाता है। प्रवाह नियंत्रण के लिए प्रवाह नियंत्रण वाल्व और बाय पास वाल्व प्रदान किए जाते हैं।

6. आवश्यक उपयोगिताएँ:

- 6.1. बिजली आपूर्ति: एकल चरण, 220 वी एसी, 50 हर्ट्ज, 5-15 एम्पियर संयुक्त सॉकेट पृथ्वी कनेक्शन के साथ. अर्थ वोल्टेज 5 वोल्ट से कम होना चाहिए।
- 6.2. आवश्यक फर्श क्षेत्र: 2 मीटर x 1.0 मीटर।
- 6.3. इलेक्ट्रॉनिक्स वज़न संत्लन: क्षमता 2 किलो (न्यूनतम गिनती 1 ग्राम)
- 6.4. चारे के लिए कच्चा माल (सीमेंट की धूल, महीन धूल, फ्लाई ऐश 0.5 किग्रा)

7. प्रायोगिग विधि:

7.1. आरंभिक प्रक्रिया:

- 7.1.1. स्थिरांक के साथ सीमेंट की धूल या महीन रेत या फ्लाई ऐश का फीडस्टॉक तैयार करें औसत कण आकार।
- 7.1.2. चारे के कण का वजन और आकार नोट कर लें।
- 7.1.3. बिजली की आपूर्ति चालू करें।
- 7.1.4. चक्रवात विभाजक प्रारंभ करें।
- 7.1.5. प्रवाह नियंत्रण वाल्व V1 और बाय पास वाल्व V2 को समायोजित करके वायु के प्रवाह की दर को ठीक करें।
- 7.1.6. मैनोमीटर रीडिंग नोट करें।
- 7.1.7. वाल्व खोलकर धूल के कणों को खिलाएं।
- 7.1.8. नीचे से कण एकत्र करें।
- 7.1.9. चक्रवात के तल से एकत्रित कणों का भार मापें।
- 7.1.10. विभिन्न कण आकार के लिए प्रयोग दोहराएँ।
- 7.1.11. वायु की भिन्न प्रवाह दर के लिए प्रयोग दोहराएँ।

7.2. समापन प्रक्रिया:

7.2.1. जब प्रयोग समाप्त हो जाए तो बिजली की आपूर्ति बंद कर दें।

8. अवलोकन एवं गणना:

8.1. डेटा:
गुरुत्वीय त्वरण g = 9.81 m/s²
पिटोट ट्यूब के लिए पाइप का व्यास d = 0.042 m
मैनोमेट्रिक द्रव का घनत्व ρm = 1000 kg/m³
वायु का घनत्व ρa = 1.21 kg/m³
पिटोट ट्यूब Cv का ग्णांक = 0.98

8.2. अवलोकन तालिका:										
क्र.सं.	S (mm)	h1 (cm)	h2 (cm)	W (kg)	Wc (kg)					

8.3. गणना:

$$\Delta H = \left(\frac{h_1 - h_2}{100}\right) \left(\frac{\rho_m}{\rho_a} - 1\right) \text{ (m of H}_2\text{O)}$$

$$A = \frac{\pi}{4} d^2 \text{ (m}^2\text{)}$$

$$V = C_V \sqrt{2g\Delta H} \text{ (m/s)}$$

$$Q = VA \text{ (m}^3\text{/s)}$$

$$\eta = \frac{W_c}{W} \times 100 \text{ (\%)}$$

9. नामपद्धति:

नामपद्धति	स्तंभ शीर्षक	इकाई	प्रकार
Α	पाइप का क्रॉस सेक्शनल क्षेत्र	m²	Calculated
Cv	पिटोट ट्यूब का गुणांक	*	Given
d	पिटोट ट्यूब के लिए पाइप का व्यास	m	Given
g	गुरुत्वाकर्षण के कारण त्वरण	m/s²	Given
h1,h2	मैनोमीटर का वाचन	cm	Measured
Q	वायु प्रवाह दर	m³/s	Calculated
S	कण का आकार	mm	Measured
٧	हवा का इनलेट गैस वेग	m/s	Calculated
W	चक्रवात को भेजे गए कणों का भार	kg	Measured
Wc	चक्रवात के तल पर एकत्रित कणों का	kg	Measured
	भार		
ΔΗ	शीर्ष क्षति	m of	Calculated
		H2O	
ρα	हवा का घनत्व	kg/m³	Given
ρ m	मैनोमेट्रिक द्रव का घनत्व	kg/m³	Given
η	संग्रह दक्षता	%	Calculated

^{*}प्रतीक इकाईहीन होते हैं

10. सावधानी एवं रखरखाव निर्देश:

- 10.1. यदि बिजली की आपूर्ति 180 वोल्ट से कम और 230 वोल्ट से अधिक है तो उपकरण कभी न चलाएं
- 10.2. हमेशा सूखे कणों का प्रयोग करें।

11. समस्या निवारण:

11.1. यदि मोटर शाफ्ट नहीं चल रहा है लेकिन बिजली चालू दिख रही है तो स्विच बंद कर दें बिजली की आपूर्ति और मोटर शाफ्ट को मैन्युअल रूप से स्थानांतरित करें। जब यह स्वतंत्र रूप से चलता है, तब इसे फिर से शुरू करें।

12. संदर्भ:

12.1. मैककेबे, वॉरेन एल. स्मिथ, जूलियन सी. हैरियट, पीटर (2005)। की इकाई संचालन केमिकल इंजीनियरिंग। 7वाँ संस्करण. एनवाई: मैकग्रा-हिल। पीपी 1066-1069।

अवसादन अध्ययन उपकरण

1. उद्देश्य:

बैच अवसादन प्रक्रिया का अध्ययन करना।

2. लक्ष्य:

- 2.1. प्रारंभिक एकाग्रता और प्रारंभिक निलंबन ऊंचाई के प्रभाव को निर्धारित करने के लिए
- 2.2. फ़्लोक्लेटिंग एजेंट का प्रभाव दिखाने के लिए।
- 2.3. कण आकार वितरण का प्रभाव दिखाने के लिए।

3. परिचय:

अवसादन निलंबित सामग्री को गुरुत्वाकर्षण द्वारा व्यवस्थित होने देने की प्रक्रिया है। निलंबित सामग्री आंशिक हो सकती है, जैसे मिट्टी या गाद, जो मूल रूप से म्रोत जल में मौजूद होती है। आमतौर पर निलंबित सामग्री या फ़्लोक पानी और में मौजूद सामग्री से बनाई जाती है जमावट या अन्य उपचार प्रक्रिया में उपयोग किया जाने वाला रसायन, जैसे चूना नरम करना। उपचारित किए जाने वाले पानी के वेग को कम करके अवसादन पूरा किया जाता है वह बिंदु जिसके नीचे कण अब निलंबन में नहीं रहेगा। जब वेग सं जब तक यह कणों के परिवहन का समर्थन करेगा, गुरुत्वाकर्षण उन्हें प्रवाह से हटा देगा। विचार करने योग्य कुछ अधिक सामान्य प्रकार के कारक हैं:

हटाए जाने वाले कणों के आकार और प्रकार का संचालन अवसादन टैंक पर महत्वपूर्ण प्रभाव पड़ता है। उनके घनत्व के कारण, रेत या गाद को बहुत आसानी से हटाया जा सकता है। इसके विपरीत कोलाइडल पदार्थ, छोटे कण जो निलंबन में रहते हैं और पानी बनाते हैं बादल जैसा प्रतीत होता है, तब तक स्थिर नहीं होगा जब तक कि सामग्री को जमा न दिया जाए और प्रवाहित न कर दिया जाए लौह नमक या अल्मुनियम सल्फेट जैसे रसायन का मिश्रण। कण का आकार उसके जमने की विशेषताओं को भी प्रभावित करता है।

4. सिद्धांत:

किसी भी बैच अवसादन प्रयोग के लिए, ज्ञात सांद्रता के घोल पर, की ऊँचाई समय के फलन के रूप में एक तरल-ठोस इंटरफ़ेस प्राप्त किया जाता है। किसी भी बिंदु पर इस वक्र का ढलान समय की गित उस समय निलंबन के निपटान वेग को दर्शाती है और विशिष्ट ठोस सांद्रता का विशेषताएँ हैं। बैच अवसादन प्रक्रिया की शुरुआत में, तरल ठोस को समान रूप से वितिरत किया जाता है। निलंबन की कुल गहराई अधिकतम होती है लेकिन थोड़ी देर बाद ठोस हो जाती है स्पष्ट तरल का एक क्षेत्र देने के लिए बस गए हैं। कुछ समय बाद इसे तीन ज़ोन में बाँट दिया जाता है, स्पष्ट तरल क्षेत्र, आंशिक सघन क्षेत्र और सघन क्षेत्र। पहले सघन क्षेत्र फिर बढ़ता है घट जाती है। वर्तमान प्रायोगिक सेट-अप में समय के संबंध में ऊंचाई रिकॉर्ड करें और प्लॉट करें विभिन्न प्रभावों को दिखाने के लिए उनके बीच ग्राफ़ बनाएं।

विवरण:

इस सेट अप में बोरोसिलिकेट ग्लास से बने पांच सिलेंडर होते हैं। सिलेंडर हैं ऊर्ध्वाधर बैक-पैनल पर लगाया गया है, जो पीछे से प्रकाशित है। मापने के पैमाने हैं प्रत्येक सिलेंडर के लिए प्रदान किया गया।

6. आवश्यक उपयोगिताएँ:

- 6.1. विद्युत आपूर्ति: एकल चरण, 220 वी एसी, 50 हर्ट्ज, 5-15 एम्पियर संयुक्त सॉकेट पृथ्वी कनेक्शन के साथ
- 6.2. प्रयोगशाला कांच के बर्तन:-
 - ग्रेजुएटेड सिलेंडर (2 लीटर): 5 नं.
 - स्टॉपवॉच : 1 नं.
- 6.3. रसायन:-
- CaCO3: 2 किग्रा
- आसुत जल : 10 लीटर

7. प्रायोगिग विधि:

7.1. आरंभिक प्रक्रिया (केस-1 के लिए):

7.1.1. पांच अलग-अलग घोल तैयार करें।

- 7.1.2. घोल को सिलेंडरों में भरें।
- 7.1.3. पहले तीन सिलेंडरों के लिए, 2 लीटर पानी में (50,100,150) ग्राम CaCO3 लें और प्रारंभिक ऊंचाई नोट करें, जो समान है।
- 7.1.4. दूसरे दो सिलेंडरों के लिए, 2 लीटर पानी में (100,100) ग्राम CaCO3 लें और प्रारंभिक ऊँचाई नोट करें जो भिन्न हो।
- 7.1.5. विद्युत आपूर्ति कनेक्ट करें
- 7.1.6. रोशनी का स्विच चला दें।
- 7.1.7. सिलेंडर-1 के घोल को तब तक हिलाएं जब तक एक समान घोल प्राप्त न हो जाए। अभिलेख प्रारंभिक समय।
- 7.1.8. स्टॉप वॉच चालू करें और प्रत्येक 5 मिनट का अंतराल पर स्पष्ट तरल इंटरफ़ेस की ऊंचाई रिकॉर्ड करें।
- 7.1.9. समय भी नोट कर लें।
- 7.1.10. शेष सभी सिलेंडरों के लिए उपरोक्त चरणों को दोहराएं।
- 7.1.11. प्रत्येक सिलेंडर के लिए अंतिम ऊंचाई और समय रिकॉर्ड करें।

7.2. समापन प्रक्रिया (केस-1 के लिए):

- 7.2.1. जब प्रयोग समाप्त हो जाए तो लाइट बंद कर दें।
- 7.2.2. बिजली की आपूर्ति बंद कर दें।
- 7.2.3. सभी सिलेंडरों को साफ करें।

7.3. आरंभिक प्रक्रिया (केस-2 के लिए):

- 7.3.1. पांच घोल तैयार करें, प्रत्येक के लिए 2 लीटर पानी में 100 ग्राम

 CaCO3 लें फ़्लोकुलेंट की अलग-अलग मात्रा वाला सिलेंडर

 (5,10,15,20,25) मिली और नोट आरंभिक ऊँचाई से नीचे, जो समान है।
- 7.3.2. घोल को सिलेंडरों में भरें।
- 7.3.3. विद्युत आपूर्ति कनेक्ट करें।
- 7.3.4. रोशनी का स्विच चला दें।
- 7.3.5. सिलेंडर-1 के घोल को तब तक हिलाएं जब तक एक समान घोल प्राप्त न हो जाए। अभिलेख प्रारंभिक समय।

- 7.3.6. स्टॉप वॉच चालू करें और प्रत्येक 5 मिनट का अंतराल पर स्पष्ट तरल इंटरफ़ेस की ऊंचाई रिकॉर्ड करें।
- 7.3.7. समय भी नोट कर लें।
- 7.3.8. शेष सभी सिलेंडरों के लिए उपरोक्त चरणों को दोहराएं।
- 7.3.9. प्रत्येक सिलेंडर के लिए अंतिम ऊंचाई और समय रिकॉर्ड करें।

7.4. समापन प्रक्रिया (केस-2 के लिए):

- 7.4.1. जब प्रयोग समाप्त हो जाए तो लाइट बंद कर दें।
- 7.4.2. बिजली की आपूर्ति बंद कर दें।
- 7.4.3. सभी सिलेंडरों को साफ करें।

7.5. आरंभिक प्रक्रिया (केस-3 के लिए):

- 7.5.1. पांच अलग-अलग आकार के कैल्शियम कार्बोनेट लें और उसका आकार नोट कर लें।
- 7.5.2. 2 लीटर पानी ज्ञात मात्रा में सोडियम कार्बोनेट मिलाकर घोल तैयार करें।
- 7.5.3. घोल को सिलेंडरों में भरें।
- 7.5.4. विद्युत आपूर्ति कनेक्ट करें।
- 7.5.5. रोशनी का स्विच चला दें।
- 7.5.6. सिलेंडर-1 के घोल को तब तक हिलाएं जब तक एक समान घोल प्राप्त न हो जाए। अभिलेख प्रारंभिक समय।
- 7.5.7. स्टॉप वॉच चालू करें और प्रत्येक 5 मिनट का अंतराल पर स्पष्ट तरल इंटरफ़ेस की ऊंचाई रिकॉर्ड करें।
- 7.5.8. समय भी नोट कर लें
- 7.5.9. शेष सभी सिलेंडरों के लिए उपरोक्त चरणों को दोहराएं।
- 7.5.10. प्रत्येक सिलेंडर के लिए अंतिम ऊंचाई और समय रिकॉर्ड करें।

7.6. समापन प्रक्रिया (केस-2 के लिए):

- 7.6.1. जब प्रयोग समाप्त हो जाए तो लाइट बंद कर दें।
- 7.6.2. बिजली की आपूर्ति बंद कर दें।
- 7.6.3. सभी सिलेंडरों को साफ करें।

8. अवलोकन एवं गणना:

8.1. डेटा:	
घोल Co की प्रारंभिक सांद्रता = _	kg/m³

	8.2. a. अवलोकन तालिका (केस-1 के लिए):													
क्र.सं	सिलेंडर-1		सिलें	डर-2	सिलें	सिलेंडर-3		सिलेंडर-4		सिलेंडर-5				
	θ	Z	θ	Z	θ	Z	θ	Z	θ	Z				
	(sec)	(cm)	(sec)	(cm)	(sec)	(cm)	(sec)	(cm)	(sec)	(cm)				

	8.2.b. अवलोकन तालिका (केस-2 के लिए):													
क्र.सं	सिलेंडर-1		सिलेंडर-1 सिलेंडर-2		सिलेंडर-3		सिलेंडर-4		सिलेंडर-5					
	θ	Z		Z (om)		Z (om)	θ (sec)	Z (om)	θ	Z (om)				
	(360)	(CIII)	(360)	(CIII)	(360)	(CIII)	(360)	(CIII)	(360)	(cm)				

	8.2.c. अवलोकन तालिका (केस-2 के लिए):													
Dp	सिलें	डर-1	सिलें	सिलेंडर-2		सिलेंडर-3		सिलेंडर-4		सिलेंडर-5				
(mm	θ (sec	Z (cm	θ (sec	Z (cm	θ (sec	Z (cm	θ (sec	Z (cm	θ (sec	Z (cm				
))))))))))				

8.3. गणना:

(केस-1 के लिए):

सिलेंडर- 1, 2 और 3 के लिए Z बनाम 🛮 0 का ग्राफ़ प्लॉट करें। सिलेंडर- 4 और 5 के लिए Z बनाम 🕫 का ग्राफ़ प्लॉट करें।

(केस-2 के लिए):

सिलेंडर- 1, 2, 3, 4 और 5 के लिए Z बनाम 0 □का ग्राफ़ प्लॉट करें।

(केस-3 के लिए):

$$Z_{o} =$$
____(cm) [Z की प्रारंभिक ऊंचाई] $C = \frac{C_{o}Z_{o}}{Z}$ (kg/m³)

गणना तालिका (केस-3 के लिए):						
Dp (mm)	सिलेंडर-1	सिलेंडर-2	सिलेंडर-3	सिलेंडर-4	सिलेंडर-5	
(mm)	C(kg/m³)	C(kg/m³)	C(kg/m³)	C(kg/m³)	C(kg/m³)	

सिलेंडर- 1, 2, 3, 4 और 5 के लिए Dp बनाम C का ग्राफ बनाएं।

9. नामपद्धतिः

नामपद्धति	स्तम्भ शीर्षक	इकाई	प्रकार
С	समय Ө□ पर तलछट की सांद्रता 🏻	kg/m³	Calculated
Со	तलछट की प्रारंभिक सांद्रता	kg/m³	Given
Dp	ठोस कणों का आकार	mm	Measured
Z	निलंबन की ऊंचाई स्पष्ट तरल इंटरफ़ेस	cm	Measured
Zo	निलंबन की प्रारंभिक ऊंचाई स्पष्ट तरल	cm	Calculated
	इंटरफ़ेस		
θ	निपटान का समय	sec	Measured

10. सावधानी एवं रखरखाव निर्देश:

10.1. उपकरण को धूल से मुक्त रखें।

10.2. उपयोग के बाद हमेशा सिलेंडर को सूखा दें।

11. समस्या निवारण:

यदि लाइट चालू नहीं हो रही है तो मेन की जांच करें।

12. संदर्भ:

- 12.1. कॉल्सन, जे एम और रिचर्डसन, जे एफ (1991)। केमिकल इंजीनियरिंग खंड-
 - 2. चौथा संस्करण. रा: एशियन बुक्स प्रा. लिमिटेड पीपी 174-188

हैमर मिल

1. उद्देश्य:

हैमर मिल के संचालन का अध्ययन करना।

2. लक्ष्य:

ज्ञात सामग्री कार्य सूचकांक (Wi) को कुचलने के लिए हथौड़ा मिल द्वारा बिजली की खपत का निर्धारण करना। आम तौर पर हथौड़ा मिलों को द्वितीयक आकार कटौती उपकरण के रूप में जाना जाता है। हैमर मिल कई प्रकार और आकारों में बनाई जाती है और इसका उपयोग बड़े पैमाने पर किया जा सकता है किसी भी अन्य प्रकार की मशीन की तुलना में नरम सामग्री की विविधता। हैमर मिल हथौड़े धुरीयुक्त होती है, एक क्षैतिज शाफ्ट पर लगाए गए है। हथौड़े और निहाई प्लेट के बीच प्रभाव से कुचलन होती है।

3. परिचय:

आम तौर पर हथौड़ा मिलों को द्वितीयक आकार कटौती उपकरण के रूप में जाना जाता है। हैमर मिल कई प्रकार और आकारों में बनाई जाती है और इसका उपयोग बड़े पैमाने पर किया जा सकता है किसी भी अन्य प्रकार की मशीन की तुलना में नरम सामग्री की विविधता। हैमर मिल धुरीयुक्त हथौड़े होती है, एक क्षैतिज शाफ्ट पर लगाए गए। हथौड़े और निहाई प्लेट के बीच प्रभाव से कुचलन होती है।

4. सिद्धांत:

चूर्णीकरण और विघटन के लिए हथौड़ा मिलें उच्च गित पर संचालित की जाती हैं। रोटर शाफ्ट ऊर्ध्वाधर या क्षैतिज हो सकता है, आमतौर पर बाद वाला। शाफ्ट हथौड़ों को ढोता है, कभी-कभी बीटर्स भी कहा जाता है। हथौड़े टी-आकार के तत्व, रकाब, बार या रिंग हो सकते हैं शाफ्ट पर या शाफ्ट पर लगी डिस्क पर स्थिर या धुरीयुक्त। रोटर एक आवास में चलता है जिसमें पीसने वाली प्लेटें या लाइनर हों। लाइनर्स और के बीच

क्लीयरेंस बनाए रखा गया उत्पाद की सुंदरता के संबंध में रोटर महत्वपूर्ण है। वह पीसने की क्रिया से परिणाम प्राप्त करता है पिसी हुई सामग्री की गांठों या कणों के बीच प्रभाव और क्षरण, लाइनर में आवास और पीसने वाले तत्व। उत्पाद की सुंदरता को रोटर की गति, फ़ीड दर, या हथौड़ों के बीच निकासी, हथौड़ों की संख्या बदलना, हथौड़ों के प्रकार और साथ ही निर्वहन छिद्रों के आकार को बदलना द्वारा नियंत्रित किया जा सकता है।

बांड क्रशिंग कानून और कार्य सूचकांक:

कुचलने और पीसने के लिए आवश्यक शक्ति का अनुमान लगाने की एक अधिक यथार्थवादी विधि है:

$$\frac{P}{m} = \frac{K_b}{\sqrt{D_p}} \qquad ------(1)$$

जहाँ Kb एक स्थिरांक है जो मशीन के प्रकार और सामग्री पर निर्भर करता है, DP मिलीमीटर में कण आकार है, P किलोवाट में शक्ति है और m द्रव्यमान प्रवाह दर है प्रति घंटे टन में। Wi को किलोवाट घंटे प्रति टन फ़ीड में सकल ऊर्जा आवश्यकताओं के रूप में परिभाषित किया गया है एक बहुत बड़े फ़ीड को कम करने की आवश्यकता है। यह परिभाषा Kb और Wi के बीच संबंध की ओर ले जाती है।

$$K_b = 0.3162 * W_i$$
 ----- (2)

यदि फ़ीड का 80 प्रतिशत DP mm के जाल आकार से गुजरता है और उत्पाद का 80 प्रतिशत DPB मिमी का जाल, यह समीकरण (1) और (2) से अनुसरण करता है।

$$\frac{P}{m} = 0.3162 \times W_i \left(\frac{1}{\sqrt{D_{Pb}}} - \frac{1}{\sqrt{D_{Pa}}} \right)$$

$$P = m \times 0.3162 \times W_i \left(\frac{1}{\sqrt{D_{Pb}}} - \frac{1}{\sqrt{D_{Pa}}} \right)$$
 -----(3)

5. विवरण:

वर्तमान हैमर मिल में एक मजबूत आवास है जिसमें 4 T आकार के हथौड़ों को एक डिस्क पर घुमाया जाता है, जो मिल के घूमने वाले शाफ्ट के साथ क्षैतिज अक्ष फिट होता है। शाफ्ट सीधे मोटर से जुड़ा होता है। आवास के शीर्ष पर एक अर्धवृताकार दांतेदार लाइनर (या एनविल प्लेट) होता है। अंदर देखने के लिए एक कांच की खिड़की सामने के ढक्कन पर चक्की लगी होती है, जिसे खोलकर छलनी बदली जा सकती है। अलग जाल

विभिन्न उत्पाद आकार प्राप्त करने के लिए आकार प्रदान किए जाते हैं। फ़ीड खोलने वाला एक हॉपर और मिल में समायोजन प्रदान किया जाता है। कुचले हुए सामग्री को इकट्ठा करने के लिए सेट-अप में रिसीवर प्रदान किया गया है।

6. आवश्यक उपयोगिताएँ:

- 6.1. बिजली आपूर्ति: तीन चरण, 440 वी एसी, 50 हर्ट्ज अर्थ कनेक्शन के साथ।
- 6.2. आवश्यक फर्श क्षेत्र: 0.5 मीटर x 0.5 मीटर।
- 6.3. फ़ीड के लिए कच्चा माल (आकार 5-8 मिमी)।
- 6.4. विश्लेषण के लिए छलनी के सेट के साथ छलनी शेकर।

7. प्रायोगिग विधि:

7.1. आरंभिक प्रक्रिया:

- 7.1.1. किसी ठोस पदार्थ का उपयुक्त फीडस्टॉक तैयार करें।
- 7.1.2. छलनी शेकर का उपयोग करके इसके आकार वितरण को मापें।
- 7.1.3. हॉपर को निर्दिष्ट फ़ीड से भरें और हॉपर के बारीक उद्घाटन को समायोजित करें।
- 7.1.4. उत्पाद के आवश्यक आकार के अनुसार जाली लगाने के लिए सामने की कवर विंडो खोलें, वही बंद करो।
- 7.1.5. रिसीवर को डिस्चार्ज च्यूट के नीचे रखें।
- 7.1.6. बिजली की आपूर्ति चालू करें।
- 7.1.7. मोटर चालू करें।
- 7.1.8. पेराई का समय नोट कर लें।
- 7.1.9. उत्पाद को इकट्ठा करें और छलनी शेकर का उपयोग करके उसके आकार वितरण को फिर से मापें
- 7.1.10. विभिन्न फ़ीड आकार के लिए प्रयोग दोहराएं।

7.1.11. प्रयोग को अलग-अलग समय तक दोहराएँ।

7.2. समापन प्रक्रिया:

- 7.2.1. जब प्रयोग समाप्त हो जाए तो मोटर बंद कर दें।
- 7.2.2. बिजली की आपूर्ति बंद कर दें।

8. अवलोकन एवं गणना:

कुछ सामान्य खनिजों के कार्य सूचकांक				
सामग्री	कार्य सूचकांक (Wi)			
बॉक्साइट (sp.gr =2.20)	8.78			
सीमेंट क्लिंकर (एसपी.जीआर =3.15)	13.45			
कोयला (sp.gr =1.40)	13.00			
कोक (एसपी.जीआर =1.31)	15.13			
बजरी (sp.gr =2.66)	16.06			
जिप्सम चट्टान (एसपी.जीआर =2.69)	6.73			
चूना पत्थर (sp.gr =2.66)	12.74			
क्वार्टज़ (sp.gr =2.65)	13.57			

अवलोकन:

$$t_c = ___s$$

$$D_{pa} = \underline{\qquad} mm$$

$$D_{pb} = \underline{\qquad} mm$$

गणना:

$$m = \frac{W_f}{t_c} \times \frac{3600}{1000}$$
 (tons/h)

$$K_b = 0.3162 \times W_i$$
 (kWh/tons)

$$P_{cal} = m \times K_b \times \left[\frac{1}{\sqrt{D_{Pb}}} - \frac{1}{\sqrt{D_{Pa}}} \right] \text{ (kW)}$$

9. नामपद्धति:

नामपद्धति	स्तंभ शीर्षक	इकाई	प्रकार
Dpa	औसत फ़ीड आकार	mm	Measured
Dpb	औसत उत्पाद का आकार	mm	Measured
kb	बांड स्थिरांक	kWh/tons	Calculated
m	फीड दर	tons/h	Calculated
Pcal	कुचलने के लिए प्रयुक्त शक्ति की	kW	Calculated
	गणना		
tc	कुचलने का समय	s	Measured
Wi	सामग्री का कार्य सूचकांक	kWh/tons	Given
Wf	लिए गए चारे का वजन	kg	Measured

10. सावधानी एवं रखरखाव निर्देश:

10.1. निर्दिष्ट से अधिक फ़ीड आकार की अनुमित नहीं है।

- 10.2. सामने का कवर खुला होने पर मशीन को चलने नहीं देना चाहिए। पहले मशीन को चालू करके सुनिश्चित करें कि कवर ठीक से लगा ह्आ है।
- 10.3. ऑपरेशन से पहले बेस के साथ लगे मोटर और यूनिट के सभी नट और बोल्ट की जांच की जानी है।
- 10.4. उपयोग से पहले और बाद में हथौड़ों, जबड़ों और पूरी इकाई को कपड़े से साफ करें।

11. समस्या निवारण:

- 11.1. उचित सफाई और तेल लगाना आवश्यक है।
- 11.2. यदि फ़ीड सामग्री हथौड़ों के बीच में फंस जाती है तो मोटर को हटा दें सामग्री को हाथ से दबाया।
- 11.3. यदि प्रयोग के दौरान मोटर बंद हो जाती है और स्टार्ट करते समय स्टार्टर ट्रिप हो जाता है, तो इसका मतलब है स्टार्टर अधिक गर्म हो जाने पर क्रशर को कम से कम 15 मिनट के लिए बंद कर दें और फिर से चालू करें।

12. संदर्भ:

- 12.1. मैककेबे, वॉरेन एल. स्मिथ, जूलियन सी. हैरियट, पीटर (2005) की इकाई संचालन केमिकल इंजीनियरिंग। 7वाँ संस्करण एनवाई: मैकग्रा-हिल। पीपी 985-986, 989-990
- 12.2. ब्राउन, जॉर्ज ग्रेंजर (1995)। इकाई संचालन. प्रथम संस्करण. एनडी: सीबीएस प्रकाशक और वितरक पीपी 32

प्लेट और फ्रेम फ़िल्टर प्रेस

1. उद्देश्य:

प्लेट और फ़्रेम फ़िल्टर प्रेस के संचालन का अध्ययन करने के लिए।

2. लक्ष्य:

- 2.1. विशिष्ट केक प्रतिरोध (□α) की गणना करने के लिए।
- 2.2. मध्यम प्रतिरोध (R) की गणना करने के लिए।

3. परिचय:

झरझरा माध्यम के माध्यम से किसी तरल में निलंबन से ठोस पदार्थों को अलग करना वह स्क्रीन जो ठोस पदार्थों को बनाए रखती है और तरल पदार्थ को गुजरने देती है, निस्पंदन कहलाती है। सामान्य रूप में माध्यम के छिद्र उन कणों से बड़े होंगे जिन्हें हटाया जाना है, और माध्यम में प्रारंभिक जमा फंसने के बाद ही फिल्टर कुशलता से काम करेगा। निस्पंदन मूलतः एक यांत्रिक क्रिया है और इसमें ऊर्जा की कम मांग होती है

वाष्पीकरण या सूखना। किसी भी ऑपरेशन के लिए सबसे उपयुक्त फ़िल्टर वह है जो न्यूनतम समग्र लागत पर आवश्यकताओं को पूरा करेगा। फ़िल्टर में सबसे महत्वपूर्ण कारक चयन में फ़िल्टर केक का विशिष्ट प्रतिरोध, फ़िल्टर की जाने वाली मात्रा और ठोस शामिल हैं एकाग्रता।

4. सिद्धांत:

निस्पंदन में एक निलंबन को पारित करके तरल पदार्थों से ठोस पदार्थों को अलग करना शामिल है एक पारगम्य माध्यम, जो कणों को बनाए रखता है। असंपीडय केक के लिए:

मूल निस्पंदन समीकरण है:

$$\frac{dt}{dV} = \frac{\mu}{A\Delta P} \left(\frac{\alpha \, cV}{A} + R \right) \qquad ------(1)$$

$$\frac{dt}{dV} = \frac{\mu \alpha cV}{A^2 \Lambda P} + \frac{\mu R}{A \Lambda P}$$
 -----(2)

उपरोक्त समीकरण को t = 0 से t और V = 0 से V के लिए एकीकृत करें

$$\int_{0}^{t} dt = \frac{\mu \alpha c}{A^{2} \Delta P} \int_{0}^{V} V dV + \frac{\mu R}{A \Delta P} \int_{0}^{V} dV \qquad -----(3)$$

$$t = \frac{\mu \alpha c}{A^2 \Delta P} \left[\frac{V^2}{2} \right] + \frac{\mu R}{A \Delta P} [V] \qquad -----(4)$$

Let
$$a_1 = \frac{\mu \alpha c}{A^2 \Lambda P}$$
, $t = \frac{R\mu}{A \Lambda P}$

इन मानों को समीकरण (2) में रखें

$$t = \frac{a_1 V^2}{2} + b_1 V$$

$$t = V\left(\frac{a_1}{2} + b_1\right) \tag{5}$$

Put
$$\frac{a_1}{2} = a$$
, $b_1 = b$

इन मानों को समीकरण (5) में रखें

$$\frac{t}{V} = aV + b$$

T/V बनाम V का ग्राफ बनाएं और ढलान "A" और इंटरसेप्ट "B" ढूंढें। α और R की गणना इस प्रकार की जा सकती है:

$$\alpha = \frac{A^2 \Delta Pa}{\mu C}$$

$$R = \frac{A\Delta Pb}{\mu}$$

5. विवरण:

सेट अप में 7 प्लेटें और 6 फ़्रेम शामिल हैं। फ़्रेम फ़िल्टर कपड़े से ढके हुए हैं। फीड घोल टैंक में शीर्ष पर गियर पंप द्वारा डाला जाता है, और आउटलेट वाल्व से फ़िल्टर एकत्र किया जाता है। केक हटाने के बाद पानी की टंकी से उपलब्ध कराए गए पानी से धुलाई और सफाई की जा सकती है। इनलेट और आउटलेट दबाव को दबाव गेज द्वारा मापा जाता है। निस्यंद निष्कासन की दर प्रदान किए गए है और माप टैंक द्वारा मापा गया है।

6. आवश्यक उपयोगिताएँ:

- 6.1. विद्युत आपूर्ति: एकल चरण, 220 वी एसी, 50 हर्ट्ज, 5-15 एम्पियर संयुक्त सॉकेट पृथ्वी कनेक्शन के साथ।
- 6.2. जल आपूर्ति (प्रारंभिक भराव)।
- 6.3. फर्श ड्रैन की आवश्यकता है।
- 6.4. CaCO3: 10 कि.ग्रा.।

7. प्रायोगिग विधि:

7.1. आरंभिक प्रक्रिया:

- 7.1.1. 40 लीटर पानी में 4 किलोग्राम कैल्शियम कार्बोनेट मिलाकर फीड घोल तैयार करें।
- 7.1.2. फीड का वजन और पानी की मात्रा नोट कर लें।
- 7.1.3. सभी वाल्व V1-V6 बंद करें।
- 7.1.4. स्निश्चित करें कि पैनल पर दिए गए स्विच बंद स्थिति में हैं।
- 7.1.5. प्रेस पर प्लेट और फ्रेम लगायें।
- 7.1.6. पानी की टंकी में पानी भरें।
- 7.1.7. तैयार घोल को छानकर फीड टैंक में डालें।

- 7.1.8. बिजली की आपूर्ति चालू करें
- 7.1.9. फ़ीड टैंक के एजिटेटर को चालू करें।
- 7.1.10. फ़िल्टर प्रेस के आउटलेट को फ़िल्ट्रेट टैंक से कनेक्ट करें।
- 7.1.11. वाल्व V1 खोलें
- 7.1.12. पंप चालू करें और वाल्व V2 खोलकर फ़ीड को प्रेस में प्रवेश करने दें वाल्व V3 को पास करें और वाल्व V4 को बंद रखें।
- 7.1.13. इनलेट स्लरी प्रेशर और आउटलेट स्लरी प्रेशर नोट करके रख लें स्थिर।
- 7.1.14. वाल्व V4 खोलकर रिसीवर में निस्पंद एकत्र करें और वजन रिकॉर्ड करें।
- 7.1.15. निस्पंदन संग्रह की दर में उल्लेखनीय गिरावट होने तक निस्पंदन चलाएं।
- 7.1.16. विभिन्न दबाव ड्रॉप के लिए प्रयोग दोहराएं।

7.2. समापन प्रक्रिया:

- 7.2.1. जब प्रयोग समाप्त हो जाए तो एजिटेटर को बंद कर दें।
- 7.2.2. पंप बंद कर दें।
- 7.2.3. वाल्व V1 बंद करके घोल की आपूर्ति रोकें।
- 7.2.4. वाल्व V6 खोलकर घोल टैंक को खाली करें।
- 7.2.5. पानी के संचलन के लिए वाल्व V4 और V5 खोलें (धोना आवश्यक है)।
- 7.2.6. बिजली की आपूर्ति बंद कर दें।

8. अवलोकन एवं गणना:

8.1. **डेटा**:

फ्रेम NF की संख्या = 6

निस्पंदन टैंक Ac का क्षेत्रफल = 0.0398 m2

एक फ्रेम AF1 का क्षेत्रफल = 0.04 m2

निस्यंद की श्यानता µ□ = 9.03*10⁻⁵ N-sec/m²

_		•	•		
21	7	$\overline{}$	12		т.
3	ч	ч	I٩	70	1.

$$P_i = \underline{\qquad} kg/cm^2$$

$$P_o = ___ kg/cm^2$$

8.2. अवलोकन तालिका:				
S.No.	t (sec)	h (cm)		

8.3. गणना:

$$V = \frac{A_c \times h}{100} \text{ (m}^3\text{)}$$

8.4.	अवलोकन तालिका:		
S.No.	t (sec)	V (m³)	t /V (sec/m³)

Plot the graph of t/v vs v and find slope "a" and intercept "b".

$$a = \underline{\hspace{1cm}} (sec/m^6)$$

$$b = \underline{\hspace{1cm}} (\operatorname{sec/m}^3)$$

$$A = 2 \times N_F \times A_{F1}$$
 (m²)

$$\Delta P = (P_i - P_o) \times 98066.5 \text{ (N/m}^2)$$

$$C = \frac{m}{V_1} \times 1000 \text{ (kg/m}^3\text{)}$$

$$\alpha = \frac{A^2 \times \Delta P \times a}{\mu \times c} \text{ (m/kg)}$$

$$R = \frac{A \times \Delta P \times b}{\mu} \text{ (m}^{-1}\text{)}$$

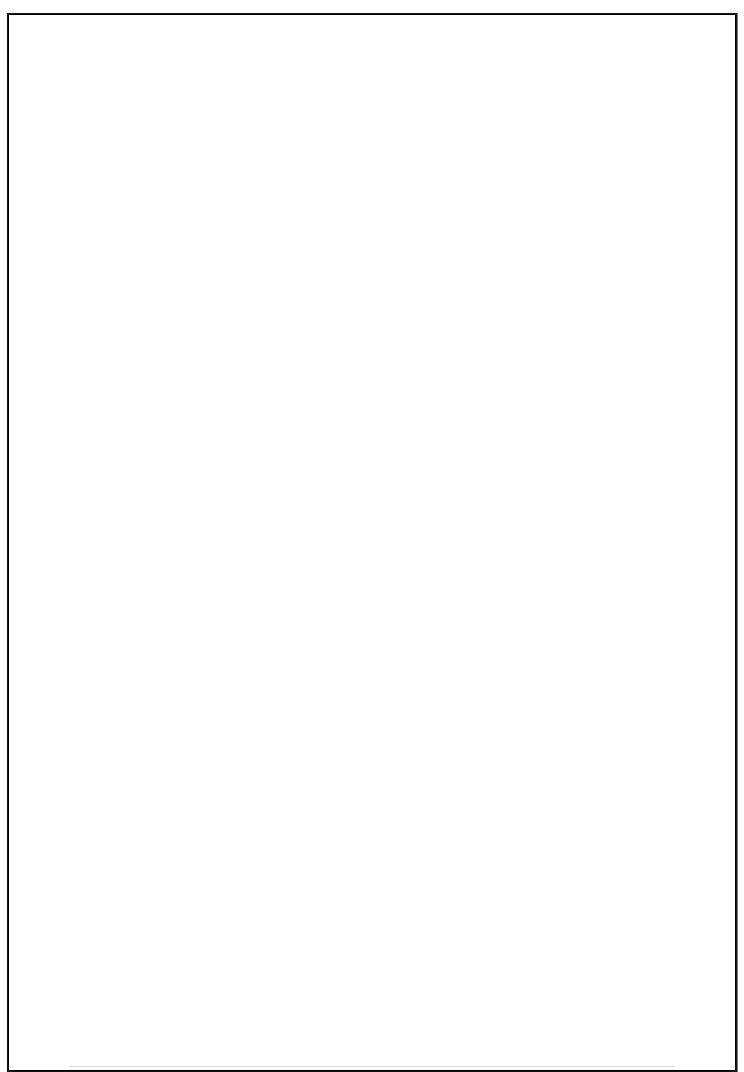
9. नामपद्धति:

नामपद्धति	स्तम्भ शीर्षक	इकाई	प्रकार
Α		m²	Calculated
Ac		m²	Given
AF1		m²	Given
а		sec/m ⁶	Calculated
b		sec/m ⁶	Calculated
С		kg/m³	Calculated
h		cm	Measured
m		kg	Measured
Nf		*	Given
ΔΡ		kg/cm²	Calculated

Pi	kg/cm²	Measured
P0	kg/cm²	Measured
R	m ⁻¹	Calculated
t	sec	Measured
V	m³	Calculated
V1	Lit	Measured
α	m/kg	Calculated
μ	N-	Given
_	sec/m²	

^{*} प्रतीक इकाईहीन मात्रा का प्रतिनिधित्व करते हैं।

10. सावधानी एवं रखरखाव निर्देश:


- 10.1. प्लेट और फ्रेम और उसके कपड़ों की सफाई जरूरी है।
- 10.2. उचित सफाई के लिए पानी का संचार आवश्यक है (इस ऑपरेशन के लिए वाल्व V4 और V5 खोलें)।
- 10.3. फ़ीड घोल को टैंक में डालने से पहले फ़िल्टर किया जाता है।
- 10.4. प्लेटें और फ्रेम ठीक से कसे होने चाहिए।

11. समस्या निवारण:

- 11.1. यदि घोल पर्याप्त से अधिक लीक हो रहा है तो प्लेट और फ्रेम को अलग कर दें, ठीक से व्यवस्था करें और फिर से कस लें।
- 11.2. अगर घोल ठीक से नहीं आ रहा है तो कपड़े और फ्रेम के छेद जांच लें मेल खा रहे हैं या नहीं, यदि नहीं है तो तदनुसार व्यवस्थित करें।

12. संदर्भ:

- 12.1. ब्राउन, जॉर्ज ग्रेंजर (1995)। इकाई संचालन. प्रथम संस्करण एनडी: सीबीएस प्रकाशक और वितरक पीपी 231-233
- 12.2. मैककेबे, वॉरेन एल. स्मिथ, जूलियन सी. हैरियट, पीटर (2005)। की इकाई संचालन केमिकल इंजीनियरिंग। 7वाँ संस्करण. एनवाई: मैकग्रा-हिल। पीपी 1008-1010, 1019-1025।

