Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

(An Institution of National Importance under MoE, Govt. of India)

CURRICULUM PROFILE OF POST GRADUATE DEGREE

M.Sc. Chemistry

(Two years degree program 2024)

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)
(An Institution of National Importance under MoE, Govt. of India)

Programme Educational Objectives (PEOs) of M.Sc. Chemistry

Programme Educational Objectives (PEOs) of the programme M.Sc. Chemistry addresses wide aspects of Chemistry in line with the Department's vision and mission. These are:

PEO1	Develop in depth understanding of the various aspects of Chemistry and apply it for
	the betterment of society and environment.
PEO2	Develop laboratory skills and experimental protocols to prepare research-ready
	students for higher studies/industries.
PEO3	Explore interdisciplinary science and practice critical thinking for problem solving
	abilities with good interpersonal and communication skills.

Programme Outcomes (POs) and Program Specific Outcomes (PSOs)

PO1	Apply advanced concept of Physical, Inorganic, Organic and analytical Chemistry to solve practical problems.
PO2	Present theoretical concepts in chemistry and plan experiments to validate and reinforce these concepts.
PO3	Identify and propose research problems, execute experiments, collect and analyze data, and derive conclusions with consideration for future implications.
PO4	Practice proficiency in individual and team assignments effectively, demonstrate competence in both aspects.
PSO1	Apply the scientific knowledge to evaluate scientific literature and methodologies to design and execute solution to complex chemical problems.
PSO1	Develop human resources for scientific research and education in the area of chemical science.

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान) (An Institution of National Importance under MoE, Govt. of India)

M.SC. CHEMISTRY

Semester I

Course code	Title of the Course	L	Т	P	Credit(s)
CHY 24511	Physical Chemistry I	3	-	-	3
	(Quantum Chemistry and Basic Spectroscopy)				
CHY 24512	Inorganic Chemistry I	3	-	_	3
	(Coordination Chemistry and Reaction Mechanism)				
CHY 24513	Organic Chemistry I	3	_	_	3
	(Basic stereochemistry and reaction mechanism)				
CHY 24514	Analytical Chemistry-I	3	-	_	3
	(Principles, Practices And Applications)				
	Elective- I	3	-	_	3
CHY 24515	Physical Chemistry Lab I and	-	-	2	2
	Minor Project-I (Self learning)				
CHY 24516	Inorganic Chemistry Lab I	-	-	2	1
CHY 24517	Organic Chemistry Lab I	-	-	2	1
CHY 24518	Seminar-I	2		_	1
	Total Semester (Credit			20

Communication Skill will be an Audit Course of 2 credits which will not be counted in SGPA/CGPA calculation.

Semester II

Course code	Title of the Course	L	T	P	Credit(s)
CHY 24521	Physical Chemistry II	3	-	-	3
	(Chemical Kinetics and Surface Chemistry)				
CHY 24522	Inorganic Chemistry II	3	-	-	3
	(Main Group elements and Group Theory)				
CHY 24523	Organic Chemistry II	3	-	-	3
	(Heterocyclic compounds and organic Reagents)				
CHY 24524	Chemistry of Materials	3	-	-	3
	Elective –II	3	-	-	3
CHY 24525	Physical Chemistry Lab II	-	-	2	1
CHY 24526	Inorganic Chemistry Lab II and	-	-	2	2
	Minor Project-II (Self learning)				
CHY 24527	Organic Chemistry Lab II	-	-	2	1
CHY 24528	Seminar-II			2	1
	Total Semester	Credit			20

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)
(An Institution of National Importance under MoE, Govt. of India)

Semester III

Course code	Title of the Course	L	T	P	Credit(s)
CHY 24611	Electrochemistry	3	-	-	3
CHY 24612	Organometallic Chemistry	3	-	1	3
CHY 24613	Organic Spectroscopy and Pericyclic	3	1	-	3
	Reactions				
CHY 24614	Natural Products and Medicinal	3	-	-	3
	Chemistry				
	Elective –III	3	-	-	3
CHY 24615	Physical Chemistry Lab III	-	-	2	1
CHY 24616	Inorganic Chemistry Lab III	-	-	2	1
CHY 24617	Organic Chemistry Lab III and	_	-	2	2
	Minor Project-III (Self learning)				
CHY 24618	Seminar-III	-	-	2	1
	Total Semester Cr	edit	•		20

	List of Elective-I		List of Elective-II
CHY 24531	Mathematics in Chemistry	CHY	Chemical and Statistical
		24551	Thermodynamics
CHY 24532	Chemical Biology	CHY	Optical Imaging and Ultrafast
		24552	Spectroscopy
CHY 24533	Instrumental Methods of	CHY	Research Methodology
	Analysis	24553	
	List of Elective-III		
CHY 24654	Photophysical Chemistry		
CHY 24655	Synthon Approach in Organic Sy	nthesis.	
CHY 24656	Radiations and Nuclear Chemistr	У	

Semester IV

Course code	Title of the Course	L	T	P	Credit(s)
CHY 24621	Project Dissertation and Presentation	-	-	40	20
	Total Semester Cre	edit			20

Grand Total of the Course Credits =20+20+20+20=80

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

(An Institution of National Importance under MoE, Govt. of India)

Name of Program	M.Sc. Chemistry		
Name of Course	Physical Chemistry I		
	(Quantum Chemistry and Basic Spectroscopy)		
Course Code	CHY 24511		
Core / Elective / Other	Core		
Credit	3		
Prerequisite:	<u> </u>		
. Understanding of fundamental algebra, calculus and classical mechanics will be useful.			

- Basic idea of electromagnetic radiation, spectroscopy and atomic structure is required.

Course Outcomes: The students are expected to be able to:

- Describe the requirement of quantum mechanics in chemistry.
- 2. Understand the application of wave functions to obtain information about the particle.
- Discuss the application of the Schrodinger equation in studying structure of H-atom and wave mechanics.
- Understand the principles and applications of various spectroscopic techniques as discussed.
- Recall the selection rules for the spectroscopic techniques like Rotational, Vibrational etc.

Description of Contents in brief:

This course will cover basic aspects of quantum chemistry and their applications for simple systems, atomic and molecular structures. Second part of this course will cover basic principles of electronic, rotational, vibrational, NMR and ESR spectroscopy.

Detailed Syllabus:

Basic Principles of Quantum Chemistry:

Introduction; Operators and related theorems; Uncertainty principle; postulates; Properties of wave functions and related physical significance; Time-dependent and time-independent Schrödinger equations; energy Eigenvalue equation; Eigenvalues and Eigen functions equation of motion and constant of motion.

Application to Simple Systems and Approximation Methods:

Exactly solvable problems: Particle in a box, harmonic oscillator, rigid rotator, step potential and tunnelling, the hydrogen atom. Linear and non-linear variations method; applications (He atom and other simple systems). Rayleigh-Schrödinger time-independent perturbation theory with simple applications.

Fundamentals of atomic and molecular structure: 3.

Wave nature of electron, atomic orbitals, shapes of s,p, and d orbitals, atomic structure, Bohr's model of H-atom, electron configuration, Pauli Principle, Hund's Rule, electronic configuration of elements, quantum numbers. Angular momentum: orbital angular momentum, spin angular momentum, total angular momenta. Spin and Pauli matrices. Term Symbols.

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

(An Institution of National Importance under MoE, Govt. of India)

4. Chemical Bonding:

Many-electron atoms: Antisymmetric principle, orbital approximation, electron spin, Pauli exclusion principle, Slater determinants. Linear Variational method – secular determinant. Molecular Structure: Born-Oppenheimer approximation. Valence bond theory and linear combination of atomic orbitals – molecular orbital (LCAO-MO) theory. Hybrid orbitals. Applications of LCAO-MO theory for diatomic molecules. Molecular orbital theory (MOT) of homo and heteronuclear diatomic molecules. Hückel approximation and its applications to annular π -electron system.

5. Basic spectroscopy:

Atomic spectroscopy; Russell-Saunders coupling; Origin of selection rules. Rotational, vibrational, electronic and Raman spectroscopy of diatomic and polyatomic molecules. Line broadening. Einstein's coefficients. Relationship of transition moment integral with molar extinction coefficient and oscillator strength. Nuclear magnetic resonance spectroscopy: gyromagnetic ratio; chemical shift, nuclear coupling.

List of Text Books:

- 1. Ira N. Levine, Quantum Chemistry, Prentice Hall
- 2. R.K. Prasad, Quantum Chemistry, New Age International
- 3. Kakkar, R. Atomic & Molecular Spectroscopy, Cambridge University Press
- 4. D. L. Pavia, G.M. Lampman, G.S. Kriz and J. R. Vyvyan; Introduction to Spectroscopy, 5th ed. Cengage India, 2015.

List of Reference Books:

- 1. McQuarrie, D. A., (1983), Quantum Mechanics, 2nd Edition, University Science Books.
- 2. Bernath, P. F., (2005), Spectra of Atoms and Molecules, 2nd Edition, Oxford University Press, London
- . Banwell, C. N., (2010), Fundamentals of Molecular Spectroscopy, 4th Edition, Tata McGraw Hill, New Delhi

Lecture Plan (about 42 Lectures):

Decture I fair (Eccture Fran (about 42 Ecctures).		
Lecture No.	Topic		
	UNIT- I: Basic Principles of Quantum Chemistry		
Lecture 1	An introduction to Quantum Chemistry, Energy quantization and black body		
	radiation		
Lecture 2	Uncertainty principle and other postulates		
Lecture 3	Wave functions: physical significance and an introduction to Schrödinger		
	equation		
Lecture 4	Operators in Quantum Mechanics		
Lecture 5-6	Observables and postulates of Quantum Mechanics.		
Lecture 7-9	Time-dependent and time-independent Schrödinger equations		
	Energy eigenvalue equation, Eigenvalues and Eigen functions equation of		
	motion and constant of motion.		
	UNIT-II: Application to Simple Systems and Approximation Methods		
Lecture 1	Particle in a box: derivation and degeneracy		
Lecture 2	Harmonic oscillator,		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Lecture 3	Rigid rotator
Lecture 4	2-D confinement: Step potential; Introduction to tunneling.
Lecture 5	The hydrogen atom
Lecture 6	Linear and non-linear variations method
Lecture 7	Application of Schrodinger equations in He atom and other systems.
Lecture 8	Approximation Methods: Variation principle, Perturbation theory.
Lecture 9-10	Rayleigh-Schrödinger time-independent perturbation theory with simple
	applications.
	UNIT -III: Fundamentals of atomic and molecular structure
Lecture 1	Wave nature of electron, atomic orbitals, shapes of s,p, and d orbitals and energy.
Lecture 2	Atomic structure, Review Bohr's model of H-atom and Pauli Principle.
Lecture 3-4	Hund's Rule Atomic and molecular structure electron configuration
Lecture 5-6	Radial distribution functions and curves, electronic configuration of elements,
	quantum numbers.
Lecture 7	Angular momentum: orbital angular momentum, spin angular momentum, total
	angular momentum.
Lecture 8	Spin and Pauli matrices, Term Symbols.
	UNIT - IV: Chemical Bonding
Lecture 1	Many – electron atoms: Antisymmetric principle, orbital approximation
Lecture 2	Electron spin, Pauli exclusion principle, Slater determinants
Lecture 3	Linear Variational method: secular determinant
Lecture 4	Molecular Structure: Born-Oppenheimer approximation
Lecture 5	Valence bond theory
Lecture 6	Linear combination of atomic orbitals – molecular orbital (LCAO-MO) theory
Lecture 7	Hybrid orbitals. Applications of LCAO-MO theory for diatomic molecules
Lecture 8	Molecular orbital theory (MOT) of homo and heteronuclear diatomic molecules.
Lecture 9	Hückel approximation and its applications to annular π -electron system
_	UNIT V: Basic Spectroscopy
Lecture 1	Atomic spectroscopy; Russell-Saunders coupling
Lecture 2	Origin of selection rules.
Lecture 3-4	Rotational, vibrational, electronic and Raman spectroscopy of diatomic and
T	polyatomic molecules. Line broadening
Lecture 5	Einstein's coefficients. Relationship of transition moment integral with molar
Lastring	extinction coefficient and oscillator strength
Lecture 6	Nuclear magnetic resonance spectroscopy: gyromagnetic ratio; chemical shift, nuclear coupling
	nuclear coupling

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Nan	ne of Program	M.Sc. Chemistry				
Nan	ne of Course	Physical Chemistry Lab I and Minor Project -I				
Cou	rse Code	CHY 24515				
Cor	e / Elective / Other	Core				
Cre	dit	2				
Pre	requisite:					
1.	Student should have a knowledge o	f glass wares used in chemical laboratory, basics of				
	solution preparing, handling and lab					
2.	Student should have knowled	5				
		brium constant, neutralization reaction etc.				
3.		representation of data /plotting graph will be useful.				
	rse Outcomes: The students are expe					
1.	_	component system and analyse bimodal curve, plait				
	points and tie lines.					
2.		eriments e.g. Viscometry, pH metry, Potentiometry,				
<u> </u>	Refractometry performed in the laboration in the					
3.		netric titrations based on different experiments.				
4.		ts obtained by using Viscometry, pH metry,				
	Potentiometry, Refractometry.					
1	cription of Contents in brief:					
		nase diagrams, transition temperature, viscosity and				
		d on potentiometer and pH metry, refractive index of				
	tions mixers, etc.					
	ailed Syllabus:					
1.	Transition temperature and Phase					
		rated salts and two/three-component phase diagrams.				
2.	Viscometry:					
	· ·	iids using viscometer and study the variation with				
	concentration/temperature.					
3.	Adsorption Isotherm:					
	_	given adsorbate by adsorbant and study adsorption				
	isotherm.					
4.	pH-metry					
	1 2	s/strong acid by pH-metric titration with				
	weak/strong base.					
5.	Potentiometric:					
	To determine the standard elect	rode potential of the ferrous ferric system by titrating				
	ferrous ammonium sulphate against potassium dichromate and estimation of the					
	solubility product and dissociation constant of the given substance.					
7.	Refractometry:					
	Determine the refractive index, specific and molar refraction of simple organic					
	liquids.					
	_					

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

2011. Gurdeep Raj.	"Advanced Practical Physical Chemistry", Krishna's Educational Publishers; 13th Edition,		
- ~	Gurdeep Raj. "Advanced Physical Chemistry"; Krishna's Educational Publishers, 2014.		
Renu, Gupta.	"Practical Physical Chemistry"; New Age International (P) ltd; 1st edition; 2017.		
f Reference E			
Khosla, B.D. 2011.	; Garg, V.C. & Gulati, "A. Senior Practical Physical Chemistry,R Chand Co.: New Delhi,		
Hill: New Yo			
Athawale, V.	D. & Mathur, P. "Experimental Physical Chemistry New Age International: New Delhi, 2007		
,	bout 24 Lectures):		
ıre No.	Topic		
re 1-2	Orientation of lab (Do's and Don'ts), Safety measures.		
re 3-4	Determination of the Transition Temperature of hydrated salts: CaCl ₂ and NaSO ₄ .10H ₂ O thermometrically and/or by solubility.		
ro 5 6	To draw the phase diagram of the binary system: diphenyl amine and α -		
iie 3-0	naphthol and find the eutectic temperature.		
re 7-8	Estimate the variation in viscosity with concertation/temperature for a given		
	(glycerol) solution.		
re 9-10	Determine the composition of the given mixture consisting of two miscible liquids viscometrically.		
ire 11-12	To determine the adsorption of aqueous acetic acid by activated charcoal and to study the adsorption isotherm.		
ire 13-14	Determination of the strength of the acid (strong/weak) by pH metric titrations with base (strong/weak)		
ire 15-16	Potentiometric titration of K ₂ Cr ₂ O ₇ & Ferrous Ammonium Sulphate and comparison with volumetric titrations.		
re 17-18	Determine the Solubility Product of BaSO ₄ Potentiometrically.		
re 19-20	Determine the Dissociation constant of di-basic acid (oxalic acid)		
	Potentiometrically.		
re 21-22	Determine the refractive index, Specific & Molar Refraction of given		
	percentage of solutions (Toluene/Acetone).		
re 23-24	Physical Chemistry Lab I and Minor Project-I (Self learning)		
	Khosla, B.D. 2011. Garland, C.W. Hill: New Yo. Athawale, V. Ire Plan (a Ire No. Ire 1-2 Ire 3-4 Ire 5-6 Ire 7-8 Ire 9-10 Ire 11-12 Ire 13-14 Ire 15-16 Ire 17-18 Ire 19-20 Ire 21-22		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

(An Institution of National Importance under MoE, Govt. of India)

Name of Program		M.Sc. Chemistry
Name of Course		Physical Chemistry II
		(Chemical Kinetics and Surface Chemistry)
Course Code		CHY 24521
Core / Elective / Other		Core
Cre	dit	3
Pre	requisite:	
1.	Student should have knowledge of bas	ic chemistry and related terminologies.
2.	An understanding of basic mathematic	es such as algebra, calculus and functions such as
	exponential and logarithm will be usef	
Cou	irse Outcomes: The students are expect	ed to be able to:
1.	Describe chemical rate laws, molecula	rity and order using the given information.
2.	Classify different theories given for ch	emical kinetics.
3.	State difference between kinetically an	d thermodynamically controlled reactions.
4.	Understand fundamentals and applicat	ions of surface chemistry.
Des	cription of Contents in brief:	
Firs	t part of this course will cover different	aspects of chemical kinetics such as molecularity
		mining rate constant and examples including
		of the course covers various topics of surface
	mistry, colloids, macromolecules and ad-	sorption phenomenon.
	ailed Syllabus:	
1.	Chemical Kinetics-I: Steady-state approximation. Mechanisms of complex reactions. Empirical rate laws and temperature dependence; Methods of determining rate laws, collision theory reaction rates, steric factor, Arrhenius theory and activated complex theory, ionic reactions and kinetic salt effects, steady-state kinetics, kinetic and thermodynamic control of reactions. Comparison of collision and activated complex theory.	
2.	Chemical Kinetics-II: Unimolecular reaction theories including Eyring equation and Lindermaan Hinshelwood and Rice-Ramsperger-Kassel-Markus (RRK and RRKM). Dynamic chain reactions and photochemical reactions. Kinetic isotope effects. Fast reaction kinetics: relaxation and flow methods. Kinetics of photochemical and photophysical processes Kinetics of polymerization and enzyme catalysis. Kinetics of One-Enzyme-One Substrate reactions: Michaelis-Menten Mechanism.	
3.	Surfactants and Interfacial Phenomena: Classification, micellization, C.M.C and its determination. Shape and structure of micelles, effect of additives on micellization, thermodynamics of micellization, solubilization and applications, effect of electrolytes on solubilization. Macro and micro emulsions, dispersion and aggregation of solids by surfactants.	
4.	electrophoresis, electroosmosis, sedim electrical double layer and various	gin of the charges, electro-kinetic phenomena, tentation and streaming potential. The concept of models to explain its structure and properties, pagulation and distribution of colloids aggregates.

Concepts of mass and number average molecular weights, methods of determining molecular weights (osmometry, viscometry, diffusion and light scattering method),

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

	sedimentation, fractional properties of macromolecules, statistical distribution of end-to-			
	end dimension, calculation of average dimension of various chain structures.			
5.	Adsorption Phenomenon: Gibbs adsorption equation, Langmuir adsorption isothern			
	and its derivation for non-dissociative and dissociative adsorption, BET adsorption			
		, its derivation and applications. Surface catalysis: Langmuir-Hinshelwood		
	mechanis			
	of Text B			
1.		tins, Physical Chemistry, ELBS		
2.		ller, Chemical Kinetics , 2013, Chemical Kinetics, Pearson.		
3.	Puri, Sha	rma, Pathaniya, Principles of Physical Chemistry, Vishal Publications		
List	of Refere	nce Books:		
1.	Silbey, R	L. J.; Alberty, R. A. &Bawendi, M. G. Physical Chemistry 4th Ed., John Wiley		
	& Sons, 1	Inc. (2005).		
2.	Chorkeno	dorff, Ib. & Niemantsverdriet, J. W. Concepts of Modern Catalysis and Kinetics		
	Wiley-V	CH (2003).		
Lec	ture Plan ((about 42 Lectures):		
Lec	ture No.	Торіс		
		Chemical Kinetics-I		
	ture 1	Steady state approximation. Mechanisms of complex reactions		
Lect	ture 2	Empirical rate laws and temperature dependence; Methods of determining rate		
		laws		
	ture 3	Collision theory reaction rates, steric factor		
	ture 4-5	Arrhenius theory and activated complex theory		
	ture 6	Ionic reactions and kinetic salt effects		
	ture 7	Steady state kinetics, kinetic and thermodynamic control of reactions		
Leci	ture 8	Comparison of collision and activated complex theory		
_		Chemical Kinetics-II		
	ture 1-3	Unimolecular reaction theories: Eyring equation and Lindermaan		
Leci	ture 4-5	Hinshelwood		
T	<i>(</i>	Unimolecular reaction theories: Rice-Ramsperger-Kassel-Markus (RRK and		
	ture 6	RRKM)		
	ture 7	Dynamic chain reactions and photochemical reactions. Kinetic isotope effects Fast reaction kinetics: relaxation and flow methods		
	ture 8 ture 9			
	ture 9	Kinetics of photochemical and photophysical processes Kinetics of polymerization and enzyme catalysis		
Leci	iule 10	Kinetics of Polymerization and enzyme catalysis Kinetics of One-Enzyme-One Substrate reactions: Michaelis-Menten		
		Mechanism		
	UNIT III: Surfactants and Interfacial Phenomena			
Lect	ture 1	Introduction and Classification		
		Micellization		
Lecture 3-4		C.M.C. and its determination		
	ture 5	Shape and structure of micelles		
Lecture 6		Effect of additives on micellization, thermodynamics of micellization		
Lecture 7		Solubilization and applications		
LCC	Dotaonization and approacions			

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Lecture 8	Effect of electrolytes on solubilization	
Lecture 9	Macro and micro emulsions	
Lecture 10	Dispersion and aggregation of solids by surfactants	
	UNIT IV: Colloids and Macromolecules	
Lecture 1	Origin of the charges	
Lecture 2	Electro-kinetic phenomena	
Lecture 3	Electrophoresis, electroosmosis	
Lecture 4	Sedimentation and streaming potential	
Lecture 5-6 The concept of electrical double layer and various models to explain its		
	structure and properties	
Lecture 7-8	Smoluchowski theory of kinetics of coagulation and distribution of colloids	
	aggregates.	
	UNIT V: Adsorption Phenomenon	
Lecture 1	Gibbs adsorption equation	
Lecture 2-3	Langmuir adsorption isotherm and its derivation for non-dissociative and	
	dissociative adsorption	
Lecture 4-5 BET adsorption isotherm, its derivation and applications		
Lecture 6	Surface catalysis: Langmuir-Hinshelwood mechanism	

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Non	a of Duoguam	M.Sc. Chemistry
Name of Program Name of Course		Chemistry of Materials
Course Code		CHY 24524
Core / Elective / Other		Core
Cre		3
	requisite:	3
110	NIL NIL	
Con	rse Outcomes: The students are expected	ed to be able to:
1.	*	cience, properties, and basic method of
1.	characterization of solids.	erence, properties, and caste meaned or
2.		erties of bulk materials with nanomaterials.
3.	Classify nanomaterials type, synthesis	
4.	Identify Impact of nanomaterials on en	
	cription of Contents in brief:	THE HOLLING WITH HALLING HOUSE
	4	operties and applications of materials in their bulk
		iplinary science and engineering. Students will
		rials synthesis, applications and sustainable
	otechnology.	
	niled Syllabus:	
1.		Introduction, crystalline and amorphous solids,
		NaCl and KCl, point defects – Frenkel, Schottky
		. X-ray Diffraction: Generation and production of
		equation, and structure factor, systematic absences,
	Ordered and disordered of solid.	
2.	Electrical and magnetic properties: I	Electronic structure of solids: Band theory of solid.
	Optical, mechanical and magnetic prop	perties of ordered and disordered materials & their
		conductivity with temperature, semiconductors, p
		Piezoelectric and pyro-electrics. Diamagnetic,
		erro- and ferrimagnetic materials. Magnetic
		re – Curie-Wiess law, Curie temperature and Neel
	temperature. Permanent and temporary	
3.	-	otechnology, classification & evolution of
		Physics, Chemistry, Biology and Engineering.
	= =	ties of nanomaterials, size& shape – 1D, 2D, 3D
		nocluster, quantum dot; Information-Driven
	Nanoassembly, Energetics, Topdov	wn and bottom-up approach for building
1	nanomaterials.	1 O1 1 1 C
4.		own and Bottom-up approach, Chemical route of
		esis, Green synthesis-and Microwave techniques,
		ynthesis. Nanosemiconductor, nanopolymer,
		ite materials: Introduction, types of fillers and
	=	terials based on distribution and nature of fillers.
	applications.	al composites, polymer nanocomposites and their
	applications.	

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Sustaina	ble Nanotechnology: Application of industrial ecology to nanotechnology,		
	of nanomaterials to environment, environmental and health impacts of nano		
	· · · · · · · · · · · · · · · · · · ·		
materials, toxicological threats, eco-toxicology, exposure to nano particle			
damage, threat posed by nano materials to humans, environmental reconnaissan			
surveillance.			
	ty and S. R. Stock, (2014), Elements of X-ray diffraction, 3rd edition, Pearson		
	, (2015) Solid State Chemistry and Its Applications, 2nd edition, John Wiley & Sons.		
and Francis			
Application	nong. Nanostructures & Nanomaterials: Synthesis, Properties & as. Singapore, Imperial College Press, 2004.		
	stry of Nanomaterials: Synthesis, Properties and Applications. Germany, Wiley, 2006.		
	Nandakumar, and Raneesh, B. Advanced Nanomaterials: Synthesis, Properties, and		
	ss. United States, Apple Academic Press, 2014.		
Oxford	A.K. and Day, P., (1997), Solid State Chemistry Compounds, 2nd Edition, Clarendon Press,		
	, Nano: The Essentials Understanding nanoscience and nanotechnology, Tata McGraw-Hill Company Limited NEW DELHI, 2007		
	CH implementation project substance identification of nanomaterials (RIP-oN 1)		
Institute for Health and Consumer Protection (2011)			
Harry R. Allcock, (2008), Introduction to Materials Chemistry, 1st Edition, Wiley.			
	and J Gopalkrishnan, (2004) New Directions in Solid State Chemistry, 2nd Edition, Cambridge		
	er, C. Som Human and Ecological Risk Assessment, 14 (2008),		
ure Plan (about 42 Lectures):		
ure No.	Topic		
	UNIT-I: Structures and properties of solids		
cture 1	Introduction to Crystalline and amorphous solids		
	Unit cell, Bravais lattices, Structure of NaCl and KCl,		
	Point defects – Frenkel, Schottky defects and non-stoichiometric defects.		
	X-ray Diffraction: Generation and production of X-ray, Scattering, Braggs's		
ture i 5	law,		
ure 6-9	Laue equation, and structure factor, systematic absences, Ordered and		
	disordered of solid.		
	UNIT-II: Electrical and Magnetic Properties of solids		
ure 1	Electronic structure of solids: Band theory of solid.		
ure 2	Optical, mechanical and magnetic properties of ordered and disordered		
	materials & their applications.		
ure 3	Continued		
ure 4	Conductors, variation of conductivity with temperature. Semiconductors, p		
	and n types, photo voltaic cell. Piezoelectric and pyro-electrics.		
	Diamagnetic, paramagnetic, anti-ferromagnetic, ferro- and ferrimagnetic		
	materials.		
u16 /-7			
	Magnetic susceptibility, variation with temperature – Curie-Wiess law, Curie		
	Impacts of materials, damage, surveillar fext Book B. D. Cullid West, A.R Lesley E Stand Francis Cao, Guozh Application The Chemi Kalarikkal, Application feetham, Oxford T. Pradeep Publishing JRC-REAC Institute for Harry R. A C N R Rao A.R. Koehl ure Plan (ure No. cture 1 cture 2 cture 3 ture 4-5 are 6-9		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

	UNIT-III: Nano-materials Introduction		
Lecture 1-2	Introduction to Nanotechnology and Nanomaterials, evolution of		
	Nanotechnology		
Lecture 3-4	Nanomaterials classifications, size, shape – 1D, 2D, 3D origin etc.		
Lecture 5-8	Classification and properties of nanomaterials, viz. nanoparticles, nanowire,		
	nanocluster, quantum dot; Information-Driven Nanoassembly, Energetics.		
	UNIT-IV: Synthesis and Applications		
Lecture 1	Top to down and Bottom up approach, comparison		
Lecture 2 Chemical route of synthesis, sol-gel, solvothermal synthesis,			
Lecture 3-4 Green synthesis and Microwave techniques, electrochemical, photoche			
Lecture 5 synthesis.			
Lecture 6-7	Lecture 6-7 Nano semiconductor- synthesis, explanation with examples in metal oxid		
	perovskite, etc. Challenges for preparation and property.		
Lecture 8 -10	Nanopolymer, nanocomposite& Nano-electronic devices - Applications		
	Composite materials, classification of composite materials based on		
	stribution and nature of fillers. Particulate and fibrous metal/non-metal		
	composites, polymer Nano-composites and their applications.		
	UNIT-V: Sustainable Nanotechnology		
Lecture 1 -2	Sustainable nanotechnology –Introduction, biomedical, food and agriculture		
Lecture 3-4	industry.		
Lecture 5-8	Nano manufacturing – toxicological threads to animal and environment		
	Risk assessment to environment due to any new material nanomaterials		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Nan	ne of Program	M.Sc. Chemistry	
	ne of Course	Physical Chemistry Lab II	
Cou	rse Code	CHY 24525	
Core / Elective / Other		Laboratory	
Cre	dit	1	
Prei	·equisite:		
1.	Basic knowledge of handling of solution	ons and safety measures.	
2.	Student should have a basic conceptu	nal knowledge of – conductivity, cell potentials, stant, solubility product and neutralization.	
3.		resentation of data /plotting graph will be useful.	
	rse Outcomes: The students are expected		
1.		sing different analytical experiments such as	
1.	Polarimetry, Conductometry and Calor	• •	
2.		s of light passing through the solution, Standard	
	electrode potential for given chemical	reactions/solutions.	
3.	Establish the relation between solubili	ty & solubility product of PbSO ₄ & BaSO ₄ using	
	conductometer.		
4.	Estimate the heat of neutralization of s	trong acid and strong base using calorimeter.	
Desc	cription of Contents in brief:		
This	laboratory course covers various experi	mental methods such as volumetric analysis bases	
		inetics, measurement of angel of rotation using	
	rimeter.	, 8	
	niled Syllabus:		
1.			
	Determination of molecular we	eight using Viscometry.	
2		<u> </u>	
		order of reaction, study of influence of the ionic given substance.	
3.	•	1 11 11 , / 11	
		weak acid with a strong/weak base.	
4	Conductometry :		
	Determine the basicity of mor	no-, di-, and tri- basic acids and critical micelle	
	concentration (CMC) of a sur-	factant (sodium lauryl sulphate) by conductivity	
	method.		
5.	Partition law and Salt effect:		
		icient/ partition coefficient in the organic solvents	
		<u> </u>	
	and water at room temperature. Effect of salt addition on critical solu		
6.	temperature Polarimetry:		
0.		of cana sugar (sucrosa) in presence of an acid	
	•	of cane sugar (sucrose) in presence of an acid/	
	determination of relative streng	th of acids by the study of inversion of sucrose.	
List	List of Text Books:		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

1.	J. B. Yadav. "Advanced Practical Physical Chemistry", Krishna's Educational Publishers; 13 th Edition, 2011.		
2.	Gurdeep Raj. "Advanced Physical Chemistry"; Krishna's Educational Publishers, 2014.		
3.	Renu, Gupta. "Practical Physical Chemistry"; New Age International (P) ltd; 1st edition; 2017.		
4.	A.M James	, Goel P.H. Advanced Practical Physical Chemistry.	
5.	Khosla, B.I 2011.	D.; Garg, V.C. & Gulati, "A. Senior Practical Physical Chemistry,R Chand Co.: New Delhi,	
List	of Reference	Books:	
1.	Garland, C. New York,	W.; Nilber, J.w. & Shoemaker, D.P. "Experiments in Physical Chemistry 8 th Ed.; McGraw-Hill: 2009.	
2.		V.D. &Mathur, P. "Experimental Physical Chemistry New Age International: New Delhi, 2007	
3.	B.P. Levitt,	Longman; "Findley's Practical Physical Chemistry".	
Lect		about 16 Lectures):	
	ture No.	Topic	
	ture 1	Orientation of lab (Do's and Don'ts)	
	ture 2-3	Determine the molecular weight of polymers (e.g. PVA and PS) using viscosity.	
Lect	ture 4-5	To study the reaction kinetics of Potassium and KI and to determine rate constant; study of influence of ionic strength.	
		<u>OR</u>	
		To determine the order of the reaction between potassium persulphate and potassium iodide by fractional change method.	
Lecture 5-6		Calorimetrically: Heat of neutralization of acid (HCl /CH ₃ COOH) with a strong base (NaOH).	
Lect	ture 7-8	Determine the basicity of mono-, di- & tri- basic acids conductometrically/	
Lect	ture 9-10	Conductometric titrations involving weak/strong acid and strong/weak base.	
Lect	cure 11-12	Determine the CMC of the given surfactant using conductivity method.	
Lecture 13-14 Determine the distribution coefficient of Iodine between organ water at room temperature.		Determine the distribution coefficient of Iodine between organic solvents and water at room temperature.	
Lecture 15-16 Determine the partition coefficient of benzoic acid between water and be at RT and molecular state of benzoic acid in benzene.		Determine the partition coefficient of benzoic acid between water and benzene at RT and molecular state of benzoic acid in benzene.	
Lecture 15-16		To study the kinetics of inversion of cane sugar (sucrose) in presence of an acid/ relative strength of acids by the study of inversion of sucrose.	

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

(An Institution of National Importance under MoE, Govt. of India)

Name of Program		M.Sc. Chemistry	
Name of Course		Electrochemistry	
Course Code		CHY 24611	
Core / Elective / Other		Core	
Cre		3	
Pre	requisite:		
1.	Student understands of basic che	mistry such as chemical kinetics, chemical	
	thermodynamics are desirable.		
2.	An understanding of basic components		
Cou	rse Outcomes: The students are expecte		
1.	Explain fundamental aspects of electro	chemical reaction in terms of thermodynamics,	
	kinetics and mass transport.		
2.		lated treatment such as Debye-Huckel-Onsager,	
	Kohlrausch's law and its applications.		
3.	Differentiate conductometric and poter		
4.		nental electrochemical methods such as cyclic	
	voltammetry.		
5.	Recognize the practical usage of electr	ochemical technology in our life.	
	cription of Contents in brief:		
		spects of the reactions, electrochemical processes	
	•	ourse student will advance their knowledge and	
		principles of typical electrochemical devices and	
	ain electrochemical phenomena in terms	s of redox chemistry.	
	ailed Syllabus:		
1.		Nernst equation, redox systems, electrochemical	
		electrochemistry, the Butler-Volmer and Tafel	
		and mass transport controlled electrochemical	
	processes. Mass transport: migration, o		
2.		ye-Huckel-Onsager treatment and its extension,	
		ch's law and its applications; ionic equilibria;	
2	conductometric and potentiometric titr		
3.		conducting polymers, electronically conducting	
	polymers and redox polymers. Electrochemical double layer, Potentiostatic an		
4	Galvanostatic methods.		
4.		nperometry: Theory, principle, basics of Cyclic	
		Applications of cyclic voltammetry: Qualitative	
		mmetry. Chronoamperometry: Potentiostatic and	
		harge discharge cycle of rechargeable battery from	
	Chronoamperometry, Use of chemical and biosensors in environmental pollutan detection.		
5.			
ا ی	Electrochemical techniques: coupled to in situ techniques providing structural		

information. Surface confined electrochemical processes. Electro polymerization homogeneous and heterogeneous electrocatalysis, electrochemical processes coupled to chemical steps. Nanostructured and surface modified electrodes, comparisons of

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

	batteries, fuel cells and supercapacitors. Electrochemical processes of particular		
	relevance to energy conversion, energy and power densities.		
List of Text Books:			
1.	Antropov, Lev Ivanovich. Theoretical Electrochemistry. United States, International Law & Taxation Publishers, 2001.		
2.		hn O'M., and Reddy, AmulyaK.N Modern Electrochemistry 2B: Electrodics in Chemistry, g, Biology and Environmental Science. Germany, Springer US, 2007.	
3.		nulya K.N., and Bockris, John O'M Modern Electrochemistry: An Introduction to an linary Area. United States, Springer US, 2012.	
4.		r, Andrzej, et al. Electrochemistry for Chemists. United Kingdom, Wiley, 1995.	
List	of Reference	e Books:	
1.	Electrocher	mical methods: fundamentals and applications. India, Wiley India Limited, 2004.	
2.	Transient T	Fechniques in Electrochemistry. United States, Springer US, 2011.	
3.	Laboratory Press, 2018	Techniques in Electroanalytical Chemistry, Revised and Expanded. United States, CRC 3.	
4.	Greff, R, et	t al. Instrumental Methods in Electrochemistry. United Kingdom, Elsevier Science, 2001.	
Lect	ture Plan ((about 42 Lectures):	
Lect	ture No.	Topic	
		UNIT – I: Introduction to Electrochemistry	
Lect	ure 1-2	Introduction to electrochemistry and review fundamentals.	
	ure 3-4	Advanced Aspects of Nernst Equation, redox systems, electrochemical cells;	
	ure5-6	Electrode kinetics, dynamic electrochemistry, Butler-Volmer and Tafel	
LCCI	uics o	equations, over-potentials.	
Lact	ure7-8	Kinetically and mass transport controlled electrochemical processes.	
LCCI	u1C / -0	Mass transport: migration, convection and diffusion.	
		Numerical problems/ questions.	
		UNIT – II: Equilibrium Electrochemistry	
Lect	ure 1	Debye-Huckel-Onsager treatment and its extension,	
	ure 2	Electrolytic conductance – Kohlrausch's law and its applications;	
	ure 3	lionicequilibria; conductometric and potentiometric titrations.	
	ure 4	conductometric and potentiometric titrations	
	ure 5	1	
	ure 6	conductometric and potentiometric titrations Numerical problems/ questions.	
	ure 7	Numerical problems/ questions.	
Leci	ule /	·	
Lecture 1 Background on Solid state electrochemistry			
		Background on Solid state electrochemistry	
Lecture 2		Ion conducting polymers, electronically conducting polymers	
Lecture 3		Redox polymers. Defect Chemistry in Solid State Electrochemistry	
Lecture 4		Defect Chemistry in Solid State Electrochemistry	
Lecture 5		Electrochemical double layer, Potentiostatic and Galvanostatic methods	
Lecture 6 Lecture 7-8			
	ure /-8	Continued	
,/		UNIT – IV: Cyclic Voltammetry and Chronoamperometry	
Lecture 1 C		Cyclic Voltammetry, Cyclic voltammogram.	
Lecture 2			

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Lecture 3	Applications of cyclic voltammetry: Qualitative and quantitative analysis;	
Lecture 4	Pulse voltammetry.	
Lecture 5	Continued	
Lecture 6	Chronoamperometry: Potentiostatic and Galvanostatic Chronoamperometry,	
Lecture 7	Continued	
Lecture 8-9	Charge discharge cycle of rechargeable battery from Chronoamperometry.	
	Continued	
	UNIT - 5 Electrochemical techniques	
Lecture 1	Electrochemical techniques coupled to in situ techniques providing structural	
	information.	
Lecture 2	Continued	
Lecture 3	Surface confined electrochemical processes.	
Lecture 4	Electro polymerization homogeneous and heterogeneous electrocatalysis,	
Lecture 5	Electrochemical processes coupled to chemical steps.	
	Continued	
Lecture 6 Nanostructured and surface modified electrodes, comparisons of bat		
fuel cells and supercapacitors.		
Lecture 7	Continued	
Lecture 8 Electrochemical processes of particular relevance to energy conversion.		
	energy and power densities.	
Lecture 9-10	Continued	

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Nan	ne of Program	M.Sc. Chemistry	
Name of Course		Physical chemistry lab III	
Course Code		CHY 24615	
Core / Elective / Other		Core	
Cre	dit	1	
Pre	requisite:		
1.		e of glass wares, solution preparing, and handling	
	and safety measures.		
2.	Basic concept- spectroscopy, electroch		
3.	Skills of calculations and graphical rep	resentation of data /plotting graph will be useful.	
Cou	rse Outcomes: The students are expected	ed to be able to:	
1.	State the validity of Onsager Equation	using conductometer.	
2.	Apply spectroscopic procedures/techni	ques for Beer's Law and dissociation constant.	
3.		surements to calculate relative quantum yield.	
4.	Correlate surface tension with atomic p	parachors of C,H and O.	
Des	cription of Contents in brief:		
This	laboratory course covers various expension	rimental methods to determine standard electrode	
pote	ential, solubility, and equivalent conduc-	tance etc. of electrolytic solutions. Spectroscopic	
met	hods will be used for absorption/emission	n measurement of fluorescent dye and dissociation	
cons	stant of methyl red.		
Deta	ailed Syllabus:		
1.	Conductometry:		
	 Determination of the equivalen 	t conductance of weak acid (benzoic and acetic	
	acid) at several concentrations	and the dissociation constant of the acid.	
	2. Determination of the equivalen	t conductance of strong electrolytes such as HCl,	
	KCl, KNO ₃ and NaCl and the validity of Onsager equation		
2.	Colorimetry and Spectroscopy:		
۷٠	1. Colorimetric Iron/Copper analy	7616	
	2. Verification of Beer's Law using		
		ission measurements of fluorescent dye.	
		hyl red by spectroscopic methods at different	
	dilutions.	nyi rea by spectroscopie methods at afficient	
3.	Surface Tension:		
	1. Determination of surface Tensi	•	
-	2. Determination of surface Tension by solubility method.		
	of Text Books:	hemistry", Krishna's Educational Publishers; 13 th Edition,	
1.	2011.	nemistry, Krisinia's Educational Publishers; 13" Edition,	
2.	Gurdeep Raj. "Advanced Physical Chemistry"; Krishna's Educational Publishers, 2014.		
3.		New Age International (P) ltd; 1st edition; 2017.	
4.	Khosla, B.D.; Garg, V.C. & Gulati, "A. Senior Practical Physical Chemistry,R Chand Co.: New Delhi,		
T	2011.		
List	of Reference Books:		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

1.	Garland, C.W.; Nilber, J.w. & Shoemaker, D.P. "Experiments in Physical Chemistry 8th Ed.; McGraw-Hill: New York, 2009.			
2.		wale, V.D. & Mathur, P. "Experimental Physical Chemistry New Age International: New Delhi, 2007		
3.		Longman; "Findley's Practical Physical Chemistry".		
	Lecture Plan (about 16 Lectures):			
		Topic		
Lecture 1-2		To determine equivalent conductance of strong electrolytes (HCl, KCl, KNO3, NaCl) validate Onsager equation using conductometer.		
Lecture 3-4		Verification of Beer's Law using colored (organic/inorganic) solutions.		
Lecture 5-6		Colorimetric analysis of Iron/Copper.		
Lecture 7-8		Determine quantum yield by using steady state fluorescence absorption measurements.		
Lecture 9-10		Dissociation constant of methyl red / given organic dye by spectroscopic methods at different dilutions.		
Lecture 11-12 Determination of surface tension of MeO		Determination of surface tension of MeOH/EtOH and n-hexane at RT and calculate the atomic parachor of C, H and O.		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Name of the Program	M.Sc. Chemistry		
Name of Course	Mathematics in Chemistry		
Course Code	CHY 24531		
Core/ Elective/ Other	Elective		
Credit	3		
Prerequisite			
	dge of elementary differentiation, integration, matrices and probability		
calculus.			
Course Outcome: The	students are expected to be able to		
	nd understand basic mathematics used in chemistry.		
	interpreting different spectra used in chemical calculations.		
Description of Content			
Vectors and Probability.	their applications, Calculus, Increasing and decreasing functions,		
Detailed Syllabus:			
Hermitian. So	their applications: Matrix – types of matrices e.g. Hermetian and skew lution of any system of linear equation – matrix & cramer rule method. equation of a square matrix, eigen value and eigen vector;		
	plication of differentiation equation: Derivative as a slope of the tangent, a rate measure-velocity and acceleration.		
	Increasing and decreasing functions : Maxima and minima-second derivative test-point of inflections-problems restricted to polynomial; Integrations: application to areas		
of plane curve			
*	Review of permutations and combinations, probability and addition		
theorem for a	nutually exclusive events and multiplication theorem for independent fitting-Method of least squares.		
List of Books			
	Chemistry An Introduction, 2 nd Edition by Donald J. Dahm , Eric A. Nelson, Ww 17.		
	chemists, P. G. Francis, Springer, 2011.		
	ists by Doggett Graham, Volume 1, ISBN: 9780854046775, 9780854046775.		
4. Numerical Metho	ods by Goel, Atul, 2019		
Lecture plan: About 30	lectures		
Lecture No. Topic			
	Unit I: Vectors and their applications		
Lecture 1 Matrix –	types of matrices e.g. Hermitian and skew Hermitian.		
Lecture 2 Continue	d		
Lecture 3 Solution	Solution of any system of linear equation – matrix & Cramer's rule method.		
Lecture 4 Continue	Continued		
Lecture 5 Character	Characteristic equation of a square matrix, eigen value and eigen vector.		
Lecture 6 Continue	Continued		
Lecture 7 Continue	d		
,	Unit II: Calculus		
Lecture 1 Applicati	on of differentiation equation: Derivative as a slope of the tangent.		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Lecture2	Continued	
Lecture 3	Problems based on differentiation	
Lecture4	Continued	
Lecture 5	Derivative as a rate measure-velocity and acceleration.	
Lecture 6	Continued	
Lecture 7	Continued	
	Unit III: Increasing and decreasing functions	
Lecture 1	Maxima and minima-second derivative test-point of inflections-problems restricted to polynomial	
Lecture 2	Continued	
Lecture 3	Continued	
Lecture 4	Integrations: application to areas of plane curves.	
Lecture 5	Continued	
Lecture 6	Continued	
Lecture 7	ecture 7 Continued	
	Unit IV: Probability	
Lecture 1	Review of permutations and combinations	
Lecture 2	Continued	
Lecture 3	Probability and addition theorem for mutually exclusive events	
Lecture 4	Lecture 4 Continued	
Lecture 5	Lecture 5 Continued	
Lecture 6	Multiplication theorem for independent events.	
Lecture 7	Continued	
Lecture 8	Curve fitting-Method of least squares.	
Lecture 9	Continued	

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Name of Program		M.Sc. Chemistry			
Name of Course		Chemical Biology			
Course Code		CHY 24532			
Core / Elective / Other		Elective			
Cre	dit	3			
Pre	Prerequisite:				
1.	Student should have basic knowledge a	and understanding of basic Chemistry.			
2.	An understanding of cell structure will				
3.		lents who does not study biological sciences at			
	graduation level.				
Cou	rse Outcomes: The students are expected	ed to be able to:			
1.	Describe basic biomolecules like carbo	phydrate fatty acids proteins amino acids etc.			
2.	Classify different types of terpenes and				
3.		and myoglobin and their oxygen binding			
	capacity.	, ,			
4.		em their uses and the electron transport			
	mechanism.	1			
5.	Restate the importance of Biological N	2 fixation.			
Des	cription of Contents in brief:				
		ganic Chemistry, Bio organic Chemistry and Bio			
		ical system is briefly covered in this course.			
	ailed Syllabus:				
1.	Bioinorganic Chemistry: Ion (Na ⁺ and	d K ⁺) transport, photosystems, porphyrins, oxygen			
	binding, transport and utilization, electron transfer reactions, nitrogen fixation,				
		n, molybdenum, iron, cobalt, copper and zinc.			
2.		in Biological systems, Conformational properties			
	of polypeptides, primary and secondary	y structure α -helix, β -sheet structures etc., tertiary			
	and quaternary structure, structural	features of membrane proteins, kinetics and			
	thermodynamics of protein folding unf	folding.			
3.	Bio organic chemistry: Chemistry of	f natural products: Carbohydrates, proteins and			
	peptides, fatty acids, nucleic acids,	terpenes, steroids and alkaloids. Biogenesis of			
	terpenoids and alkaloids etc.				
List	of Text Books:				
1.		ophysical Chemistry Part I and II. Egypt, W. H.			
2	Freeman, 1980.C.R.	in Physics: A Course of Lactures Natherlands Elsevier			
2.	Finkelstein, Alexei V., and Ptitsyn, Oleg. Protein Physics: A Course of Lectures. Netherlands, Elsevier Science, 2016				
3.	Kuriyan, John, et al. The Molecules of Life: Physical and Chemical Principles. United Kingdom, Garland				
	Science, Taylor & Francis Group, 2013.				
4.					
	of Reference Books:				
1.	0 1 1	es of biochemistry. United Kingdom, W. H. Freeman, 2008.			
2.	Glaser, Roland. Biophysics: An Introduction.				
3.	Gray, Professor Harry, et al. Biological Inorganic Chemistry: Structure and Reactivity. United				
	Kingdom, University Science Books, 2007.				

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

4. Begley, Tadhg, et al. The Organic Chemistry of Biological Pathways. Belgium, Roberts and Company Publishers, 2005.			
Lecture Plan (about 30 Lectures):			
Lecture No. Topic			
	UNIT - 1 Bioinorganic Chemistry		
Lecture 1-2	Structure and Function Membrane (lipid bilayer), Structure and Function of the Na,K-ATPase.		
Lecture 3-4	Ion (Na+ and K+) transport: The Sodium-Potassium Pump, Active & Passive Mechanism of Na-K transport, Electrochemical Gradient		
Lecture 5-6	Photosystems, introduction, Chlorophylls, PS-I & II and differences, Cyclic & non cyclic electron flow in PS,		
Lecture 7	Photosystems, Light interaction to generate ATP & NADPH,		
Lecture 8	Porphyrins: introduction and structures of Hb, Myoglobin, Cytochrome, Catalase, Peroxidase etc.		
Lecture 9-10	Binding of Oxygen with Hb &Hemerythrin, transport mechanism, Cooperatively effect, Differences of Hemerythrin with hemoglobin and myoglobin.		
Lecture 11	Electron transfer reactions: Biological electron flow, Oxidation & Reduction of Carbon, Reduction of NAD by two electrons, NADH.		
Lecture 12	Kinetics of e-transfer reactions, Simplified Marcus theory, Efficient 'e' transfer in cytochromes		
	UNIT - 2 Biophysical Chemistry		
Lecture 1	Nitrogen fixation: Biological & non-biological N ₂ fixation, Nitrogenase complexes,		
Lecture 2	Metalloenzymes: definition, structure & their Physiological role.		
Lecture 3	The peptide bond and primary structure of proteins, Amino acids & peptide bonds.		
Lecture 4-5	Conformational properties of polypeptides: secondary structure α -helix, β -sheet structures etc., Ramachandran plot.		
Lecture 6	Tertiary and quaternary structure: concept of structure of proteins and its stabilization.		
Lecture 7	Membrane proteins structure & functions.		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान) (An Institution of National Importance under MoE, Govt. of India)

Lecture 8-9	Kinetics of protein folding unfolding, Temperature & solvent Induced Membrane Protein Denaturation.	
Lecture 10	Thermodynamic considerations of protein folding & unfolding.	
	UNIT - 3 Bioorganic Chemistry	
Lecture 1-2	Carbohydrates & its classification, functions of carbohydrate in cells, Biologically active carbohydrates.	
Lecture 3	Fatty acids, structure & nomenclature, geometric isomerization.	
Lecture 4	Physical properties of saturated and unsaturated fatty acids, metabolism of fatty acids	
Lecture 5	Nucleic acids and its type, chemistry of nucleic acids, Structure of DNA & RNA.	
Lecture 6	Terpenes & their classification, biogenesis of terpenes.	
Lecture 7	Steroids & their classification, biogenesis of steroids.	
Lecture 8	Alkaloids & their classification, biogenesis of Alkaloids.	

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Name of Program		ram	M.Sc. Chemistry
Name of Course		se	Instrumental Methods of Analysis
Course Code			CHY 24533
Core / Elective / Other		e / Other	Elective
Cre			3
Prei	requisite:		
1.	Student s	hould have basic ki	nowledge of spectrometry.
2.	Student s	hould know princip	ole of extraction techniques.
Cou	rse Outco	mes: Student are ex	expected to be able to
1.	Know int	ricate instrument de	etails of atomic absorption and fluorescence spectrometry.
2.			tion and emission spectrometry.
3.			fluid extraction process.
4.			nated extraction process and can apply various supercritical
	fluids.		
Desc	cription of	Contents in brief	
			principle and instrument details of atomic and emission
			ographic separations of supercritical fluids. Also, some of
			shown to students.
Deta	ailed Sylla	bus:	
1.	Atomic	Absorption and A	Atomic Fluorescence Spectrometry: Sample Atomization
			otion Instrumentation, Interferences in Atomic Absorption
	Spectroscopy, Atomic Absorption Analytical Techniques, Atomic Fluorescence		
	Spectroscopy		
2.	Atomic Emission Spectrometry: Emission Spectroscopy Based on Plasma Sources,		
	Emission Spectroscopy Based on Arc and Spark Sources, Miscellaneous Sources for		
		Emission Spectrosco	
3.	Molecula	r Luminescence Sp	ectrometry: Theory of Fluorescence and Phosphorescence,
	Instrume	nts for Measuring	g Fluorescence and Phosphorescence, Applications of
	Photolum	ninescence Methods	s, Chemiluminescence.
4.	Supercrit	ical Fluid Chromat	ography and Extraction: Properties of Supercritical Fluid,
	Supercrit	ical Fluid Chromato	ography, Supercritical Fluid Extraction.
5.	Automate	ed Methods of A	nalysis: An Overview of Automatic Instruments and
	Instrume	ntation, Flow Inject	tion Analysis, Discrete Automatic Systems, Analysis based
	upon Multilayer Films.		
List	of Text Bool		
1.			
2.			
3.	Learning, Belmont, CA. 3. Christian, G.D., "Analytical Chemistry" 6th Ed. Wiley, 2008		
	of Reference		nong our Da. 11 nog, 2000
1.			l Analysis 5 th edition by Chatwal and Anand
-		(about 42 lecture)	•
	ture No.	Topic	
	• •	•	Absorption and Atomic Fluorescence Spectrometry
Lect	ure 1		n Techniques - Introduction
	Page 27 of 70		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Lecture 2	Atomic Absorption Instrumentation	
Lecture 3 Interferences in Atomic Absorption Spectroscopy		
Lecture 4 Atomic Absorption Analytical Techniques		
Lecture 5-6 Atomic Fluorescence Spectroscopy		
Lecture 7-9	Problems and Solutions	
	UNIT II: Atomic Emission Spectrometry	
Lecture 1-2	Emission Spectroscopy Based on Plasma Sources	
Lecture 3-4	Emission Spectroscopy Based on Arc and Spark Sources	
Lecture 5-6	Miscellaneous Sources for Optical Emission Spectroscopy	
Lecture 7-8	Problems and Solutions	
	UNIT III: Molecular Luminescence Spectrometry	
Lecture 1-2 Theory of Fluorescence and Phosphorescence		
Lecture 3-4 Instruments for Measuring Fluorescence and Phosphorescence		
Lecture 5-6	Applications of Photoluminescence Methods	
Lecture 7-8	Chemiluminescence; Problems and Solutions	
UNIT IV: Supercritical Fluid Chromatography and Extraction		
Lecture 1	Supercritical Fluid – Introduction	
Lecture 2-3	Properties of Supercritical Fluid	
Lecture 4-5	Supercritical Fluid Chromatography	
Lecture 6-7 Supercritical Fluid Extraction		
Lecture 8 Problems and Solutions		
	UNIT V: Automated Methods of Analysis	
Lecture 1-2 An Overview of Automatic Instruments and Instrumentation		
Lecture 3 Flow Injection Analysis		
Lecture 4-5	Discrete Automatic Systems	
Lecture 6-7	Analysis based upon Multilayer Films	
Lecture 8-9 Problems and Solutions		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Nan	ne of Program	M.Sc. Chemistry	
Name of Course		Chemical and Statistical Thermodynamics	
Course Code		CHY 24551	
Core / Elective / Other		Elective	
Cre	dit	3	
	requisite:		
1.		d understanding of fundamentals of Physical	
	chemistry, classical thermodynamics a		
2.	Knowledge of basic statistical methods	s will be useful.	
3.	This is an optional course available fo	r master's student to advance their knowledge in	
	macroscopic chemical systems.	-	
Cou	rse Outcomes: The students are expected	ed to be able to:	
1.	Understand principles and applications	classical thermodynamics.	
2.	Apply thermodynamic laws/calculation	ns to predict feasibility of a reaction using given	
	experimental data.		
3.	Learn the statistical models of thermod	lynamic properties of macroscopic systems.	
4.	Analyse the most probable distribution	s of a system among the energy levels using	
	principles of statistical thermodynamic		
5.	Apply statistical thermodynamics to va	arious chemical systems.	
	cription of Contents in brief:		
		dynamics laws and their applications for different	
		aspects of and statistical thermodynamics used to	
		nd chemical observations. This course includes the	
		le, introduce about molecular partition functions,	
	explains heat capacity behaviours and n	uclear spin statistics.	
	ailed Syllabus:		
1.		odynamic laws, state and path functions and their	
		or an ideal gas, reversible/irreversible processes;	
		gy and work function: Helmholtz and Gibbs free	
		aneity; Gibbs-Helmholtz equation (problems);	
	Clausius-Clapeyron equation; Maxwel	l relations – Van't Hoff isotherm and isochore.	
2.	Phase Transition and Thermodynam	ics of Solutions: Elementary description of phase	
	transitions; phase equilibrium and pha	se rule; Partial molar properties i.e., free energy,	
	volume and heat content and their sign	ificance. Concept of fugacity and determination of	
	fugacity. Thermodynamics of ideal and	non-ideal gases, and solutions. Functions for non-	
	ideal solutions. Activity and activity	coefficient, Debye-Huckel theory for activity	
	coefficient of electrolytic solutions; de	etermination of activity and activity coefficients;	
	ionic strength.		
3.		ates: concepts of ensemble, Thermodynamic	
		on-Maxwell's and Boltzmann's distribution.	
	Thermodynamic probability and kineti		
4.		nd their relation to thermodynamic quantities,	
	calculations for model systems. Canonical, grand canonical and micro canonical		
	ensembles, corresponding distribution laws (using Lagrange's method of undetermined		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

	multipliers). Partition functions- translational, rotational, vibrational electronic partition		
	functions, calculation of thermodynamic properties in terms of partition functions,		
	applications of partition functions.		
5	Heat capacity: Chemical equilibrium constant in terms of partition function. Femi-dira		
	statistics, distribution law and applications, Bose-Einstein statistics- distribution law and		
	applications. Ideal Fermi gas, Ideal Bose gas.		
List	of Text Book		
1.		l L. An Introduction to Statistical Thermodynamics. United States, Dover Publications, 2012.	
2.		Salinger Thermodynamics, Kinetic Theory and Statistical Thermodynamics, Narosa Publishing	
	House, Nev	v Delhi.	
3.	P. W. Atkir	ns, Physical Chemistry, 6th Edn., Oxford University Press	
4.	D. McQuar	ie, and J. D. Simmen, Physical Chemistry.	
5.	Puri, Sharm	na, Pathaniya, Principles of Physical Chemistry, Vishal Publications	
	of Reference		
1.		, Statistical Thermodynamics, 2007, 2nd Edition, New Age International Pvt. Ltd, New Delhi	
2.		L. P., and Lifshitz, E.M Statistical Physics: Theory of the Condensed State. United	
		Elsevier Science, 2013.	
3.	Herbert b. Limited, 20	Callen, Thermodynamics & an introduction To Thermostatistics. India, Wiley indiapvt.	
4.		.; Alberty, R. A. &Bawendi, M. G. Physical Chemistry 4th Ed., John Wiley & Sons, Inc. (2005).	
5.		&Sangaranarayanan, M.V. Non-Equilibrium Thermodynamics: Principles & Applications,	
	Macmillan	India Ltd. (2002).	
		about 42 Lectures):	
Lec	ture No.	Торіс	
		UNIT -I: Macroscopic and microscopic states	
Lec	ture 1	State and path functions, Concept Q, W, U, and First law	
Lec	ture 2	Concept of enthalpy, H & relation between heat capacities	
Lec	ture 3	Q, W, ΔU and ΔH for reversible, irreversible and free expansion of gases	
	_	under isothermal and adiabatic conditions	
Lec	ture 4	Thermochemistry: Heats of reactions and its applications; effect of	
		temperature (Kirchhoff's equations) and pressure on enthalpy of reactions	
Lec	ture 5	Second Law: Concept of entropy, thermodynamic scale of temperature,	
LCC	ture 3	statement of the second law of thermodynamics	
Lac	ture 6	Calculation of entropy change for reversible and irreversible processes	
		Statement of third law, concept of residual entropy, calculation of absolute	
Lec	ture 7	entropy of molecules	
_	. 0	Free Energy Functions: Gibbs and Helmholtz energy; variation of S, G, A with	
	ture 8	<u> </u>	
Lec	ture 9-11	T, V, P; Free energy change and spontaneity	
		Relation between Joule-Thomson coefficient and other thermodynamic	
		parameters; inversion temperature; Gibbs-Helmholtz equation; Maxwell	
Lec	ture 12-13	relations; thermodynamic equation of state	
Lec	ture 12-13	relations; thermodynamic equation of state Systems of Variable Composition: Partial molar quantities, dependence of	
	ture 12-13	relations; thermodynamic equation of state Systems of Variable Composition: Partial molar quantities, dependence of thermodynamic parameters on composition	
		relations; thermodynamic equation of state Systems of Variable Composition: Partial molar quantities, dependence of thermodynamic parameters on composition Gibbs Duhem equation, chemical potential of ideal mixtures, change in	
Lec	ture 14	relations; thermodynamic equation of state Systems of Variable Composition: Partial molar quantities, dependence of thermodynamic parameters on composition Gibbs Duhem equation, chemical potential of ideal mixtures, change in thermodynamic functions in mixing of ideal gases	
Lec		relations; thermodynamic equation of state Systems of Variable Composition: Partial molar quantities, dependence of thermodynamic parameters on composition Gibbs Duhem equation, chemical potential of ideal mixtures, change in	

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Lecture 1	Cuitaria of thomas dymania aguilibrium dagraa of advangement of mastica		
	Criteria of thermodynamic equilibrium, degree of advancement of reaction		
Lecture 2	Phase transitions; phase equilibrium and phase rule; Partial molar properties and their significance		
T4 2			
Lecture 3	Concept of fugacity and determination of fugacity. Activity and activity coefficient		
T 4 - 5			
Lecture 4-5	Thermodynamics of ideal and non-ideal gases, and solutions. Functions for non-ideal solutions		
I automa (Activity coefficient of electrolytic solutions; determination of activity and		
Lecture 6	activity coefficients; ionic strength		
	UNIT III: Macroscopic and Microscopic States		
Lecture 1-2	Macroscopic and microscopic states; concepts of ensemble Boltzmann		
	distribution		
Lecture 3	Thermodynamic probability and entropy, distribution-Maxwell's and		
Lecture 4	Boltzmann's distribution		
Lecture 5-6	Thermodynamic probability and kinetic theory of gases		
	Examples based on Thermodynamic probability and kinetic theory of gases		
	UNIT IV: Concepts of Partition Functions		
Lecture 1	Introduction to molecular Partition functions		
Lecture 2-4	Partition function: relation to thermodynamic quantities, model systems.		
Lecture 5	Canonical, grand canonical and micro canonical ensembles, corresponding		
	distribution laws (using Lagrange's method of undetermined multipliers)		
Lecture 6	Translational and electronic partition functions and Applications		
Lecture 7	Rotational Partition functions and applications		
Lecture 8-9	Vibrational and Nuclear partition functions and Applications		
	Applications of thermodynamic properties in terms of partition functions		
	UNIT V: Heat capacity		
Lecture 1-3	Heat capacity behaviour of solids- chemical equilibrium constant in terms of		
	partition function		
Lecture 4	Femi-Dirac statistics, distribution law and applications		
Lecture 5	Bose-Einstein statistics- distribution law and applications		
Lecture 6	Ideal Fermi gas, Ideal Bose gas		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Name of Program	M.Sc. Chemistry	
Name of Course	Optical Imaging and Ultrafast Spectroscopy	
Course Code	CHY 24552	
Core / Elective / Other	Elective	
Credit	3	
Prerequisite:		
	and understanding of basic spectroscopy and	
photochemistry.	and andreaments of each speciality and	
2. An understanding of optics and element	ents of spectroscopy will be useful.	
	For master's student to advance their knowledge in	
optical imaging and ultrafast spectros		
Course Outcomes: The students are expect		
	plications of lasers, X-Rays in spectroscopy.	
2. Explain basic elements of optical syst		
	, 8 8, 13	
3. Compare different imaging methods a	and its applications in studying photochemical and	
photophysical processes.		
4. Define Auger electron and X-ray fluo	srascanca snactroscony	
Description of Contents in brief:	rescence spectroscopy.	
•	of laser based optical imaging and ultrafast	
I	cations of optical microscopy, steady state and time	
	ed. Students will develop understanding of these	
methods and tools to apply in chemical/ma		
Detailed Syllabus:	terrais research.	
	laser technology, stimulated emission, population	
	ison between conventional light sources and lasers,	
1 1	ag, Q-switching and the generation of nanosecond	
	eration of picosecond and femtosecond pulses.	
LASERS as spectroscopy light source		
	y: Light Sources, Monochromators, Filters,	
	ppy, point spread function, wide-field optical	
	microscopy, polarization, phase contrast and	
differential interference contrast micro	roscopy (DIC) microscopy. Confocal fluorescence	
	Instrumentation for detection of optical signals and	
time-resolved measurements.		
3. Application of LASERs in Imagin	g and Spectroscopy: Laser induced fluorescence	
and Raman Spectroscopy, Doppler	limited absorption and fluorescence with lasers.	
Excitation, Ionization and Stark's	spectroscopy. Circular dichroism spectroscopy,	
	scopy. Scattering, Steady state and time-resolved	
Resonance Raman spectroscopy, Su	urface Enhanced Raman (SERS), Coherent anti-	
stokes Raman spectroscopy (CARS).	Stimulated Raman spectroscopy.	
4. Ultrafast Spectroscopy: Absorpt		
	hotogenerated excited state absorption energies and	
associated lifetimes of molecules, tw	vo-photon absorption measurements. Excited state	

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

	110					
	lifetime and its detection Introduction to measurements, detection and kinetics of reactive					
intermediates. Time correlated single photon count (TCSPC) technique, ultrafa						
		in nanomaterial and novel fluorophores.				
5.		ny fluorescence spectroscopy: Auger electron spectroscopy, Experimental method				
	Processes	s in Auger electron ejection, Examples of Auger electron spectra, X-ray				
		nce spectroscopy, Experimental method, Processes in X-ray fluorescence,				
Examples of X-ray fluorescence spectra, Extended X-ray absorption fine structure						
List of Text Books:						
1.	Science, 20	V.P. Gupta. Molecular and Laser Spectroscopy: Advances and Applications. Netherlands, Elsevier Science, 2017.				
2.	Lakowicz, J. R. Principles of fluorescence Spectroscopy 3rd ed, 2006, Plenum, New York.					
3.	J. M. Holla	1. Hollas, Modern spectroscopy, Wiley, New York, 2004				
4.	Fluorescence Spectroscopy and Microscopy: Methods and Protocols. United States, Humana Press, 2014.					
5.						
Moore List of Reference Books:						
1. Douhal, A. ed. Femtochemistry and Femtobiology: ultrafast dynamics in molecular science . 2002 Wo						
1.	Scientific.					
2.		Telle, A. G. Urena, R. J. Donovan Laser Chemistry: Spectroscopy, Dynamics and Applications,				
3.		erny, Manik Pradhan, Dheeraj Kumar Singh, Modern Techniques of Spectroscopy: Basics,				
Instrumentation, and Applications. Germany, Springer Singapore. 2021						
4.	4. Hofmann, Siegfried. Auger- and X-Ray Photoelectron Spectroscopy in Materials Science: A User-Orien					
Guide. Germany, Springer, 2012.						
5. Yutaka Yoshida, Guido Langouche, Modern Mössbauer Spectroscopy: New Challenges Based on Cutt Edge Techniques. Germany, Springer Singapore, 2021						
Lac		(40 Lectures):				
		Topic				
Lecture No.		UNIT – I: LASER Basics				
Lag	ture 1					
		Brief review on molecular spectroscopy				
	ture 2	Principle of lasers and laser technology				
Lecture 3		Introduction to LASERS as light source: CW and Pulsed laser				
Lecture 4		CW & Pulsed LASERS and their applications				
	ture 5-6	Mode locking and the generation of picosecond and femtosecond pulses				
Lec	ture 7-9	LASERS in Spectroscopy and Microscopy				
		UNIT – II: Optical systems and Microscopy				
Lecture 1		Light Sources, Monochromators, Filters.				
Lecture 2		Fundamentals of optical microscopy, point spread function.				
Lecture 3		Wide-field optical microscopy, bright and dark field microscopy,				
		1 10, 6				
1		polarization.				
Lec	ture 4	1 10				
	ture 4 ture 5	polarization.				
Lec		polarization. Continued				
Lec	ture 5	polarization. Continued Phase contrast and differential interference contrast microscopy (DIC) microscopy				
Lec	ture 5	polarization. Continued Phase contrast and differential interference contrast microscopy (DIC) microscopy Confocal fluorescence and confocal reflectance microscopy.				
Lec	ture 5 ture 6-7	polarization. Continued Phase contrast and differential interference contrast microscopy (DIC) microscopy Confocal fluorescence and confocal reflectance microscopy. UNIT – III: Application of LASERs in Spectroscopy				
Lec' Lec'	ture 5 ture 6-7 ture 1	polarization. Continued Phase contrast and differential interference contrast microscopy (DIC) microscopy Confocal fluorescence and confocal reflectance microscopy. UNIT – III: Application of LASERs in Spectroscopy Laser induced fluorescence and Raman Spectroscopy.				
Lec' Lec' Lec'	ture 5 ture 6-7	polarization. Continued Phase contrast and differential interference contrast microscopy (DIC) microscopy Confocal fluorescence and confocal reflectance microscopy. UNIT – III: Application of LASERs in Spectroscopy				

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Lecture 4	Continued		
Lecture 5	Circular dichroism spectroscopy and applications.		
Lecture 6	Fluorescence spectroscopy and microscopy.		
Lecture 7	Confocal fluorescence and confocal reflectance microscopy.		
	Scattering,		
Lecture 8	Steady state and time-resolved Resonance Raman spectroscopy.		
Lecture 9	Surface Enhanced Raman (SERS), Coherent anti-stokes Raman spectroscopy		
	(CARS). Stimulated Raman spectroscopy.		
	UNIT - IV Ultrafast spectroscopy		
Lecture 1	Ab Absorption measurements on excited states, flash photolysis/transient		
	absorption.		
Lecture 2	Photogenerated excited state absorption energies and associated lifetimes of		
	molecules.		
Lecture 3 Two-photon absorption measurements.			
Lecture 4	Excited state lifetime and its detection Introduction to measurements,		
	detection and kinetics of reactive intermediates.		
Lecture 5	Continued		
Lecture 6 Time correlated single photon count (TCSPC) technique.			
Lecture 7	Continued		
Lecture 8-9 Ultrafast dynamics in nanomaterial and novel fluorophores.			
UNIT - IV X-ray fluorescence spectroscopy:			
Lecture 1	Introduction X-ray generation and continuous radiation. X-Ray Fluorescence		
	spectroscopy		
Lecture 2	Experimental method, Processes in X-ray fluorescence, Examples of X-ray		
	fluorescence spectra		
Lecture 3	Extended X-ray absorption fine structure. Various methods based on X-Ray		
	and applications,		
Lecture 4	Methods based on X-Ray and applications		
Lecture 5	Auger electron spectroscopy, Experimental method and Processes		
Lecture 6	in Auger electron ejection		
Lecture 7	Examples and Applications of Auger electron spectroscopy		
Lecture 8	Continue		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Nan	ne of the Program	M.Sc. Chemistry			
Nan	ne of Course	Research Methodology in Chemistry			
Cou	rse Code	CHY 24553			
Cor	e / Elective / Other	Elective			
Cre	dit	3			
Prer	Prerequisite:				
1.		wledge of basics of chemistry, like atomic structure,			
	bonding, chemical reactions, pe	riodic table, their properties etc.			
2.	Student should have the capability to understand how chemistry can explain variou				
	concepts of technology.				
3.	Basic mathematics for doing calculations and numerical problems is desired.				
Course Outcomes:					
1.	To enable students to undertake independent research of a problem in chemistry, and to analyze and present their findings.				
2.					
2.	and presentation of data.	ousie teenniques of concerton, unarysis, interpretation			
3.	To formulate a comprehensive, logical, and comprehensible project proposal.				
4.	To be familiar with basic techniques relevant to the analysis of quantitative and				
''	qualitative data.				
Desc	Description of Contents in brief:				
1.	Information and resources: Sources and their authenticity, methods for collecting				
1.	oogle scholar, Scifinder, Web of Science, Scopus;				
	Features of Chemdraw and its uses; searching of chemical resources, reactions, reage				
	and their chemical and physical properties.				
2.	Data collection: Spectral data bases, NMR data bases, CCDC, PDB, JCPDS, NIST.				
	Recording of experiments: Log book and lab notebook, accuracy, precision, fitting of				
	data, error bar, noise and data, IUPAC guidelines of presentation of data for				
	experimental and theoretical studies. Figures, legends, tables, foot notes, abbreviations				
		sed for plotting. Typesetting, templates, formulas and			
	equations, reference formats, su	1 0 11			
3.					
		blications: letters, communications, perspectives,			
	research articles, reviews, accou	unts. Outline, drafting, refinement, common errors,			
	editing services, proof reading	_			
4.	Ethics in research and publishing: Authorship, plagiarism, checking of plagiarism,				
	duplicate and redundant publica	ations, copyright, open access licenses, embargo period,			
	and repositories. Conflicts of in	terest, Bio-ethics. Social networks for promotion.			
	Review, Originality, physical in	sights, reproducibility, Renowned publishers in the field			
		Cactor, Ranking: journals, institutes (e.g. NIRF),			
		10 index, Author identification: ORCID and			
	-	ISBN, Intellectual property rights			
5.	Presentation: Different modes: board, poster, power-point, audio-visual.				
	List of Text Books:				
1.	Kothari, C. R., "Research Methodology Methods and Techniques", 2nd Ed, Vishwa Prakashan. 2006				

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

201	Kumar, Ranjit, "Research Methodology: A step by step guide for beginners", Sage Publications, 3rd Edn. 2011		
	erence Books:		
	k, W. Jr. and White, E.B., "The Elements of Style", Allyn and Bacon, 4th Edn. 2003		
	, E. R., "The Visual Display of Quantitative information", Graphics Press, 2nd Edn 2001		
-	M. J., "From Research to Manuscripts: A Guide to Scientific Research", Springer, 2nd Edn. 2009		
	Plan (About 30 Lectures):		
Lecture	7 P - 7		
	UNIT – I: Information and resources		
Lecture			
Lecture			
	Scifinder, Web of Science, Scopus		
Lecture			
Lecture			
Lecture	5 Searching of chemical resources		
Lecture	6 Searching of reactions, reagents and their chemical and physical properties.		
	UNIT – II: Data collection		
Lecture	, , , , , , , , , , , , , , , , , , , ,		
Lecture			
Lecture			
Lectur	IUPAC guidelines of presentation of data for experimental and theoretical studies.		
Lecture			
.	software used for plotting.		
Lecture			
	supplementary data		
	UNIT - III Writing style		
Lecture	, 1 ,		
Lecture	, 1, 5,1		
Lecture	, 1 1		
Lecture	71 1		
	Lecture 5 articles, reviews, accounts.		
Lecture 6 Outline, drafting, refinement			
Lecture	,		
Lecture	E		
	UNIT – IV: Ethics in research and publishing		
Lecture	Authorship, plagiarism, checking of plagiarism, duplicate and redundant publications, copyright		
Lecture	1		
Lecture			
Lecture	·		
Lecture	1		
Lectur	in the field of chemistry, citations, impact factor		
	ni the field of chemistry, citations, impact factor		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान) (An Institution of National Importance under MoE, Govt. of India)

Lecture 6	Ranking: journals, institutes (e.g. NIRF), individuals, h-index, i-index, i-10		
	index		
Lecture 7	Author identification: ORCID and RESEARCHER IDs, ISSN and ISBN,		
Lecture 8	Intellectual property rights		
	UNIT – V: Presentation		
Lecture 1	Different modes: board, poster		
Lecture 2	Power-point, audio-visual.		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

(An Institution of National Importance under MoE, Govt. of India)

Nan	ne of Program	M.Sc. Chemistry	
Name of Course		Photophysical Chemistry	
Course Code CHY 24654		CHY 24654	
Core / Elective / Other Elective		Elective	
Cre	dit	3	
Prei	requisite:		
1.	. Student should have knowledge and understanding of basic chemistry and spectroscopy.		
2.	. Basic idea of Quantum Mechanics and Group Theory will be helpful.		
3.	This is an optional course available for master's student to advance their understanding in		
	Photophysical chemistry.		
Cou	rse Outcomes: The students are expected	ed to be able to:	
1.	Assess Photochemistry and Photophysics Principles.		
2.	Describe photo induced electron transf	er mechanism and energetics.	
3.	3. Illustrate fluorescence resonance energy transfer (FRET), Chemiluminescence methods		
	and applications.		
4.	Identify applications involving photochemistry and photophysical.		

Description of Contents in brief:

This course will cover conceptual aspects of photochemistry, photophysical processes, photo-excited states, electron transfer mechanism, factors affecting it and energy transfer process etc. Various applications of photophysical processes will cover in this source. Students will learn photophysical concepts to explore in chemical/materials research.

Detailed Syllabus:

- 1. **Principles and concepts of photochemistry**: interaction of light with matter, Grotthuss-Draper and Stark-Einstein Law, Einstein's coefficients with transition moments (no derivation) and transition probabilities, oscillator strength, Beer-Lambert Law, relationship between Einstein's coefficient and total absorbance.
- 2. **Photophysical Processes**: Singlet triplet states, intensity and strength of electronic transition, electronic energy levels and selection rules for electronic transition, Franck-Condon principle. Jablonski diagram and photophysical processes Radiative (fluorescence, phosphorescence etc.) and non-radiative transitions, absorption and emission spectra, quantum yield and determination of quantum efficiency of Some Reactions. Quantum yield of fluorescence and phosphorescence, expressions for examples of ground state charge transfer, excimer and exciplex, luminescence quenching: static and dynamic, Stern-Volmer analysis, deviation from Stern-Volmer kinetics. Factors affecting excited state energy, solvent effect on spectra, non-specific and specific interaction (H-bonding and charge transfer), and Characteristics of CT interaction.
- 3. **Electron transfer mechanism and Energetics**: Energy transfer and electron transfer, Electron exchange interactions for energy and electron transfer, Visualization of energy transfer by Dipole-Dipole interaction, Quantitative aspects of Forster theory of Dipole-Dipole Energy Transfer, Triplet –triplet annihilation: special case of energy transfer via electron exchange interactions. Markus Theory and examples of Photo induced electron transfer. Mechanism of long distance electron transfer, through space and through bond interactions.

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

(An Institution of National Importance under MoE, Govt. of India)

- Photo induced energy transfer rates, free energy dependence of electron transfer on rate; fluorescence resonance energy transfer (FRET), FRET, rate and efficiency calculation of FRET. Chemiluminescence, detection systems and applications.
 Applications of photophysical chemistry: Photochromism, Luminescent Sensors, Solar Cells, Dye-Sensitized Solar Cells (DSSCs), Electroluminescent Materials, Light-Emitting
- Cells, Dye-Sensitized Solar Cells (DSSCs), Electroluminescent Materials, Light-Emitting Diodes (LEDs), Organic Light Emitting Diodes (OLEDs), Photo-polymerization, Photo degradation, Photolithography etc.

List of Text Books:

- 1. GiacomoBergamini, Serena Silvi, Applied Photochemistry: When Light Meets Molecules. Germany, Springer International Publishing. 2016
- 2. Lakowicz, J. R. Principles of fluorescence Spectroscopy 3rd ed, 2006, Plenum, New York.
- 3. J. M. Hollas, Modern spectroscopy, Wiley, New York, 2004
- 4. Johnson, Nathan A., and Smith, Abigail B. Photochemistry: New Research. United States, Nova Science Publishers, Incorporated, 2013.
- 5. Ninomiya, I., and Naito, T., Photochemical Synthesis, Academic Press, New York (1989).

List of Reference Books:

- 1. Ramamurthy, V., and Scaiano, J. C., Modern Molecular Photochemistry of Organic Molecules, University Science, Books, CA (2010)
- Balzani, Vincenzo, et al. Photochemistry and Photophysics: Concepts, Research Applications. Germany, Wiley, 2014.
- 3. ArnulfMaterny, Manik Pradhan, Dheeraj Kumar Singh, Modern Techniques of Spectroscopy: Basics, Instrumentation, and Applications. Germany, Springer Singapore. 2021
- 4. Wardle, Brian. Principles and Applications of Photochemistry. Germany, Wiley, 2009.
- 5. Kavarnos, G. J., Fundamentals of Photoinduced Electron Transfer, VCH publishers Inc., New York (1993).

Lecture Plan (42 Lectures):

Lecture Plan	(42 Lectures):		
Lecture No.	Topic		
	UNIT - 1 Principles and concepts of photochemistry		
Lecture 1	Historical background on photochemistry.		
Lecture 2	Principles and concepts of photochemistry: interaction of light with matter,		
Lecture 3	Grotthuss-Draper and Stark-Einstein Law.		
	Einstein's coefficients with transition moments (no derivation) and transition		
Lecture 4	probabilities, oscillator strength		
	Effect of Vibration on Transition between Electronic States: The Frank codon		
Lecture 5	Principle		
	Classical and semi-classical Harmonic Oscillator model of the Frank-Codon		
Lecture 6	principle for radiative Transitions.		
	Beer-Lambert Law and its applications, relationship between Einstein's		
Lecture 7	coefficient and total absorbance.		
	Continued		
Lecture 8	Absorption, Emission and Excitation Spectra		
Lecture 9	Continued		
	UNIT - 2 Photophysical Processes		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Lecture 1-3	Singlet triplet states, intensity and strength of electronic transition, electronic energy levels and selection rules for electronic transition, Franck-Condon
	principle.
Lecture 4	Jablonski diagram and photophysical processes Radiative (fluorescence,
Lecture 5	phosphorescence etc.) and non-radiative transitions, absorption and emission spectra.
Lecture 6	Quantum yield and determination of quantum efficiency of fluorescence and
	phosphorescence.
Lecture 7	Luminescence quenching: static and dynamic, Stern-Volmer analysis,
	deviation from Stern-Volmer kinetics.
	Numerical on quantum yield.
Lecture 8	Factors affecting excited state energy, solvent effect on spectra, non-specific
Lecture 9	and specific interaction (H-bonding and charge transfer), and Characteristics
	of CT interaction.
	UNIT - 3 Electron transfer mechanism and Energetics
Lecture 1-2	Energy transfer and electron transfer, Electron exchange interactions for
	energy and electron transfer.
Lecture 3	Visualization of energy transfer by Dipole-Dipole interaction
Lecture 4	Quantitative aspects of Forster theory of Dipole-Dipole Energy Transfer
	Triplet –triplet annihilation: special case of energy transfer via electron
Lecture 5	exchange interactions
	Continued
Lecture 6	Markus Theory and examples of Photo induced electron transfer
Lecture 7	Markus Theory and examples of Photo induced electron transfer
Lecture 8	Mechanism of long distance electron transfer, through space and through bond
Lecture 9	interactions.
Lecture10	Continued
	UNIT - 4 Energy transfer and Chemiluminescence
Lecture 1-2	Examples of fluorescence based sensors: Molecular and Supramolecular
	systems.
Lecture 3	Fluorescence resonance energy transfer (FRET), FRET, rate and efficiency
_	calculation of FRET
Lecture 4	FRET based sensors and applications
Lecture 5	Continued
Lecture 6	Chemiluminescence, detection systems and applications.
Lecture 7	Continued
T 4 1 2	UNIT - 5 Applications of photophysical chemistry
Lecture 1-2	Conversion of solar energy to chemical and other forms of energies,
Lastras 2	Photochromism, Luminescent Sensors etc.
Lecture 3 Lecture 4	Solar photovoltaic cell, basic principle and design of the cell. Dye-Sensitized Solar Cells (DSSCs),
Lecture 5	Electroluminescent Materials, Light-Emitting Diodes (LEDs), Organic Light
Lecture 6	Emitting Diodes (OLEDs), Organic Light Emitting Diodes (LEDs), Organic Light
Lecture 7	Photo-polymerization, Photo degradation, Photolithography etc.
Lecture /	1 now-polymenzation, i now degradation, i nowninography etc.

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Name of Program	M.Sc. Chemistry		
Name of Course	Synthon Approaches in Organic Synthesis		
Course Code	CHY 24655		
Core/ Elective/ Other	Elective		
Credit	3		
Prerequisite:			
Basic knowledge of orga	nic chemistry		
Course Outcome: Stude			
	with basic concepts of synthon approach explaining one- & two-group		
<u> </u>	sconnections, chemoselectivity, reversal of polarity, amine synthesis,		
	, stereospecificity, regioselectivity and regiospecificity.		
	ncept of disconnection approach for the synthesis of drug molecules.		
	otection of important functional groups (alcoholic, amino, carbonyl		
and carboxylic g	± • • • • • • • • • • • • • • • • • • •		
Description of Content			
*	he principles of synthetic chemistry like the synthon approach,		
protection, and their appl			
Detailed Syllabus:	neumon in arago		
	Synthon Approach: Definition of terms- Disconnection, synthons,		
	o interconversions (FGI), synthetic equivalents. General principles of		
	on approach, the importance of order of events in organic synthesis.		
	nnection Approach: One group C-X and two group C-X, One group		
	C-C disconnections-alcohols and carbonyl compounds, chemoselectivity, reversal of		
polarity, amine s			
-	Synthon approach-II: Two group C-C disconnections-1, 3 & 1,5-diffunctionalized		
	reochemistry in organic synthesis-stereoselectivity, stereospecificity,		
_	and regiospecificity.		
	ach in the synthesis of the following drugs: Salbutamol, Propanolol,		
	afimidone, drildone, belfosih. Ocfentanil, afornine Principle of		
	coholic, amino, carbonyl and carboxylic groups.		
	of Important drugs: An introduction to AIDS, how HIV infects the		
	Faction of nucleoside reverse transcriptase inhibitors- AZT, ddI, ddC,		
=	HIV-protease inhibitors-Ritonavir. Synthesis of AZT. An overview		
	inhibitors, Integrase inhibitors, Chemokine receptor binders, and		
· · · · · · · · · · · · · · · · · · ·	41 fusion activity.		
List of Books:			
	Synthesis, S.Warren, Wiley.		
	nods of Organic Synthesis, W. Carruthers, Cambridge Univ. Press.		
-	Reactions, H. O. House, W.A. Benzamin.		
	Chemistry Reactions, Mechanisms a Structures, J. March, Wiley.		
	Lecture Plan: About 42 Lectures		
Lecture No. Topic			
Lecture No.	•		
Lecture No.	Topic UNIT I: Introduction to Synthon approach		
	•		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Lecture 4-5	General principles of the disconnection approach
Lecture 6-8	Importance of order of events in organic synthesis
Lecture 9	Applications
	UNIT II: Basics of Disconnection Approach
Lecture 1-2	One group C-X and two group C-X, One group C-C disconnections-alcohols
Lecture 3-4	One group C-X and two group C-X, One group C-C disconnections-carbonyl compounds
Lecture 5	Chemoselectivity
Lecture 6	Reversal of polarity
Lecture 7-8	Amine synthesis
Lecture 9	Applications
	UNIT III: Synthon approach-II
Lecture 1-3	Two group C-C disconnections-1, 3 & 1,5-difunctionalized compounds
Lecture 4	Stereochemistry in organic synthesis-stereoselectivity
Lecture 5	Stereochemistry in organic synthesis- stereospecificity
Lecture 6	Stereochemistry in organic synthesis- regioselectivity
Lecture 7	Stereochemistry in organic synthesis- regiospecificity
Lecture 8	Applications
	UNIT IV: Synthon approach in the synthesis of the following drugs
Lecture 1	Synthesis: Salbutamol, Propanolol,
Lecture 2	Synthesis: Moxnidazole, Nafimidone
Lecture 3	Synthesis: Drildone, Belfosih
Lecture 4	Synthesis: Ocfentanil, Afornine
Lecture 5-7	Principle of protection of alcoholic, amino, carbonyl and carboxylic groups.
	UNIT V: Medicinal Uses of Important Drugs
Lecture 1	An introduction to AIDS, how HIV infects the system
Lecture 2-4	Mode of action of nucleoside reverse transcriptase inhibitors- AZT, ddI, ddC,
	d4T & 3TC and HIV-protease inhibitors-Ritonavir
Lecture 5	Synthesis of AZT
Lecture 6	An overview of HIV entry inhibitors
Lecture 7	Integrase inhibitors, Chemokine receptor binders
Lecture 8	Inhibitors of gp41 fusion activity
Lecture 9	Applications

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Name of Program		M.Sc. Chemistry
Name of Course		Radiations and Nuclear Chemistry
Course Code		CHY 24656
Core / Elective / Other		Core
Credit		3
Prerequisite:	NIL	
Course Outco	mes: Student	s will able to
1	Apply princ	ciple of nuclear structure, model & mechanism of nuclear
	radiation	
2	Understand	application of nuclear radiation with matter
3	Identify mea	asurement techniques for nuclear radiation
4	Connect wit	h Nuclear reactors in India
5	Contribute t	o the national laboratory R & D sector
Description of		
This course dis	cusses nature	& stability of nuclear reaction, importance of Radio and
		nd particularly in medical field. Also, the course gives status
	=	& how to do waste management of Radioactive materials
Detailed Sylla		· ·
1	1	troduction to Nuclear Chemistry
		shape & energy of nucleons and nuclei; Nuclear stability and
	_	pactivity, size and shape of a nucleus, nuclear spin, magnetic
	properties of a nucleus, nuclear magnetic resonance, nuclear resonance	
	recoil-less absorption, electric quadrupole moment, nuclear parity	
	nuclear stati	stics. Nuclear models: Shell model, liquid drop model, Fermi
	gas model, o	collective model and optical model. Nuclear reaction: Bethe's
	_	pes of nuclear reaction, reaction cross section, Q- value and
1		compound nucleus theory, trans-uranium, photo and
	thermonucle	ear reaction, fusion reactor, nuclear fission, fission fragments
		stribution, basic design of fission reactor.
2 UNIT-II: R		adioactivity
	Radioactive	decay, decay kinetics, parent-daughter decay growth
	relationship	, concepts of transient and secular equilibrium, alpha, beta and
	gamma deca	ay, artificial radioactivity. Radioactive dating process.
3	UNIT-III: 1	Interaction of nuclear radiation with matter
	Stopping po	ower and range for charged particles, interaction with X-rays
	and gamma	a rays - photoelectric effect, Compton scattering, pair
	production,	nuclear detectors -Gas detector, solid state detector & its use
	in materials	science.
4	UNIT-IV: A	Analytical-based nuclear techniques

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

	Neutron Activation analysis with case studies, Rutherford backscattering
	spectrometry, radioisotopes for nuclear medicine, elemental mapping of
	trace and major elements, depth-wise analysis by RBS, elastic recoil
	deflection analysis for hydrogen measurement, ion implantation, ion
	1
5	beam mixing. UNIT V. Nyalesa resetta system in India
3	UNIT-V: Nuclear reactor system in India
	Introduction to the reactor system, classification of the reactor, reactor
	materials & selection criteria for it. Three stages nuclear reactor program
	in India, Nuclear waste management.
List of Text Bool	
2	Principle of Nuclear chemistry; Peter A C Mcpherson World Scientific publisher Essentials of Nuclear chemistry H J Arnicker, New Age international publisher
3	Radio and Nuclear chemistry; Gregory Choppin Elsevier
List of Reference	1
1.	NUCLEAR CHEMISTRY: Step by Step Approach: Both Theory and Calculation
	Aspects; OPARA ISAIAH
Lecture Plan:	About 42 lectures
Lecture No.	Topic
	UNIT I: Introduction to Nuclear Chemistry
Lecture 1	Properties, shape & energy of nucleons and nuclei
Lecture 2	Nuclear stability and natural radioactivity, size and shape of a nucleus
Lecture 3	Nuclear spin, magnetic properties of a nucleus, nuclear magnetic
	resonance
Lecture 4	Nuclear resonance or recoil-less absorption, electric quadrupole moment
Lecture 5	Nuclear parity and nuclear statistics
Lecture 6-7	Nuclear models: Shell model, liquid drop model, Fermi gas model,
	collective model and optical model
Lecture 8-9	Nuclear reaction: Bethe's notation, types of nuclear reaction, reaction
	cross section, Q- value and threshold, compound nucleus theory, trans-
	uranium, photo and thermonuclear reaction, fusion reactor, nuclear
	fission, fission fragments and mass distribution, basic design of fission
	reactor
	UNIT II: Radioactivity
Lecture 1	Radioactive decay, decay kinetics
Lecture 2	Parent daughter decay growth relationship
Lecture 3	Concepts of transient and secular equilibrium, alpha, beta and gamma
Locidio 3	decay
Lecture 4	Artificial radioactivity
Lecture 5-8	Radioactive dating process
Lecture 3-6	UNIT III: Interaction of nuclear radiation with matter
	UNIT 111; Interaction of nuclear radiation with matter

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Lecture 1	Introduction of radiation with matter		
Lecture 2	Stopping power and range for charged particles		
Lecture 3	Interaction with X-rays and gamma rays – photoelectric effect		
Lecture 4	Compton scattering		
Lecture 5	Pair production		
Lecture 6	Nuclear detectors -Gas detector, solid-state detector		
Lecture 7-8	Nuclear detectors use in materials science		
	UNIT IV: Analytical-based nuclear techniques		
Lecture 1-2	Neutron Activation analysis with case studies		
	Rutherford back scattering spectrometry		
Lecture 3	Radioisotopes for nuclear medicine		
Lecture 4	Elemental mapping of trace and major elements		
Lecture 5-6	Depth wise analysis by RBS,		
	elastic recoil deflection analysis for hydrogen measurement		
Lecture 7-10	Ion implantation, ion beam mixing		
	UNIT V: Nuclear reactor system in India		
Lecture 1-2	Introduction to nuclear reactor system used in India, classification of		
	reactor		
Lecture 3	Reactor materials & selection criteria for it		
Lecture 4-5	Three stages nuclear reactor program in India		
Lecture 6-7	Nuclear waste management		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Name of Pro	gram	M.Sc. Chemistry
Name of Course		Inorganic Chemistry I
		(Coordination Chemistry and Reaction Mechanism)
Course Code		CHY 24512
Core/ Electiv	ve/ Other	Core
Credit		3
Prerequisite	: NIL	
Course Outo	come: The stude	nts are expected to be able to:
1	Compare bond	ling theories of coordination compounds.
2	Illustrate the el	lectronic transition & spectral properties of coordination complex.
3	Understand sta	ability/thermodynamic & rate/kinetic of coordination complex
4	Interpret structure elements.	ture, spectral & magnetic properties of Lanthanides & Actinides
Description	of Content in B	rief
		is properties of coordination, inner transition element compounds
		stand conceptualize and apply similar compounds.
Detailed Syll		1 11 7
1	UNIT I: Coor	dination chemistry
	Introduction, c	classification of ligands, Structure, and isomerism of coordination
	compounds, V	BT, CFT, MOT/LFT theory and examples of the complex. Energy
	level diagrams	in various crystal fields.
2	UNIT II: Cry	stal Field Stabilization Energy
	Applications	of CFT, d-orbital splitting in (octahedral, tetrahedral, square
	pyramidal, trig	gonal bipyramidal) Jahn-Teller distortion, spectrochemical series,
	Nephelauxetic	series.
3	UNIT III: The	ermodynamic and kinetic aspects of coordination compound
	Ligand substit	ution and electron transfer reaction of octahedral & square planar
	complexes. Re	eaction mechanism of transition metal complexes: Mechanism of
	electron transf	er reactions - Outer-sphere & inner – sphere reactions, Marcus-
	Hush theory.	
4	UNIT IV: Ele	ctronic spectra of transition metal complexes
	Comparison of	f electronic transitions of molecules and complexes, spectroscopic
	term symbols,	selection rules, d-d transition, charge-transfer transition (MLCT &
	LMCT), Orge	el diagrams, Tanabe Sugano diagram, magnetic properties &
	measurements	
5	UNIT V: Inne	er transition elements
	Periodic prope	rties, electronic configurations, comparison studies of lanthanides
	& actinides,	lanthanide and actinide contractions, spectral and magnetic
	properties, red	ox chemistry, and analytical applications.
1	1	

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

List of Text Bo	oks		
1	Inorganic Chemistry by F Albert Cotton, Geoffrey Wilkinson John Wiley Publisher		
2	Inorganic Chemistry: Principles of Structure and reactivity by James E. Huheey, Ellen A. Keiter,		
	Richard L. Keiter, Okhil K. Medhi. Pearson Publisher (5 th edition)		
3	Inorganic Chemistry by D. F. Shiver, P W Atkins. Oxford Publisher		
4	Inorganic Chemistry by Alan G. Sharpe. Adison Wesley Publisher (3 rd edition)		
5	Selected topics in Inorganic chemistry by Madan, Tuli, Wahid U. Mallik. S. Chand Publisher		
List of Referen			
1	Mechanism of Inorganic Reactions: F. Basalo and R. G. Pearson, Wiley Eastern publication 1967		
2	Inorganic chemistry: E Catherine, Housechroft & Alan G. Sharpe, Pearson (5 th edition)		
Lecture Plan	(about 42 lecture)		
Lecture No.	Topic		
	UNIT I: Coordination chemistry		
Lecture 1	Quick overview of bonding in ionic & covalent bonds, geometry of molecules by VSEPR theory.		
Lecture 2	Introduction to coordination compound, history and classification of coordination complex		
Lecture 3-4	Isomerism in coordination complexes, geometrical & optical isomerism		
	Coordination number from 1 to 8 & higher number complex examples, Chelate effect.		
Lecture 5-7	Valence bond theory, Crystal field theory, bonding in coordination compound for		
	$d^1 - d^{10}$ system.		
Lecture 8-10	Molecular orbital theory: Postulates, bonding & antibonding concept for sigma		
	and pi-bonding complex (pi-donor and pi-acceptor ligands) octahedral and tetrahedral complex.		
	UNIT II: Crystal Field Stabilization Energy		
T a atauna 1			
Lecture 1	Crystal field effect- (octahedral, tetrahedral, square pyramidal, trigonal bipyramidal		
Lecture 2	High spin & low spin complex		
Lecture 3-4	Crystal field stabilisation energy (CFSE) - d-orbital splitting in different		
	geometries, factors affecting CFSE, applications of CFT		
Lecture 5	Jahn-Teller distortion		
Lecture 6	Spectrochemical series		
Lecture 7	Nephelauxetic effect (Racah Parameter)		
Eccture /	UNIT III: Thermodynamic and kinetic aspects of coordination compound		
Lecture 1-2	Introduction of reaction, kinetics and mechanism of tetrahedral, Square planar &		
Lecture 1-2			
	Octahedral complex, Ligand substitution and electron transfer reaction of		
	octahedral & square planar complexes, Trans effect.		
Lecture 3-4	Association, dissociation and interchange substitution reaction mechanisms, Eigen–Wilkins mechanism,		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Lecture 5-7	Mechanism of one electron reactions, Outer-sphere and inner sphere electron			
	transfer reaction, type reactions, Marcus-Hush theory, factors depends on			
	reaction mechanism.			
	UNIT IV: Electronic spectra of transition metal complexes			
Lecture 1-2	Introduction of electronic transitions of molecules and complexes, terminology			
	for free atom & ions Term symbols, spectroscopic term symbols, Russell-			
	Saunders coupling & J-J coupling/Spin-orbit coupling			
Lecture 3	Selection rules (spin selection & laporte selection), d-d transition for various			
	coordination complex			
Lecture 4-5	Charge-transfer transition, metal-to-ligand charge transfer (MLCT) & LMCT			
	(ligand-to-metal charge transfer e.g. dilute solution of KMnO ₄)			
Lecture 6	Orgel diagrams for octahedral and tetrahedral complex e.g. dn-d10-n for high and			
	low spin complex			
Lecture 7-8	Tanabe Sugano diagram octahedral and tetrahedral complex d ² , d ³ , d ⁷ , d ⁸ central			
	metal electron system.			
Lecture 9	Magnetic properties and measurements (Guoy an Faraday balance) of			
	coordination compounds.			
	UNIT V: Inner transition elements			
Lecture 1	Introduction, Periodic trends of lanthanides and actinides			
Lecture 2	Extraction & uses			
Lecture 3-4	Physical properties- stable oxidation states, lanthanide and actinide contraction			
Lecture 5	Lanthanide chelate, separations lanthanides from actinides			
Lecture 6	Absorption spectra, luminescence of lanthanide complex, magnetic properties			
Lecture 7	Inorganic compound & coordination compound of lanthanoids- halide, oxides,			
	Ln(III) complex			
Lecture 8-9	Thorium, Uranium & Plutonium inorganic compound & coordination compound			
	of Actinoids			

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Name of Pro	gram	M.Sc. Chemistry	
Name of Course		Analytical Chemistry-I	
		(Principles, Practices, and Applications)	
Course Code		CHY 24514	
Core/ Electiv	ve/ Other	Core	
Credit		3	
Prerequisite	: NIL		
1	Student should have	ve understanding of the fundamentals of analytical chemistry.	
2	Student should have	ve the capability to understand how the advance knowledge	
	could help in carry	ing out research.	
Course Outo	comes		
1	To impart basic kn	owledge in different concepts of analytical chemistry	
2	The ability to expla	ain basics of behind techniques like chromatography,	
		nethods, thermal methods etc.	
Description	of Contents in Brie		
In this cours	e student will lear	n about phase diagrams and volumetric analysis based on	
Conductomet	ter, potentiometer a	and pH metry; specific molar rotation using refractometer,	
	-	omponent system and Phase transition temperature.	
Detailed Syll		· · ·	
1		s and Data Handling in Analytical Chemistry	
	Characterizing Measurements and Results: Measures of Central Tendency		
	(Mean & Median) and, Measures of Spread (Range, Standard Deviation &		
	Variance); Characterizing Experimental Errors (Errors that affect Accuracy,		
	Errors that affect Precision); Populations and Samples, Probability Distributions		
	for Populations (Normal Distribution); Confidence Intervals for Populations,		
	Degrees of Freedom, Confidence Intervals for Samples. Statistical Analysis of		
	Data: Significance Testing, One-Tailed and Two-Tailed Significance Test		
	Dixon's Q-Test		
2	UNIT-II: Separat	ion Techniques	
	-	Separation, Classification of Separation Techniques based on	
	size, mass or de	ensity, Complexing reagents (masking), change of state,	
	Partitioning between	en Phases.	
	Liquid-liquid extr	ractions: Partition Coefficients and Distribution Ratios,	
	Liquid-Liquid Ex	xtraction with no Secondary Reactions, Liquid-Liquid	
		ving Acid-Base Equilibria, Liquid-Liquid Extraction of a	
	Metal-Ligand Con		
3	UNIT-III: Advan	ced Chromatographic Techniques	
		of Column Chromatography (Chromatographic Resolution,	
		Factor, Selectivity, Column Efficiency, Peak capacity,	

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

-				
	Asymmetric Peaks); Optimizing Chromatographic Separations (Using the			
	Retention factor to optimize Resolution, Using Selectivity to optimize			
	Resolution, Using Column Efficiency to optimize Resolution)			
	Gas chromatography (Chromatographic Columns, Mobile phase, Sample			
	Introduction, Temperature Control; Detectors: Thermal Conductivity Detector,			
	Flame Ionization Detector, Electron Capture Detector, Mass Spectrome			
	Quantitative and Qualitative Applications; Evaluation (Scale of Operation,			
	Accuracy, Precision, Sensitivity, Selectivity, Time, Cost, and Equipment).			
	High-Performance Liquid Chromatography (Columns, Mobile Phases, HPLC			
	Plumbing; Detectors: Spectroscopic Detectors, Electrochemical Detectors);			
	Quantitative and Qualitative Applications; Evaluation (Scale of Operation,			
	Accuracy, Precision, Sensitivity, Selectivity, Time, Cost, and Equipment).			
	Ion-Exchange Chromatography			
4	Size-Exclusion Chromatography			
4	UNIT-IV: Advanced Thermal Techniques			
	Introduction to Thermal Analysis, Brief history of Thermal Analysis, Basic			
	Measurement Technology			
	Thermogravimetric Analysis: Design and measuring principle, Sample			
	preparation, performing measurements, Interpreting TGA Curves, TGA			
	Evaluations, Applications.			
	Differential Thermal Analysis: Measurement Principle, DTA Curves and			
	Calculations			
	Differential Scanning Calorimetry: Design and measuring principle, Sample			
	preparation, performing measurements, Interpreting DSC curves, DSC			
	evaluations, Measurements, Calibration and Adjustment, Applications.			
	Brief of Polymers and use of Thermal Analysis to characterize Polymers.			
5	UNIT-V: Electroanalytical Techniques			
	Introduction, Classification and Electrical components			
	Polarography: Principle, factors affecting current flow, Ilkovic equation,			
	Half-wave potential, experimental set-up, Advantages, disadvantages and			
	applications			
	Pulse Polarography: Instrumentation, theory and applications			
	Linear and cyclic voltammetry: Instrumentation, theory and applications			
	Potentiometry: Instrumentation, theory and applications			
	Ion-selective electrodes			
List of Text Bo	ooks			
1	Modern Analytical Chemistry, David Harvey, McGraw-Hill Higher Education, 1st Edition, 2000.			
2	Skoog A., Holler F. J., Crouch S. R., Principles of Instrumental Analysis, 6th Edition,			
2	Brooks/Cole Cengage Learning, Belmont, CA, 2007			
3	Christian, G.D., "Analytical Chemistry" 6 th Ed. Wiley, 2008			

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

1	Ewing, G.W., "Instrumental Methods of Chemical Analysis", 5 th Ed. McGraw Hill, 2004		
2	Analytical Chemistry- R. M. Verma		
3	Fundamentals of Analytical Chemistry, Eighth Edition- Skoog; West; Holler; Crouch		
	1 (about 42 lecture)		
Lecture	Topic		
No.			
	UNIT I: Statistics and Data Handling in Analytical Chemistry		
Lecture 1	Vocabulary of Analytical Chemistry, Objectives, The Analytical Process		
Lecture 2	Characterizing Measurements and Results: Measures of Central Tendency		
	(mean, median)		
Lecture 3	Measures of Spread (Range, Standard Deviation, variance)		
Lecture 4	Characterizing Experimental Errors (Errors That Affect Accuracy, Errors That Affect Precision)		
Lecture 5	Populations and Samples		
Lecture 6	Probability Distributions for Populations (Normal distribution)		
Lecture 7	Confidence Intervals for Populations, Degrees of freedom, Confidence Intervals		
	for Samples		
Lecture 8	Statistical Analysis of Data: Significance Testing, One-Tailed and Two-Tailed		
Lecture 9	Significance Tests		
Lecture 10	Dixon's Q-Test		
	UNIT II: Separation Techniques		
Lecture 1	Liquid-Liquid Extraction with no Secondary Reactions		
Lecture 2	General theory of separation		
Lecture 3	Classification of separation techniques based on size, mass or density		
Lecture 4	Classification of separation techniques based on complexing reagents (masking), change of state, Partitioning Between Phases		
Lecture 5	Liquid-liquid extractions: Partition Coefficients and Distribution Ratios		
Lecture 6	Liquid–Liquid Extractions involving Acid–Base Equilibria		
Lecture 7-8	Liquid–Liquid Extraction of a Metal–Ligand Complex		
	UNIT III: Advanced Chromatographic Techniques		
Lecture 1	General Theory of Column Chromatography: Chromatographic Resolution,		
	Solute Retention Factor		
Lecture 2	Selectivity, Column Efficiency, Peak capacity, Asymmetric Peaks, Optimizing		
	Chromatographic Separations: Using the Retention factor to Optimize		
	Resolution		
Lecture 3	Using Selectivity to Optimize Resolution, Using Column Efficiency to Optimize		
	Resolution		
Lecture 4	Gas chromatography: Chromatographic Columns,		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

	Mobile phase, Sample Introduction, Temperature Control	
Lecture 5	Detectors: Thermal Conductivity Detector, Flame Ionization Detector, Electron	
	Capture Detector, Mass Spectrometer	
Lecture 6	Quantitative and Qualitative Applications,	
	Evaluation (Scale of Operation, Accuracy, Precision, Sensitivity, Selectivity,	
	Time, Cost, and Equipment)	
Lecture 7	High-Performance Liquid Chromatography: Columns, Mobile Phases, HPLC	
	Plumbing	
Lecture 8	Detectors: Spectroscopic Detectors, Electrochemical Detectors	
	Quantitative and Qualitative Applications	
Lecture 9	Evaluation: Scale of Operation, Accuracy, Precision, Sensitivity, Selectivity,	
	Time, Cost, and Equipment	
Lecture 10	Ion-Exchange Chromatography	
	Size-Exclusion Chromatography	
	UNIT IV: Advanced Thermal Techniques	
Lecture 1	Introduction to thermal analysis, brief history of thermal analysis, basic	
	measurement technology	
Lecture 2	Thermogravimetric analysis: Design and measuring principle, Sample	
	preparation, performing measurements	
Lecture 3	Interpreting TGA curves, TGA evaluations, Applications	
Lecture 4	24 Differential thermal analysis: Measurement principle, DTA curves	
	calculations	
Lecture 5	Differential scanning calorimetry: Design and measuring principle, sample	
	preparation, performing measurements	
Lecture 6-8	Interpreting DSC curves, DSC evaluations, Measurements, Calibration and	
	adjustment, Applications. Brief of polymers and use of thermal analysis to	
	characterize polymers	
	UNIT V: Electroanalytical Techniques	
Lecture 1	Electroanalytical Techniques: Introduction, Classification and Electrical	
	components	
Lecture 2	Polarography: Principle, factors affecting current flow, Ilkovic equation,	
	Half-wave potential, experimental set-up, Advantages, disadvantages and	
	applications	
Lecture 3	Pulse Polarography: Instrumentation, theory and applications	
Lecture 4-5	Linear and cyclic voltammetry: Instrumentation, theory and applications	
	Potentiometry: Instrumentation, theory and applications	
Lecture 6	Ion-selective electrodes	

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Name of Program		M.Sc. Chemistry
Name of Course		Inorganic Chemistry Lab I
Course Code		CHY 24516
Core /	Elective / Other Core	Core
Credit	t	1
	quisite: NIL	
Cours	e Outcomes: Students will be able to	
1.	-	nich helps them to gain practical skills in inorganic
	chemistry	
2.	Perform qualitative chemical analysis	
3.		compounds quantitively (volumetric & gravimetric)
4.	Synthesize inorganic compound	
	iption of Contents in Brief	
	•	actical of both qualitative and quantitative including
synthe		
	ed Syllabus	
1.	Group Analysis	
	Qualitative inorganic analys	SIS
2.	Iodometric titration	
		estimation of copper sulphate using sodium
	thiosulphate solution.	
	 Iodometric titration for estimation of iodine in iodized common salt. 	
	• Estimation of MnO ₂ in Pyrolusite.	
3.	Complexometric titration using I	<u>e</u>
	 Determination of Ca and M 	•
	 Determination of Nickel using 	ing murexide indicator.
4.	Synthesis	
	Bis(acetylacetonato)diamma	amineiron(II) [Fe(acac)(en)Cl ₂].
	 Hexaminecobalt (III)chloric 	de (any coordination compound).
5.	Gravimetry	
	The gravimetric determinate	ion of copper as Cu(I)thiocyanate
List of Text Books		
1.		7 th edition, B Sivasankar; Pearson Publication
2.	Vogel's quantitative chemical analysis	s, 6th edition, J Mendham; Pearson Publication
3.		arr and B. W. Rockett, Von Nostrand Reinhold Co.,
	London	

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Name of Prog	ram	M.Sc. Chemistry
Name of Course		Inorganic Chemistry II:
1		(Main Group elements and Group Theory)
Course Code		CHY 24522
Core/ Elective	/ Other	Core
Credit		3
Prerequisite:		
1.	Basic mathen	natics of group and matrix.
Course Outco	mes: Students	are expected to
1	Compare prin	ciples & theories of acid & base concepts
2	Inspect the co	oncept of aqueous & non-aqueous solvent
3	Determine th	ne symmetry element & symmetry operation of any simple
	molecule	
4	Demonstrate	point groups for finding out electronic properties of atom or
	molecule. Als	so, compare selection rules for various transitions.
Description of	Contents in b	rief:
First part of co	urse will cover	basic principles of theories and applications of acid and base,
aqueous & noi	n-aqueous solv	ent. Second part of the course covers symmetry of molecules and
their applicatio	ons.	
Detailed Sylla	bus:	
1	UNIT I: Concepts of acids, bases and aqueous, non-aqueous solvents	
	Bronsted-Lowry, Lux-Flood, Solvent-system, Lewis, Usanovich, definition of	
	acid and base, measures of acid & base strength, Arrhenius, Franklin, protonic	
	acid-base theory, Hard-Soft acid-base theory, Classification of acid & base,	
	electronegativity of hard & soft acid-base. Water, ammonia, protonic solvent,	
	aprotic solve	nt molten salt- solvent properties, reactivity of molten salt,
	complex formation of molten salt, electrochemistry in nonaqueous solution.	
2	UNIT II: Main group element properties- I	
	Structure, bo	nding and reactivity of halides, oxides, oxoacids, nitrides, and
	sulfide compounds of group-13, 14, 15 elements.	
3	UNIT-III: Main group element properties – II	
	Structure, bonding and reactivity of halides, oxides, oxoacids, nitrides, ar	
	sulfide compounds of the group- 16, 17 & 18 elements.	
4	UNIT-IV: G	•
		to symmetry, symmetry element, symmetry operation, Group
		sentation of group. Generation of symmetry operation from
	symmetry element, Point group analysis.	
5	UNIT-V: Ma	trix representation of Group

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

	Group multiplication table, stereographic projection, Matrix representation of	
	symmetry elements, Matrix representation of point group, Reducible &	
	irreducible representation, Great Orthogonality theorem, construction Character	
	table using GOT and application of fundamental molecule, Mulliken symbol,	
reduction formula, Chemical applications of group theory: symme		
linear combination of atomic orbitals. Molecular vibration – normal mod		
	symmetry operation. Chemical applications of group theory: symmetry adap	
	linear combination of atomic orbitals (LCAO-MO); Construction of hybrid	
	orbitals using symmetry aspects; Selection rules.	
List of Text Bool		
1	Chemical Applications of Group theory by F. Albert Cotton. Wiley Publisher	
2	Inorganic Chemistry by F Albert Cotton, Geoffrey Wilkinson John Wiley Publisher	
3	Symmetry and spectroscopy of molecules, K. Veera Reddy, New age Int. Publisher	
	Inorganic Chemistry by D. F. Shiver, P W Atkins. Oxford Publisher	
List of Text Bool		
1	Chemical Applications of Group theory by F. Albert Cotton. Wiley Publisher	
2	Inorganic Chemistry by F Albert Cotton, Geoffrey Wilkinson John Wiley Publisher	
3	Symmetry and spectroscopy of molecules, K. Veera Reddy, New age Int. Publisher	
4 List of Reference	Inorganic Chemistry by D. F. Shiver, P W Atkins. Oxford Publisher	
1.	D. M. Bishop, Group theory and Chemistry, Dover, 1989	
	(about 42 Lectures):	
Lecture No.	Topic	
	UNIT I: Concepts of acids, bases and aqueous, non-aqueous solvents	
Lecture 1	Bronsted-Lowry, Lux-Flood, Solvent-system, definition of acid and base	
Lecture 2	Lewis, Usanovich definition of acid and base, Measures of acid & base strength	
Lecture 3	Arrhenius, Franklin, protonic acid-base theory, Hard-Soft acid-base theory	
Lecture 4	Classification of acid & base, electronegativity of hard & soft acid-base	
Lecture 5-6	Water, ammonia, protonic solvent, aprotic solvent molten salt- solvent	
	properties	
Lecture 7	Reactivity of molten salt, complex formation of molten salt	
Lecture 8	Electrochemistry in nonaqueous solution	
	UNIT II: Main group element properties- I	
Lecture 1-2	Structure, bonding and reactivity of halides, oxides, oxoacids, nitrides, and	
	sulfide compounds of group-13 elements	
Lecture 3-5	Structure, bonding and reactivity of halides, oxides, oxoacids, nitrides, and	
	sulfide compounds of group-14 elements	
Lecture 6-7	Structure, bonding and reactivity of halides, oxides, oxoacids, nitrides, and	
	sulfide compounds of group-15 elements	
	UNIT III: Main group element properties – II	
l		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान) (An Institution of National Importance under MoE, Govt. of India)

Lecture 1-3	Structure, bonding and reactivity of halides, oxides, oxoacids, nitrides, and		
	sulfide compounds of the group- 16 elements		

Lecture 1-3	Structure, bonding and reactivity of halides, oxides, oxoacids, nitrides, and		
	sulfide compounds of the group- 16 elements		
Lecture 4-5	Structure, bonding and reactivity of halides, oxides, oxoacids, nitrides, and		
	sulfide compounds of the group- 17 elements		
Lecture 6-7	Structure, bonding and reactivity of halides, oxides, oxoacids, nitrides, and		
	sulfide compounds of the group- 16, 17 & 18 elements		
	UNIT IV: Group Theory		
Lecture 1	Symmetry elements and symmetry operations: molecular symmetry		
Lecture 2	Introduction to symmetry & Group theory		
Lecture 3	Nomenclature for symmetry operations/ elements		
Lecture 4-5	Proper axis of symmetry, Plane of symmetry, Center of symmetry/inversion		
	center, Rotation-reflection axis or axis of improper rotations, Identity		
Lecture 6-9	Molecular point group – point group, identification of molecular point group,		
	low symmetry & high symmetry molecules, Cn, Dn & Sn type point group		
	UNIT V: Matrix representation of Group		
Lecture 1	Group multiplication table		
Lecture 2	Matrix representation of symmetry elements, Matrix representation of point		
	group, Reducible & irreducible representation		
Lecture 3-4	Character of a representation, properties of Irreducible representation		
	construction Character table using GOT: different point group		
Lecture 5	Mulliken symbols for IRs		
Lecture 6	Determination of translational & rotational symmetry species		
Lecture 7	Standard reduction formula, Direct product		
Lecture 8-9	Chemical applications of group theory: symmetry adapted linear combination		
	of atomic orbitals (LCAO-MO)		
Lecture 10-11	Construction of hybrid orbitals using symmetry aspects; Selection rules		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Name of Program		M.Sc. Chemistry
Name of Course		Inorganic Chemistry Lab II and Minor Project-II (Self Learning)
Course Code		CHY 24526
Core /	Elective / Other Core	Core
Credit		2
	uisite: NIL	
	Outcomes: Students will be able to	
	· · · · · · · · · · · · · · · · · · ·	hich helps them to gain practical skills in inorganic
	chemistry	
	Understand qualitative chemical analy	
	Estimate the mixtures by colorimetric	and gravimetric techniques
	otion of Contents in Brief	
	•	ractical of both qualitative and quantitative including
synthes		
	d Syllabus	
1.	Quantitative Analysis-I	
		Cr, Fe, Co, Cu, Mn & NH ₄ ⁺ , PO ₄ ³⁻ & NO ₃ ⁻
2.	Quantitative Analysis-II	
		mixture of salt (both two & three) by Gravimetric
	estimation.	
	Cu & Ni	
	Cu, Ni & Zn	
2	Fe, Ni & Zn	
3.	Qualitative Analysis	
	Group Analysis of Inorgani	c ions.
4.	Synthesis of Inorganic Complexe	
4.	M'(DMC)	S.
	,	
	• [Co(NH ₃) ₆][Co(NO ₂) ₆]	
	• Fe ₄ [Fe(CN) ₆] ₃ Prussian blue	
5.	Gravimetry	
T. 1	Gravimetric analysis of single elements- Ag and Fe	
	Text Books	7th 1'.' D.C' 1 D. D.11' .'
1.		, 7 th edition, B Sivasankar; Pearson Publication
2.		s, 6 th edition, J Mendham; Pearson Publication
3.	•	Iarr and B. W. Rockett, Von Nostrand Reinhold Co.,
	London.	

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Name of Prog	ram	M.Sc. Chemistry
Name of Course		Organometallic Chemistry
Course Code		CHY 24612
Core / Elective / Other		Core
Credit		3
Prerequisite:	NIL	
Course Outco	mes: Students will	able to
1	Understand the synthesis & chemical reactivity of halides, oxoacid, nitride &	
	sulphide of main	group elements & apply the structure and bonding of similar
	new compounds.	
2	<u> </u>	c principle of structure and bonding of ring, cage inorganic
	compounds	
3	_	metallic compounds of carbonyl, cyclopentdienyl, metallocene
	complex	
4	-	chanism of homogeneous and heterogeneous organometallic
	catalysts	
	Contents in Brie	
		vanced main group elements with selected compounds.
_	-	rinciples & mechanism and classification of catalyst which is
	ustrial synthesis pr	rocess.
Detailed Sylla		
1	UNIT I: Inorganic Rings and Cages	
	Introduction, Structure, bonding and reactivity of Rings - borazine,	
		d their derivatives, Cages – borides, carbides, boranes,
	_	EPT model & Styx notation, Wade's rule, carcarboranes,
	metalloboranes & metallocarboranes, silicones, silicates etc.	
2	UNIT II: Organometallics	
	1	nthesis, structure and bonding of organometallic compounds,
	_	ectrons, EAN & 18-electron rule, MO theory applied to
	organometallic compounds, metal-carbonyls, metal-olefin complexes,	
	metal bonds, Wade's rule for organometallic clusters.	
3		l-carbene & carbyne complex
		netal-carbyne complexes and metallocenes (Fe, Ru, Cr). Types
		c reactions: Oxidative Addition (Concerted, SN ₂ & radical
	1	eductive Elimination, 4-Center Reactions [2+2] Reactions,
4		on, Migration vs Insertion, Ligand substitution.
4	UNIT IV: Homo	ogeneous catalysis

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

	Terminologies in Catalysis, Hydrogenation of alkenes and other unsaturated		
	compounds, Carbonylation Reaction (hydroformylation, hydrocarboxylation &		
	hydrocyanation].		
5	UNIT V: Heterogeneous catalysis and fluxional molecules		
	Introduction of heterogeneous catalysis, Fischer Tropsch reaction, Ziegler-		
	Natta polymerization, etc. Fluxional metal-metal bonded compounds and		
	clusters.		
List of Text Book	XS .		
1	Inorganic Chemistry – Principles of Structure and Reactivity, J. E. Huheey, Harper Collins, New York, 2001		
2	Inorganic Chemistry, Garry L Meislar, 3 rd edition.		
3	Basic Organometallic Chemsitry – Concepts, Synthesis and Applications; B DGupta, A J Elias		
	2 nd edition		
4	D. F. Shriver, P. W. Atkins and C. H. Langford, Inorganic Chemistry, Oxford University Press,		
	Oxford, 2000		
5	F. A. Cotton, G. Wilkinson, C. A. Murillo and M. Bochmann, Advanced Inorganic Chemistry,		
6	John Wiley & Sons, Inc., New York, 2009 Weller, T. Overton, J. Rourke and F. Armstrong, Inorganic Chemistry, 6th Edition, Oxford		
O	University Press, 2014. (South Asia Edition 2015)		
List of Reference			
Elst of Iteref chee			
1	The Organometallic Chemistry of the transition metals by R.H. Crabtree. Wiley Interscience		
Lecture Plan (The Organometallic Chemistry of the transition metals by R.H. Crabtree. Wiley Interscience (about 42 Lectures):		
	about 42 Lectures):		
Lecture Plan (Lecture No.	about 42 Lectures): Topic		
Lecture No.	about 42 Lectures): Topic UNIT I: Inorganic Rings and Cages		
	(about 42 Lectures): Topic UNIT I: Inorganic Rings and Cages Introduction of inorganic rings and cages, structures and bonding of Ring –		
Lecture No.	about 42 Lectures): Topic UNIT I: Inorganic Rings and Cages Introduction of inorganic rings and cages, structures and bonding of Ring – Borazine, Phosphazene and Phosphazene polymers, Heterocyclic inorganic		
Lecture No. Lecture 1-3	about 42 Lectures): Topic UNIT I: Inorganic Rings and Cages Introduction of inorganic rings and cages, structures and bonding of Ring – Borazine, Phosphazene and Phosphazene polymers, Heterocyclic inorganic ring		
Lecture No.	Topic UNIT I: Inorganic Rings and Cages Introduction of inorganic rings and cages, structures and bonding of Ring – Borazine, Phosphazene and Phosphazene polymers, Heterocyclic inorganic ring Boron cage compound – boranes, carboranes, metallacarboranes, boride,		
Lecture 1-3 Lecture 4-7	Topic UNIT I: Inorganic Rings and Cages Introduction of inorganic rings and cages, structures and bonding of Ring – Borazine, Phosphazene and Phosphazene polymers, Heterocyclic inorganic ring Boron cage compound – boranes, carboranes, metallacarboranes, boride, carbides		
Lecture No. Lecture 1-3	Topic UNIT I: Inorganic Rings and Cages Introduction of inorganic rings and cages, structures and bonding of Ring – Borazine, Phosphazene and Phosphazene polymers, Heterocyclic inorganic ring Boron cage compound – boranes, carboranes, metallacarboranes, boride, carbides Lipscomb's Polyhedral Skeletal Electron Pair Theory - Wade's rule, Styx		
Lecture 1-3 Lecture 4-7	Topic UNIT I: Inorganic Rings and Cages Introduction of inorganic rings and cages, structures and bonding of Ring – Borazine, Phosphazene and Phosphazene polymers, Heterocyclic inorganic ring Boron cage compound – boranes, carboranes, metallacarboranes, boride, carbides		
Lecture 1-3 Lecture 4-7	Topic UNIT I: Inorganic Rings and Cages Introduction of inorganic rings and cages, structures and bonding of Ring – Borazine, Phosphazene and Phosphazene polymers, Heterocyclic inorganic ring Boron cage compound – boranes, carboranes, metallacarboranes, boride, carbides Lipscomb's Polyhedral Skeletal Electron Pair Theory - Wade's rule, Styx		
Lecture No. Lecture 1-3 Lecture 4-7 Lecture 8	Topic UNIT I: Inorganic Rings and Cages Introduction of inorganic rings and cages, structures and bonding of Ring — Borazine, Phosphazene and Phosphazene polymers, Heterocyclic inorganic ring Boron cage compound — boranes, carboranes, metallacarboranes, boride, carbides Lipscomb's Polyhedral Skeletal Electron Pair Theory - Wade's rule, Styx notation (Boron hydride),		
Lecture No. Lecture 1-3 Lecture 4-7 Lecture 8	Topic UNIT I: Inorganic Rings and Cages Introduction of inorganic rings and cages, structures and bonding of Ring – Borazine, Phosphazene and Phosphazene polymers, Heterocyclic inorganic ring Boron cage compound – boranes, carboranes, metallacarboranes, boride, carbides Lipscomb's Polyhedral Skeletal Electron Pair Theory - Wade's rule, Styx notation (Boron hydride), Inorganic chains, catenation, heterocatenation, Silicate minerals, Intercalation		
Lecture No. Lecture 1-3 Lecture 4-7 Lecture 8	Topic UNIT I: Inorganic Rings and Cages Introduction of inorganic rings and cages, structures and bonding of Ring – Borazine, Phosphazene and Phosphazene polymers, Heterocyclic inorganic ring Boron cage compound – boranes, carboranes, metallacarboranes, boride, carbides Lipscomb's Polyhedral Skeletal Electron Pair Theory - Wade's rule, Styx notation (Boron hydride), Inorganic chains, catenation, heterocatenation, Silicate minerals, Intercalation chemistry		
Lecture No. Lecture 1-3 Lecture 4-7 Lecture 8 Lecture 9-10	Topic UNIT I: Inorganic Rings and Cages Introduction of inorganic rings and cages, structures and bonding of Ring – Borazine, Phosphazene and Phosphazene polymers, Heterocyclic inorganic ring Boron cage compound – boranes, carboranes, metallacarboranes, boride, carbides Lipscomb's Polyhedral Skeletal Electron Pair Theory - Wade's rule, Styx notation (Boron hydride), Inorganic chains, catenation, heterocatenation, Silicate minerals, Intercalation chemistry UNIT II: Organometallics Introduction & history of Organometallics		
Lecture No. Lecture 1-3 Lecture 4-7 Lecture 8 Lecture 9-10 Lecture 1	Topic UNIT I: Inorganic Rings and Cages Introduction of inorganic rings and cages, structures and bonding of Ring — Borazine, Phosphazene and Phosphazene polymers, Heterocyclic inorganic ring Boron cage compound — boranes, carboranes, metallacarboranes, boride, carbides Lipscomb's Polyhedral Skeletal Electron Pair Theory - Wade's rule, Styx notation (Boron hydride), Inorganic chains, catenation, heterocatenation, Silicate minerals, Intercalation chemistry UNIT II: Organometallics Introduction & history of Organometallics Effective Atomic number, 18-valence electron rule — counting by electron-		
Lecture No. Lecture 1-3 Lecture 4-7 Lecture 8 Lecture 9-10 Lecture 1 Lecture 2-3	Topic UNIT I: Inorganic Rings and Cages Introduction of inorganic rings and cages, structures and bonding of Ring – Borazine, Phosphazene and Phosphazene polymers, Heterocyclic inorganic ring Boron cage compound – boranes, carboranes, metallacarboranes, boride, carbides Lipscomb's Polyhedral Skeletal Electron Pair Theory - Wade's rule, Styx notation (Boron hydride), Inorganic chains, catenation, heterocatenation, Silicate minerals, Intercalation chemistry UNIT II: Organometallics Introduction & history of Organometallics Effective Atomic number, 18-valence electron rule – counting by electron-donor pair & neutral-ligand method with examples.		
Lecture No. Lecture 1-3 Lecture 4-7 Lecture 8 Lecture 9-10 Lecture 1	Topic UNIT I: Inorganic Rings and Cages Introduction of inorganic rings and cages, structures and bonding of Ring — Borazine, Phosphazene and Phosphazene polymers, Heterocyclic inorganic ring Boron cage compound — boranes, carboranes, metallacarboranes, boride, carbides Lipscomb's Polyhedral Skeletal Electron Pair Theory - Wade's rule, Styx notation (Boron hydride), Inorganic chains, catenation, heterocatenation, Silicate minerals, Intercalation chemistry UNIT II: Organometallics Introduction & history of Organometallics Effective Atomic number, 18-valence electron rule — counting by electron-		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Lecture 7-8	Metal carbonyl complex – laboratory and industrial synthesis, structure and pibonding, reaction of metal carbonyls (e.g. disproportionation, nucleophilic,		
	electrophilic, migratory insertion, etc.)		
Lecture 9-10	Brief explanation of Metal Isocarbonyl complex & metal nitrosyl complex,		
	synthesis and applications		
Lecture 11	Metal olefin complex (alkene and alkyne), synthesis and typical chemical		
	reactions (Umpolung, Pauson-Khand reaction), Grubb's and Schrock catalyst.		
	UNIT III: Metal-carbene & carbyne complex		
Lecture 1-2	Introduction and classification of Metal-carbene – Fisher & Schrock carbene:		
	synthesis, reaction bonding & uses, Tebbe's reagent.		
Lecture 3	Introduction and classification of Fisher & Schrock Metal-carbyne- synthesis,		
	reaction, bonding & uses.		
Lecture 4-6	Metallocene complexes (Fe, Ru, Cr) – sandwich & half sandwich structure:		
	synthesis, properties & reaction. Ferrocene and its derivatives.		
Lecture 7-10	Types of organometallic reactions with examples: Oxidative Addition		
	(Concerted, SN ₂ & radical mechanisms), Reductive Elimination, 4-Center		
	Reactions [2+2] Reactions, Migratory insertion, comparison studies of		
	Migration and Insertion reactions, Ligand substitution reactions.		
	UNIT IV: Homogeneous catalysis		
Lecture 1	Catalysis – terminology, Industrial importance of catalyst, metathesis and olefin		
	oxidation, asymmetric synthesis.		
Lecture 2	Hydrogenation alkenes and alkynes compounds, industrial synthesis and		
	chemical reactivity.		
Lecture 3-4	Introduction and broader concepts of carbonylation reaction (e.g.		
	hydroformylation, hydrocarboxylation, hydrocyanation & hydrosilation)		
Lecture 5-6	Monsantro, Cativa and Wacker process for acetic acid synthesis		
	UNIT V: Heterogeneous catalysis		
Lecture 1-2	2 11		
	catalysis – Fischer Tropsch reaction, Ziegler-Natta catalyst.		
Lecture 3	Fluxional metal-metal bonded compounds.		
Lecture 4-5	Introduction of clusters, transition metal carbonyl cluster (dinuclear &		
	multinuclear) LNCC & HNCC, carbide clusters,		
•			

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Name of Course Course Code Core / Elective / Other Core Credit 1 Prerequisite: NIL Course Outcomes: Students will be able to 1. To carry out their own experiment which helps them to gain practical sk chemistry 2. Conduct the chromatography separation technique of ions 3. Evaluate qualitative & quantitative analysis of mixtures.	cills in inorganic		
Core / Elective / Other Core Core	tills in inorganic		
Credit	cills in inorganic		
Prerequisite: NIL Course Outcomes: Students will be able to 1. To carry out their own experiment which helps them to gain practical sk chemistry 2. Conduct the chromatography separation technique of ions 3. Evaluate qualitative & quantitative analysis of mixtures.	ills in inorganic		
Course Outcomes: Students will be able to 1. To carry out their own experiment which helps them to gain practical sk chemistry 2. Conduct the chromatography separation technique of ions 3. Evaluate qualitative & quantitative analysis of mixtures.	tills in inorganic		
 To carry out their own experiment which helps them to gain practical sk chemistry Conduct the chromatography separation technique of ions Evaluate qualitative & quantitative analysis of mixtures. 	tills in inorganic		
chemistry 2. Conduct the chromatography separation technique of ions 3. Evaluate qualitative & quantitative analysis of mixtures.	cills in inorganic		
 Conduct the chromatography separation technique of ions Evaluate qualitative & quantitative analysis of mixtures. 			
3. Evaluate qualitative & quantitative analysis of mixtures.			
Description of Contents in Brief			
Detailed Syllabus:			
1. Quantitative analysis:			
Gravimetric analysis of alloys;			
(i) Analysis of bronze.	(i) Analysis of bronze.		
(ii) Analysis of German silver.			
2. Synthesis Metal-complexes and characterization using IR spectro	oscopy.		
(i) Bis(acetylacetonato)copper(II) [Cu(acac) ₂].			
(ii) Bis(acetylacetonato)diaquacobalt(II) [Co(acac) ₂ (H ₂ O)].			
(iii) Tris(8-hydroxyquinolinato)aluminium			
3. Chromatographic separation			
Paper chromatographic separation of cations- Ag (I), Hg ₂ (II), and Pb) (II).		
Paper chromatographic separation of anions- Cl ⁻ , Br ⁻ , and I ⁻ .			
4. Flame Photometry			
To determine lithium/ sodium/ potassium in the given solution flame	To determine lithium/ sodium/ potassium in the given solution flame photometrically		
by calibration curve method			
List of Text Books:			
1. Vogel's qualitative inorganic analysis, 7 th edition, B Sivasankar; Pearson Publication			
2. Vogel's quantitative chemical analysis, 6 th edition, J Mendham; Pearson Publicatio			
3. Practical Inorganic Chemistry, G. Marr and B. W. Rockett, Von Nostrand Reinhold	d Co., London		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Name of Program		M.Sc. Chemistry	
Name of Course		Organic Chemistry I	
		(Basic Stereochemistry and Reaction Mechanism)	
Course Code		CHY 24513	
Core/ Elective/	Other	Core	
Credit		3	
Prerequisite:			
	asic stere	ochemistry and reaction mechanisms of different organic compounds	
to predict the str	ructure of	the molecules.	
Course Outcon	ne:		
1.	Developi	ng knowledge of molecular interconvertions and predict symmetry	
		for a given organic compound.	
2.	To predi	ct the stereochemistry and mechanism of aliphatic nucleophilic	
	substituti	on reaction	
3.	Knowled	ge to design of different substituted aromatic substrate for desired	
	structure-	activity relationship.	
Description of	Content i	n Brief:	
Conformational	analysis	, stereochemistry, method of reaction mechanism, aliphatic and	
aromatic electro	philic/nuo	eleophilic substitution reactions.	
Detailed Syllab	us:		
1.	UNIT-I: Conformational analysis		
	Conforma	ational analysis of cycloalkanes, decalins, effect of conformation on	
	reactivity	in acylic and cyclohexane systems. Elements of symmetry: chirality,	
	molecule	s with more than one chiral center, threo and erythro isomers,	
	methods	of resolution, optical purity, enantiotopic and diastereotopic atoms,	
		nd faces, Optical activity due to chiral planes, Optical activity in the	
	absence of	of chiral carbon (biphenyls, allenes and spiranes), chirality due to	
	helical sh	ape. Asymmetric Synthesis: Principle and categories with specific	
	examples of asymmetric synthesis including newer methods inv		
	enzymatic and catalytic reactions, enantio and diastereoselective synthesis.		
		: Stereoselective Reactions	
		panation, hydroboration, catalytic hydrogenation, and metal	
ammonia		reduction, stereoselective synthesis of (-) ephedrine and (+) φ-	
	ephedrine. Stereospecific Reactions: Elimination of 2,3- dibromobuta		
		loride(1,2-diphenyl-1-chloroethane), S _N 2 reactions at chiral carbon.	
		I: Structure and Reactivity	
		ynamic and kinetic requirements and control. Hammond postulate,	
		ammett principle, potential energy diagrams, transition states and	
	intermedi	ates. Effect of structure on reactivity: resonance, field and steric	

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

	effects. Quantitative treatment: Hammett equation and linear free energy	
	relationship, Substituent and reaction constants, Taft equation and methods of	
4	determining reaction mechanism.	
4.	UNIT-IV: Nucleophilic Substitution Reactions	
	The S _N 2, S _N 1 mixed S _N 2, S _N 1 reactions, SET mechanisms & SNi mechanism.	
	The neighboring group mechanism, neighboring group participation by π and	
	σbonds, anchimeric assistance. Non-classical carbocations, phenonium ions,	
	norbornyl system, common carbocation rearrangements- Wagner-Meerwein,	
	Pinacol-Pinacolone and Demjanov ring expansion and ring contraction.	
	Nucleophilic substitution at an allylic, aliphatic trigonal and a vinylic carbon.	
	Esterification of carboxylic acid, transesterification, transetherification and	
	preparation of inorganic esters. Phase-transfer catalysis and regioselectivity.	
5.	UNIT-V: Electrophilic Substitution reactions	
	Bimolecular mechanisms- SE2 and SEi. The SE1 mechanism, electrophilic	
	substitution accompanied by double bond shifts, halogenation of aldehydes,	
	ketones, acids and acyl halides. Effect of substrates, leaving group and the	
	solvent system on reactivity. Aliphatic diazonium coupling, Acylation at	
	aliphatic carbon, alkylation of alkene, Stork-enamine reactions.	
List of Books:		
1.	March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 2020 by	
2	Michael B. Smith, 8th Edition.	
2. 3.	Organic Chemistry 8th Edition by Giuliano, Carey, 2012. Kleins Organic Chemistry 3rd Global Edition 2018 by Klein D R, John Wiley.	
4.	Advanced Organic Chemistry: Part A: Structure and Mechanisms, 5th Edition, 20 June 2008	
1.	by Francis A. Carey, Richard J. Sundberg.	
5.	Problems & Solutions: Advanced Organic Reaction Mechanism, 3rd Edition, 2011, Nimai	
	Tewari.	
6.	March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 2020 by	
T (D)	Michael B. Smith, 8th Edition.	
	(about 42 Lectures):	
Lecture No.	Topic	
	UNIT I: Conformational analysis	
Lecture 1	Conformational analysis of cycloalkanes, decalins	
Lecture 2	Effect of conformation on reactivity in acylic and cyclohexane systems	
Lecture 3	Steric strain due to unavoidable crowding	
Lecture 4	Elements of symmetry: chirality, molecules with more than one chiral center	
Lecture 5	Threo and erythro isomers, methods of resolution	
Lecture 6	Optical purity, enantiotopic and diastereotopic atoms, groups and faces	
Lecture 7-8	Optical activity due to chiral planes, Optical activity in the absence of chiral	
	carbon (biphenyls, allenes and spiranes), chirality due to helical shape	
l	<u> </u>	

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Lecture 9	Asymmetric Synthesis: Principle and categories with specific examples of asymmetric synthesis including newer methods involving enzymatic and		
	catalytic reactions		
Lecture 10	Enantio and diastereoselective synthesis		
	UNIT II: Stereoselective Reactions		
Lecture 1	Cyclopropanation		
Lecture 2	Hydroboration		
Lecture 3	Catalytic hydrogenation, and metal ammonia reduction		
Lecture 4	Stereoselective synthesis of (-) ephedrine and (+) φ- ephedrine		
Lecture 5	Stereospecific Reactions: Elimination of 2,3- dibromobutane densyl		
	chloride(1,2-diphenyl-1-chloroethane)		
Lecture 6	S _N 2 reactions at chiral carbon		
	UNIT III: Structure and Reactivity		
Lecture 1	Thermodynamic and kinetic requirements and control.		
Lecture 2-3	Effect of structure on reactivity: resonance, field and steric effects		
Lecture 4-5	Quantitative treatment: Hammett equation and linear free energy relationship		
Lecture 6	Substituent and reaction constants		
Lecture 7	Taft equation		
Lecture 8-9	Methods of determining reaction mechanism		
	UNIT IV: Nucleophilic Substitution Reactions		
Lecture 1	Nucleophilic substitution reaction (S_N2 , S_N1 , mixed S_N1 and S_N2).		
Lecture 2	SET mechanisms & S _N i mechanism		
Lecture 3	Nucleophilic substitution at an allylic, aliphatic trigonal and a vinylic carbon		
Lecture 4	The neighboring group mechanism, neighboring group participation by π and		
	σ bonds, anchimeric assistance		
Lecture 5	Non-classical carbocations, phenonium ions, norbornyl system		
Lecture 6	Common carbocation rearrangements-Wagner-Meerwein		
Lecture 7	Pinacol-Pinacolone and Demjanov ring expansion and ring contraction		
Lecture 8	Esterification of carboxylic acid, transesterification, transetherification and		
	preparation of inorganic esters		
Lecture 9	Phase-transfer catalysis		
Lecture 10	Ultrasound, ambident nucleophile, regioselectivity		
	UNIT V: Electrophilic Substitution reactions		
Lecture 1	Bimolecular mechanisms- S _E 2 and S _E i		
Lecture 2	S _E 1 mechanism		
Lecture 3	Electrophilic substitution accompanied by double bond shifts		
Lecture 4	Halogenation of aldehydes, ketones		
Lecture 4	Transgenumen of unutry des, nevertes		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान) (An Institution of National Importance under MoE, Govt. of India)

Lecture 6	Effect of substrates, leaving group and the solvent system on reactivity	
Lecture 7	Aliphatic diazonium coupling, Acylation at aliphatic carbon, alkylation of	
	alkene, Stork-enamine reactions	

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Name of Program		M.Sc. Chemistry	
Name of Course		Organic Chemistry Lab I	
Course Code		CHY 24517	
Core / Elective / Other Core		Core	
Credit		1	
Prerequisit	te:		
1.	Basic knowledge of experim	ental organic techniques.	
Course Ou	tcomes: The students are expec	ted to be able to:	
1.	To perform experiments and	recognize the principles and techniques involved	
	in chemical experimentation.		
2.	To acquire experimental skil	ls & handling instruments.	
3.	Knowledge in prediction &	verification of experimental results by graphical	
	method.		
Description	of Contents in brief:		
Functional §	group analysis, Synthesis of Org	ganic compound and preparations.	
Detailed Sy			
1.	Isolation and identification of tannic acid in tea samples.		
2.	Determination of casein and lactose contents in a given milk sample.		
3.	Estimation of acetic acid in commercial vinegar solutions.		
4.	Estimation of Oxalate content in natural product (spinach).		
5.	Functional group analysis of hydrocarbons in a given organic sample.		
6.	Identification of functional compounds and synthesis of their derivatives in a		
	given mixture.		
7.	Synthesis of anthranilic acid from phthalic anhydride.		
8.	Synthesis of p-nitroaniline acid derivatives.		
9.	Synthesis of p-nitroacetanilide and its derivatives.		
10.	Preparation of adipic acid using greener approaches.		
List of Text B			
1.			
2.	Hannaford and Antony J, Pearson, 2		
3.	Advanced Practical Organic Chemistry 2010 by N.K. Vishnoi, 3rd Edition. Practical Organic Chemistry, 4th edition, 2009 by Mann & Saunders.		
٥.	1 ractical Organic Chemistry, tur cutton, 2007 by Maini & Saunders.		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Name of Program		M.Sc. Chemistry
Name of Course		Organic Chemistry II
		(Heterocyclic Compounds and Organic Reagents)
Course Code		CHY 24523
Core/ Elective	e/ Other	Core
Credit		3
Prerequisite:		
Knowledge of	the nomenc	lature of heterocyclic and aromatic compounds.
Course Outco	me:	
1.	To develop	the understanding of different heterocyclic compounds for organic
	transforma	ations.
2.	Knowledg	e of aromatic and non-aromatic compounds to distinguish different
	chemical a	applications for academic and industrial relevance.
3.	Overall st	ructural and mechanistic recognition of important organic named
	reactions.	
Description of		
Concept of A	romaticity,	Aromaticity of five-membered, six-membered rings and fused
systems- Non-	benzonoid a	romatic compounds. Named reactions for the synthesis of multiple
carbon-carbon	bond forma	tion.
Detailed Sylla	bus:	
1.	Concept of Aromaticity: Aromaticity of five-membered, six-membered rings	
	and fused systems- Non-benzonoid aromatic compound	
	cyclopropenylcation, Cyclobutadienyldication, cyclopentadienyl	
		cation and cyclooctatetraenyl dianion. Homoaromaticity, Anti
	aromaticity and pseudo aromaticity.	
2.	Nomenclature of Heterocyclic Compounds: Systematic (Hantzsch-	
		nomenclature for monocylic and fused ring systems. Methods of
		and Reactions including mechanism of the following five-membered
1,2- and 1,3-heterocycles: pyrazole, imidazole, oxazole, isooxazole,		
	isothiazole; their basic character. Methods of synthesis and reactions including	
	mechanism of the following six-membered heterocycles: purines and	
2	pyrimidines.	
3.	_	etallic Reagents in Organic Synthesis: Principle, preparations,
		and applications and mechanistic details of the organometallic
4	reagents of Li, Mg, Cd, Zn, Cu, S, Si, B and I metals in organic synthesis.	
4.		of Organic Compounds: Introduction of different oxidative
	_	Hydrocarbons- alkenes, aromatic rings, saturated C-H groups
	(activated and unactivated). Alcohols, diols, aldehydes, ketones, ketals and	

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

	carboxylic acids. Amines, hydrazines, and sulphides. Oxidations with ruthenium tetraoxide, and thallium (III) nitrate.		
5.	Reduction of Organic Compounds: Introduction of different reductive		
<i>J</i> .	processes. Hydrocarbons— alkanes, alkenes, alkynes and aromatic rings.		
	Carbonyl compounds-aldehydes, ketones, acids and their derivatives.		
	Epoxides. Nitro, nitroso, azo and oxime groups. Hydrogenolysis.		
List of Books			
1.	Organic Chemistry. 6th Edition 2016 by Robert T. Morrison, Robert N. Boyd.		
2.	Organic Chemistry: Structure Mechanism Synthesis. 2nd Edition 2018 by J. David		
۷.	Rawn, Robert J. Ouellette, Acad Pr.		
3.	Organic Chemistry: Structure and Function. 8th Edition, 2018, Peter Vollhardt.		
Lecture Plan	(About 42 lectures)		
Lecture No.	Topic		
	UNIT I: Concept of Aromaticity		
Lecture 1	Concept of Aromaticity, Aromaticity of five membered and six membered		
	rings		
Lecture 2	Fused systems - Non-benzonoid aromatic compounds: cyclopropenylcation		
Lecture 3-4	Cyclobutadienyldication, cyclopentadienyl anion-tropyllium cation and		
	cyclooctatetraenyl dianion		
Lecture 5	Problems based on aromaticity		
Lecture 6	Homoaromaticity, Anti aromaticity, pseudo aromaticity		
Lecture 7	Applications of aromatic compounds		
	UNIT II: Nomenclature of Heterocyclic Compounds		
Lecture 1	Systematic (Hantzsch-Widman) nomenclature for monocylic and fused ring systems.		
Lecture 2-3	Methods of synthesis and Reactions including mechanism of the following		
Eccurc 2	five-membered 1,2- and 1,3-heterocycles: pyrazole, imidazole, oxazole		
Lecture 4-5	Methods of synthesis and Reactions including mechanism of the following		
	five-membered 1,2- and 1,3-heterocycles: isooxazole, thiazole, isothiazole		
Lecture 6	Methods of synthesis and reactions including mechanism of the following six-		
	membered heterocycles: purines		
Lecture 7	Methods of synthesis and reactions including mechanism of the following six-		
	membered heterocycles: pyrimidines		
	UNIT III: Organometallic Reagents in Organic Synthesis		
Lecture 1	Principle and preparations, properties and applications and mechanistic details		
	of the organometallic reagents of Li metal in organic synthesis		
Lecture 2	Principle, preparations, properties and applications and mechanistic details of		
	the organometallic reagents of Mg metal in organic synthesis		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Principle, preparations, properties and applications and mechanistic details of the organometallic reagents of Cd metal in organic synthesis		
the organometallic reagents of Cd metal in organic synthesis		
Principle, preparations, properties and applications and mechanistic details of		
the organometallic reagents of Zn metal in organic synthesis		
Principle, preparations, properties and applications and mechanistic details of		
the organometallic reagents of Cu metal in organic synthesis		
Principle, preparations, properties and applications and mechanistic details of		
the organometallic reagents of S in organic synthesis		
Principle, preparations, properties and applications and mechanistic details of		
the organometallic reagents of Si in organic synthesis		
Principle, preparations, properties and applications and mechanistic details of		
the organometallic reagents of B in organic synthesis		
Principle, preparations, properties and applications and mechanistic details of		
the organometallic reagents of I in organic synthesis		
UNIT IV: Oxidation of Organic Compounds		
Introduction of different oxidative processes		
Hydrocarbons- alkenes, aromatic rings, saturated C-H groups (activated and		
unactivated)		
Alcohols, diols		
Aldehydes, ketones, ketals and carboxylic acids		
Amines, hydrazines, and sulphides		
Oxidations with ruthenium tetraoxide		
Oxidations with thallium (III) nitrate		
UNIT V: Reduction of Organic Compounds		
Introduction of different reductive processes		
Hydrocarbons– alkanes, alkenes, alkynes and aromatic rings		
Carbonyl compounds-aldehydes, ketones, acids and their derivatives		
Epoxides		
Nitro, nitroso, azo and oxime groups		
Hydrogenolysis		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Name of Program		M.Sc. Chemistry	
Name of Course		Organic Chemistry Lab II	
Course Code		CHY 24527	
Core / Ele	ective / Other Core	Core	
Credit		1	
Prerequis	ite:		
Basic prin	ciples of chromatograph	ic techniques.	
Course O	utcomes:		
1.	To obtain knowledge of	f experimental chromatic techniques.	
2.	To interpret the experie	mental data for organic applications	
3.	To obtain knowledge of	f binary organic mixture analysis	
Description	on of Contents in Brief:		
Chromatog	graphy, Organic Prepara	tion and Quantitative analysis	
Detailed S	Syllabus:		
1.	To separate the given mixture of Amino acids by Paper chromatography.		
2.	Separation and identification of Sugars by Thin layer chromatography.		
3.	Separation of Pigments from the extracts of Spinach Leaves by Column chromatography.		
4.	To separate the dyes used in nail paint by the Paper chromatography method.		
5.	To prepare aspirin (acetylsalicylic acid) from salicylic acid.		
6.	Preparation of adipic acid		
7.	To prepare 2, 4, 6-trinitrophenol from phenol.		
8.	Synthesis of Soap		
9.	Synthesis of Methyl-orange		
10.	Estimation of glucose and glycine		
List of Text Books:			
1.	Vogels Textbook of Practical Organic Chemistry 5 th Edition by Furniss and Brian S and Hannaford and Antony J, Pearson, 2016		
2.		c Chemistry 2010 by N. K. Vishnoi, 3 rd Edition.	
3.	Chromatography: Basic Principles, Sample Preparations and Related Methods Paperback – I llustrated, 3 rd Edition, 2013 by Elsa Lundanes , Léon Reubsaet, Tyge Greibrokk		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Name of Program		M.Sc. Chemistry	
Name of Course		Organic Spectroscopy and Pericyclic Reactions	
Course Code		CHY 24613	
Core/ Elective/ Other		Core	
Prerequisite:	Prerequisite:		
Basic knowled	ge of spectrosc	opic principles and photochemical reactions.	
Course Outco	me:		
1.	To develop understanding of different spectroscopic techniques for the		
	determination	of structure.	
2.	To develop th	e knowledge of basic instrumentation and working principles of	
	different spec	troscopic techniques.	
3.	To interpret s	spectroscopic data (UV, IR. NMR and Mass spectroscopy) for	
	complete stru	ctural analysis.	
4.	To develop	the knowledge of concerted organic reactions and organic	
	photochemist	ry.	
5.	To interpret pericyclic reactions governed by Woodward-Hoffmann rules.		
6.	To understand the synthetic applications and mechanisms of various		
	photochemical reactions.		
Description of	f Content in B	rief:	
1.	Spectroscopic Methods in Structure Determination, IR spectroscopy		
	Ultraviolet and Visible Spectroscopy, Nuclear Magnetic Resonar		
	Spectroscopy.		
2.	Calculation of Quantum yield, electronic states and transitions of organic		
		Conrotatory and disrotatary motions, $4n\pi$ and $(4n+2)\pi$ electron	
	systems and sigmatropic rearrangements.		
Detailed Sylla			
1.	_	opy : Introduction – basic theory and instrumentation including	
		d spectrum. Functional group and fingerprint regions. Absorption	
		diation and molecular vibrations. Fundamental vibrations and	
		ensity and position of infrared absorption bands, bands resulting	
		ation or difference of vibrational frequencies or by the interaction	
		(or combination bands) with the fundamental vibrations (fermi	
	•	requency of vibrations of a diatomic molecule, spectral features	
	of major functional group. Effect of hydrogen bonding and solvent effect of		
		frequencies, combination bands and Fermi resonance.	
	Applications of IR spectroscopy in organic compounds.		
2.		gnetic Resonance Spectroscopy: Introduction – spin active	
		e as spinning nuclear magnets, orientation of spinning nuclear	
	magnets in	a uniform magnetic field. Phenomenon of resonance and	

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

	relaxation, chemical shift, chemical shift parameters and internal standards,
	factors affecting the chemical shift: shielding and deshielding of a nucleus,
	substitution effects leading to empirical co-relations for proton chemical
	shifts, anisotropic effect, effect of changing solvents, effect of hydrogen
	bonding, influence of chirality on the chemical shifts of enantiomers and
	intermolecular Vander Walls deshielding, spin spin coupling, multiplicity of
	splitting and relative intensity of lines in a multiplet, integration, mechanism
	of coupling of one bond, two bonds and three bonds coupling. Nuclear
	Overhauser effect (NOE). Effect of sensitivity of C- 13 NMR compared to H-
	1 NMR, comparison of C-13 NMR and H-1NMR, chemical shifts of C-13
	NMR. Simplification of C - 13 spectra by process of decoupling, off-
	resonance decoupling.
3.	Ultraviolet, Visible Spectroscopy and Mass Spectroscopy: Electronic
3.	energy levels, electronic transitions and selection rules. The origin, general
	appearance and designation of UV bands, absorption laws and measurement
	of absorption intensity, chromophores, auxochromes, bathochromic shift,
	hypochromic shift, hypochromic effect, hyperchromic effect. Woodward and
	Fieser's rules for calculating ultraviolet absorption maxima for substituted
	dienes and conjugated dienes, unsaturated carbonyl compounds and aromatic
	carbonyl compounds.
	Introduction – basic theory, instrumentation, the process of introducing the
	sample into the mass spectrometer. Methods of generation of positively
	charged ions, electron ionization method, chemical ionization, FD and fast
	atom bombardment (FAB) techniques. Mass spectrum, base peak, molecular
	and parent ion, Mass to charge ratio (M/Z), relative intensity, fragment ions,
	even electron rule, nitrogen rule, metastable ions, McLafferty rearrangement
	and ortho effect. Determination of molecular weight and molecular formula
	using mass spectrometry.
	Problems based on joint application of UV, IR, PMR, CMR, and Mass
	spectroscopy.
4.	Principles of Photochemistry: Quantum yield, electronic states and
	transitions, selection rules, modes of dissipation of energy (Jablonski
	diagram), electronic energy transfer: photosensitization and quenching
	process. Photochemistry of carbonyl compounds: π' π^* , n' π^* transitions,
	Norrish-I and Norrish-II cleavages, Paterno-Buchi reaction. Photoreduction,
	calculation of quantum yield, photochemistry of enones, photochemical
	rearrangements of α , β -unsaturated ketones and cyclohexadienones. Photo
	Fries rearrangement, Barton reaction. Photochemistry of olefins: cis-trans
	Thes realizingement, Darton reaction. I notochemistry of otenis. Cis-trans

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

	isomerizations, dimerizations, hydrogen abstraction, addition and Di- π -		
	methane rearrangement including aza-di- π –methane.		
5.	Cycloaddition Reactions: $4n\pi$ and $(4n+2)\pi$ electron systems. Diels-Alder		
	reactions, 1, 3-Dipolar cycloaddition and cheletropic reactions, ene reaction,		
	retro-Diels-Alder reaction, regioselectivity, periselectivity, site selectivity and		
	effect of substituents in Diels-Alder reactions. Electrocyclic reactions:		
	Conrotatory and disrotatory motions, $4n\pi$ and $(4n+2)\pi$ electron systems. Sigmatropic rearrangements: H-shifts and C-shifts, supra and antarafacial		
	migrations, retention and inversion of configurations. Cope (including oxy-		
	Cope and aza-Cope) and Claisen rearrangements. Formation of Vitamin D		
T. CD.	from 7-dehydrocholestrol, synthesis of citral using pericyclic reaction.		
List of Books:	The first of the property of the first of th		
1.	Introduction to Spectroscopy – D. L. Pavia, G.M. Lampman, G. S. Kriz, 5th Edition. (Harcourt college publishers). 2015		
2.	Spectrometric identification of organic compounds R. M. Silverstein, F. X. Webster, 8th		
2.	Edition. John Wiley and Sons. ISBN: 9780470616376, 9780470616376		
3.	Spectroscopic Methods In Organic Chemistry by Fleming Ian Williams Dudley, Springer, 7th		
J.	Edition 2020.		
4.	Nuclear Magnetic Resonance – Basic Principles- Atta-Ur-Rehman, Springer- Verlag, ISBN:		
	9788181288738, 9788181288738.		
5.	Organic Spectroscopy. 2019 by KEMP W. 2nd Edition.		
6.	Advanced Organic Chemistry: Part B: Reaction and Synthesis, 5th Edition June 2008 by		
	Francis A. Carey, Richard J. Sundberg.		
7.	Advanced Organic Chemistry-Reactions & Mechanics. 2nd Edition by Pearson, 2021.		
8.	A Guidebook to Mechanism in Organic Chemistry by Peter Sykes, 2 nd Edition, 2013.		
9.	Synthetic approaches in organic chemistry by R.K. Banal (Narosa Publications), 5 th Edition 2016.		
10.	Advanced Organic Chemistry: Part B: Reaction and Synthesis, 5th Edition June 2008 by		
	Francis A. Carey, Richard J. Sundberg.		
Lecture Plan (a	about 42 lectures)		
Lecture No.	Topic		
	UNIT I: IR spectroscopy		
Lecture 1	IR spectroscopy: Introduction – basic theory and instrumentation including FT		
	IR spectrum		
Lecture 2-3	Functional group and fingerprint regions, Absorption of infrared radiation and		
	molecular vibrations, Fundamental vibrations, and overtones		
Lecture 4	Intensity and position of infrared absorption bands, bands resulting from		
Lecture 4	combination or difference of vibrational frequencies or by the interaction of		
	-		
	overtones (or combination bands) with the fundamental vibrations (fermi		
	resonance)		
Lecture 5	Frequency of vibrations of a diatomic molecule, spectral features of major		
	functional groups: alkanes, alkenes, alkynes, aromatic compounds		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Lecture 6	Frequency of vibrations of a diatomic molecule, spectral features of major		
	functional groups: alcohols, ethers, phenols, ketones, aldehydes, esters		
Lecture 7	Frequency of vibrations of a diatomic molecule, spectral features of major		
	functional groups: amides, acids, anhydrides, lactones, lactams, conjugated		
	carbonyl compounds and amines		
Lecture 8	Effect of hydrogen bonding and solvent effect on vibrational frequencies		
Lecture 9	Overtones, combination bands and fermi resonance. Applications of IR		
	spectroscopy		
	UNIT II: Nuclear Magnetic Resonance Spectroscopy		
Lecture 1	Introduction – spin active nuclei behave as spinning nuclear magnets		
Lecture 2	Orientation of spinning nuclear magnets in a uniform magnetic field and		
	energy description of NMR phenomenon		
Lecture 3	Continuous wave (CW) NMR spectrometer and Fourier transform (FT) NMR		
	spectrometer		
Lecture 4	Phenomenon of resonance and relaxation, chemical shift, chemical shift		
	parameters and internal standards		
Lecture 5	Factors affecting the chemical shift: shielding and deshielding of a nucleus,		
	substitution effects leading to empirical co-relations for proton chemical shifts		
Lecture 6	The anisotropic effect, effect of changing solvents, the effect of hydrogen		
	bonding, Influence of chirality on the chemical shifts of enantiomers and		
	intermolecular Vander Walls deshielding		
Lecture 7	Spin spin coupling, multiplicity of splitting and relative intensity of lines in a		
	multiplet, integration, Mechanism of coupling-one bond coupling (1J), two		
	bond coupling (2J) three bond coupling (3 J) including Karplus relationship		
Lecture 8	Techniques for simplification of complex spectra: solvent effects, Lanthanide		
	shift reagents, spin decoupling (double resonance)		
Lecture 9	Fourier Transform technique, Nuclear Overhauser effect (NOE), Effect of		
	sensitivity of C- 13 NMR compared to H-1 NMR		
Lecture 10	Comparison of C-13 NMR and H-1NMR, chemical shifts of C-13 NMR,		
	Simplification of C – 13 spectra by process of decoupling, off-resonance		
	decoupling		
	UNIT III: Ultraviolet, Visible Spectroscopy and Mass Spectroscopy		
Lecture 1	Electronic energy levels, electronic transitions, and selection rules.		
Lecture 2	The origin, general appearance and designation of UV bands, absorption laws		
	and measurement of absorption intensity		
Lecture 3	Chromophores, auxochromes, bathochromic shift, hypochromic shift,		
	hypochromic effect, hyperchromic effect		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Lecture 4-5	Woodward and Fieser's rules for calculating ultraviolet absorption maxima for substituted dienes and conjugated dienes, unsaturated carbonyl compounds and aromatic carbonyl compounds		
Lecture 6	Introduction – basic theory, instrumentation, the process of introducing the sample into the mass spectrometer		
Lecture 7-8	Methods of generation of positively charged ions, electron ionization method, chemical ionization, FD and fast atom bombardment (FAB) techniques		
Lecture 9	Mass spectrum, base peak, molecular and parent ion, Mass to charge ratio (M/Z), relative intensity, fragment ions, even electron rule, nitrogen rule, metastable ions, McLafferty rearrangement and ortho effect		
Lecture 10	Determination of molecular weight and molecular formula using mass spectrometry		
Lecture 11	Problems based on joint application of UV, IR, PMR, CMR, and Mass spectroscopy		
	UNIT IV: Principles of Photochemistry		
Lecture 1	Quantum yield, electronic states and transitions, selection rules, modes of dissipation of energy (Jablonski diagram), electronic energy transfer: photosensitization and quenching process		
Lecture 2	Photochemistry of carbonyl compounds: $\pi' \pi^*$, $n' \pi^*$ transitions, Norrish-I and Norrish-II cleavages		
Lecture 3	Paterno-Buchi reaction. Photoreduction, calculation of quantum yield, photochemistry of enones		
Lecture 4	Photochemical rearrangements of α, β-unsaturated ketones and cyclohexadienones. Photo Fries rearrangement, Barton reaction		
Lecture 5	Photochemistry of olefins: cis-trans isomerizations, dimerizations, hydrogen abstraction		
Lecture 6	Addition and Di- π - methane rearrangement including aza-di- π –methane		
	UNIT V: Cycloaddition Reactions		
Lecture 1-2	$4n\pi$ and $(4n+2)\pi$ electron systems. Diels-Alder reactions, 1, 3-Dipolar cycloaddition and cheletropic reactions		
Lecture 2-3	Ene reaction, retro-Diels-Alder reaction, regioselectivity, periselectivity, site selectivity and effect of substituents in Diels-Alder reactions		
Lecture 4	Electrocyclic reactions: Conrotatory and disrotatary motions, $4n\pi$ and $(4n+2)\pi$ electron systems		
Lecture 5-6	Sigmatropic rearrangements: H-shifts and C-shifts, supra and antarafacial migrations, retention and inversion of configurations		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Name of Progran	n	M.Sc. Chemistry	
Name of Course		Natural Products and Medicinal Chemistry	
Course Code		CHY 24614	
Core/ Elective/ Other		Core	
Credit		3	
Prerequisite:	Prerequisite:		
Knowledge of nat	Knowledge of natural products for their potential role in the development of pharmaceutical		
drugs for several d	liseases		
Course Outcome	:		
1.	Understanding of natural products chemistry for living organisms. Research can help.		
2.		ving the understanding of biological processes to identify	
۷.	_	ounds that may lead to the development of new drugs.	
Description of Co	_		
-		oids, Alkaloids and Steroids, Carbohydrates, Proteins and Nucleic	
		s, Antifungal and Antimalarial.	
Detailed Syllabus		s, Antifungai and Antimalariai.	
1.		enoids and Carotenoids: Classification, nomenclature, occurrence,	
1.	isolation, general methods of structure determination, isoprene rule.		
		ure determination, stereochemistry, biosynthesis and synthesis of the	
	following representative molecules: Citral, Geraniol α -Terpeneol,		
	Menthol, Farnesol, Zingiberene, Santonin, Phytol, Abietic acid and β-		
	Carotene.		
2.	Alkaloids and Steroids: Definition, nomenclature and physiological		
2.		, occurrence, isolation, general methods of structure elucidation,	
	degradation, and classification based on nitrogen heterocyclic ring, role of		
		ids in plants. Structure, stereochemistry, synthesis and biosynthesis	
		following: Ephedrine, Coniine, Nicotine, Atropine, Quinine and	
	Morpl	nine. Occurrence, nomenclature, basic skeleton, Structure	
	detern	nination and synthesis of Cholesterol, Bile acids, Androsterone,	
	Testos	sterone, Estrone, Progesterone, Aldosterone, and Biosynthesis of	
	Steroids.		
3.		Pigments: Occurrence, nomenclature and general methods of	
		are determination. Isolation and synthesis of Apigenin, Luteolin	
		etin, Myrcetin, Quercetin 3-glucoside, Vitexin, Diadzein, Aureusin,	
Cyani		din-7arabinoside, Cyanidin, Hirsutidin, Biosynthesis of flavonoids:	
		te pathway and Shikimic acid pathway; Prophyrins: Structure and	
	synthesis of Hemoglobin and Chlorophyll		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

4.	Pharmacodynamics: Introduction, elementary treatment of enzymes		
	stimulation, enzyme inhibition, sulfonamides, membrane-active drugs,		
	drug metabolism, xenobiotics, biotransformation, significance of drug		
	metabolism in medicinal chemistry. Antibiotics and antibacterials		
	Introduction, Antibiotic β-Lactam type- Penicillins, Cephalosporins,		
	Antitubercular, Streptomycin, Broad spectrum antibiotics. Tetracyclines,		
	Anticancer- Dactinomycin (Actinomycin D).		
5.	Antifungal and Antimalarial Agents: Antifungal: Polyene		
	Antibacterial: Ciprofloxacin, Norfloxacin, Antiviral. Acyclovir		
	Antimalarials: chemotherapy of malaria. SAR. Chloroquine,		
	Chloroguanide and Mefloquine. Non-steroidal Anti-inflammatory Drugs:		
	Diclofenac Sodium, Ibuprofen and Netopam.		
List of Books:	Bielelenae Souram, leaptoten and Netopam.		
1.	Burger's Medicinal Chemistry Drug Discovery and Development, Vol. 8 th 2021		
2.	The Chemistry of Natural Products by R H Thomson, 2 nd Edition, 2008		
3.	Natural Products: The Secondary Metabolites (Tutorial Chemistry Texts) by James R		
	Hanson and Martyn Berry. Volume 17, 2003.		
4.	Natural Product Chemistry (Prof. Mayuresh K. Raut, Prof. Raju R. Wadekar), 1 st Edition, 2017.		
5.	An Introduction to Medicinal Chemistry by Graham L. Patrick, 4 th Edition.		
6.	Lehninger Principles of Biochemistry. 8th International Edition 2021 by David L.		
	Nelson.		
7.	Wilson And Gisvolds Textbook Of Organic Medicinal And Pharmaceutical Chemistry 12		
8.	Rep.by John M Beale. 12th Edition 2017.		
Lecture Plans (Al	Burger's Medicinal Chemistry Drug Discovery and Development, Vol. 8 th 2021.		
Lecture No.	Topic		
Lecture 140.	UNIT I: Terpenoids and Carotenoids		
I actives 1			
Lecture 1	Classifications, nomenclature, occurrence of terpenoid		
Lecture 2	Classifications, nomenclature, occurrence of carotenoid		
Lecture 3	Isolation, general methods of structure determination		
Lecture 4	Isoprene rule		
Lecture 5-6	Structure determination and synthesis of Citral, Geraniol α-Terpeneol		
Lecture 7-8	Structure determination and synthesis of Menthol, Farnesol, Zingiberene		
Lecture 9-10	Structure determination and synthesis of Santonin, Phytol, Abietic acid and β-Carotene		
	UNIT II: Alkaloids and Steroids		
Lecture 1	Definition, nomenclature and physiological action, occurrence of Alkaloid		
Lecture 2	Isolation, general methods of structure elucidation, degradation, and		
	classification based on nitrogen heterocyclic ring		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Lecture 3	Structure, stereochemistry, synthesis and biosynthesis of Ephedrine,		
	Coniine, Nicotine		
Lecture 4	Structure, stereochemistry, synthesis and biosynthesis of Ephedrine,		
	Coniine, Nicotine		
Lecture 5	Structure, stereochemistry, synthesis and biosynthesis of Atropine, Quinine and Morphine		
Lecture 6	Steroids: Occurrence, nomenclature, basic skeleton		
Lecture 7	Structure determination and synthesis of Cholesterol, Bile acids		
Lecture 8	Structure determination and synthesis of Androsterone, Testosterone		
Lecture 9	Structure determination and synthesis of Estrone, Progesterone, Aldosterone		
Lecture 10	Biosynthesis of Steroids		
	UNIT III: Plant Pigments		
Lecture 1	Occurrence, nomenclature and general methods of structure determination		
Lecture 2	Isolation and synthesis of Apigenin, Luteolin Quercetin		
Lecture 3	Isolation and synthesis of Myrcetin, Quercetin 3-glucoside		
Lecture 4	Isolation and synthesis of Vitexin, Diadzein, Aureusin		
Lecture 5	Isolation and synthesis of Cyanidin-7arabinoside, Cyanidin, Hirsutidin		
Lecture 6-7	Biosynthesis of flavonoids: Acetate pathway and Shikimic acid pathway		
Lecture 8	Porphyrins: Structure and synthesis of Hemoglobin and Chlorophyll		
	UNIT IV: Pharmacodynamics		
Lecture 1	Introduction, elementary treatment of enzymes stimulation		
Lecture 2	Enzyme inhibition		
Lecture 3	Sulfonamides		
Lecture 4	Membrane active drugs		
Lecture 5	Drug metabolism		
Lecture 6	Xenobiotics		
Lecture 7	Biotransformation		
Lecture 8	Significance of drug metabolism in medicinal chemistry		
Lecture 9	Antibiotics and antibacterials: Introduction, Antibiotic β-Lactam type-		
	Peninillins, Cephalosprins, Streptomycin, Broad spectrum antibiotics.		
Lecture 10	Tetracyclines, Anticancer- Dactinomycin (Actinomycin D)		
	UNIT V: Antifungal and Antimalarial Agents		
Lecture 1	Antifungal: Polyenes, Antibacterial: Ciprofloxacin, Norfloxacin		
Lecture 2	Antiviral. Acyclovir, Antimalarials: chemotherapy of malaria		
Lecture 3	SAR. Chloroquine, Chloroguanide and Mefloquine.		
Lecture 4	Non-steroidal Anti-inflammatory Drugs: Diclofenac Sodium, Ibuprofen		
	and Netopam.		

Maulana Azad National Institute of Technology Bhopal

(भारत सरकार, शिक्षा मंत्रालय के अधीन राष्ट्रीय महत्व का संस्थान)

Name of	Program	M.Sc. Chemistry		
Name of Course		Organic Chemistry Lab III and Minor Project-III		
		(Self-Learning)		
Course Code		CHY 24617		
Core / Ele	ective / Other Core	Core		
Credit		2		
Prerequis	site:			
Basic Org	anic Chemistry Laborato	ory and spectroscopic techniques.		
Course O	outcomes:			
1.	Understanding of design	gning chromatographic experimental results.		
2.	Knowledge of separati	ing techniques		
3.	Students will be able to	o clearly communicate the results of scientific work in oral,		
	written and electronic	formats to both scientists and the public at large.		
4.	Students will be able to	o explore new areas of research in both chemistry and allied		
	fields of science and technology.			
Descripti	on of Contents in Brief	:		
	n, Synthesis, and Interpre	etation of spectra.		
Detailed S	Syllabus:			
1.	Extraction of citric ac	Extraction of citric acid (from lemon and orange)		
2.	Piperine from black p	Piperine from black pepper		
3.		ne from tomato and DNA extraction from onions.		
4.	Paracetamol in tablet	from spectroscopic method.		
5.	Extraction of mentho	l from mint leaves and identification of functional groups.		
6.	Separation, purification chemical tests.	Separation, purification, and identification of compounds of binary mixtures by chemical tests.		
7.	Identification of indiv	Identification of individual compounds by spectroscopic analysis (IR, NMR etc.)		
8.	Purification of individ	dual components using TLC technique and confirmation my		
	melting points.			
9.	Synthesis of Coumar	in and their derivatives. Identification of the structure by		
	spectroscopic analysi			
10.	Synthesis of Cinnamic acid by Perkin's reaction.			
11.	Synthesis of 2,5-dihydroxy acetophenone from hydroquinone.			
List of Text Books:				
1.	•	ctical Organic Chemistry 5Th Edition by Furniss and Brian S and		
2.	Hannaford and Antony J, Pearson, 2016. Advanced Practical Organic Chemistry 2010 by N.K. Vishnoi, 3 rd Edition.			
3.	Introduction to Experin	mental Infrared Spectroscopy, John Wiley & Sons Inc. ISBN:		
	9780470665671, 9780470	J6656/1.		