MAULANA AZAD NATIONAL INATITUTE OF TECHNOLOGY, BHOPAL - 462003

Name of Program		B.Tech. & Dual Degree	Year: First Year	Semester: 1 st and 2 nd	Academic Year: 2025- 26 onwards			
Name of Course		Physics						
Course Code		PY 1102 / PY 1202						
Core / Elective / Other		Core						
Concerned Department/		Physics						
Section/Centre								
Credits		3	ı	Periods per week	L 3	T 0	P 0	
Prerequisite:					3	U	0	
Cour	Students must have the basic knowledge of physics with emphasis on optics, types of static/dynamic forces, Newton's law of motions, basic semiconductor devices, nuclear physics and knowledge of Engineering mathematics involving differentiation and integration.							
1.	Course Outcomes: Upon successful completion of the course the student will be able to:							
1.	Understand basic physical fundamentals and the key vocabulary to describe them: Interference and Diffraction of light, Energy band gaps, Quantum effect, Particle accelerator, Fission & Fusion, LASER, Fiber optics communication, Theory of Relativity and Electron ballistics.							
2.	Apply an understanding of these concepts to various systems and devices.							
3.	Acquire problem solving skills, mathematical techniques, and the ability to apply conceptual understanding of the Physics to general real-world situations.							
4.	To design and conduct new experiments and to analyze the data interpretation.							
Description of Contents in brief:								
1.	Wave Optics: Interference and Diffraction, Michelson's interferometer							
2.	Solid State and Semi-Conductor Physics: Energy bands in solids, Electron and hole mobility, Hall effect, PN junction transistor, Transistor parameters, Photo cell and Solar cell							
3.	Quantum Mechanics: Schrodinger wave equation, Particle in a box, Harmonic oscillator, Tunnel effect							
4.	Nuclear Physics: Nuclear properties, Nuclear models, Particle accelerator, Fission & Fusion, Chain reaction, Nuclear reactor, Particle detectors							
5.	Laser and Fiber Optics: Laser phenomena, Ruby and He-Ne laser and applications, laser holography, Types of optical fibers, Attenuation, Fiber losses, Fiber optics communication							
6.	Theory of Relativity: Transformation equations, Time dilation mass energy equation							
7.	Electron ballistics: Motion of charged particles in electric and magnetic field, Electron microscope, Mass spectrographs							
List of Text Books:								
1.	Engineering Physics: M.N. Avadhanulu, P.G.Kshirsagar, T V S Arun Murthy, (S. Chand)							
2.	Engineering Physics: Hitendra K Malik, A. K. Singh, (Tata McGraw-Hill)							
3.	Concepts of Modern Physics: Arther Beiser (McGraw-Hill)							
4.	Principles of Optics: Brijlal Subramanyam (S. Chand)							
	I							

MAULANA AZAD NATIONAL INATITUTE OF TECHNOLOGY, BHOPAL - 462003

Modern Physics: Kenneth Krane, (John Wiley Eastern)				
Modern Physics: Paul A. Tipler & Ralph A. Llewellyn, (W. H. Freeman)				
Quantum Mechanics Concepts and Applications: Nouredine Zettili (Wiley)				
Optics: Ajoy K. Ghatak, (Tata McGraw-Hill Education)				
Fiber Optics & Lasers The Two Revolutions: Ajoy Ghatak & K. Thyagarajan , (Macmillan India Limited)				
uantum Mechanics Concepts and Applications: Nouredine Zettili (Wiley)				
Quantum Mechanics Concepts and Applications: Nouredine Zettili (Wiley)				
Essentials of Quantum Mechanics by Fozia Z. Haque (Asian Books)				
University Physics: H.D. Young, Roger A Freedman, (Pearson)				
Solid State Electronics: B. G. Streetman, (Prentice Hall India)				
solid State Physics: S. O. Pillai, (New Age International Publishers)				
A Textbook of Optics: N Subrahmanyam, Brij Lal & M N Avadhanulu, (S. Chand)				
https://www.youtube.com/watch?v=i_CijGuk7fw				
https://www.youtube.com/watch?v=Kp-jS6NHsB8				
erence,				
Interference in thin (parallel surfaced) films				
Wedge shaped film, Newton's rings Experiment, Numerical Problems Michelson's Interferometer: Theory and applications, Numerical Problems				
Diffraction: definition, types and diffraction, Single slit diffraction				
Double slit diffraction p, missing order				
Diffraction through n-slit, Transmission Grating, Numerical Problems				
Tutorial of wave optics Semiconductor Physics: Free electron theory, Band theory of solids				
and				
P- N junction diode, Photocell				
Solar cell and its applications				
Hall effect and its applications, Numerical Problems				
Introduction to transistor: CE, CB and CC mode.				
Transistor parameters (α, β, γ and their relation), Numerical Problems				
Tutorial of semiconductor Physics				
Quantum Mechanics: Introduction to Quantum Mechanics, de-Broglie hypothesis, Concept of wave packet, Heisenberg's uncertainty principle, Postulates of Quantum Mechanics				
Hallics				

MAULANA AZAD NATIONAL INATITUTE OF TECHNOLOGY, BHOPAL - 462003

Lecture 20	Particle in a box (1D and 3D), Tunnel effect (α-decay)				
Lecture 21	Harmonic Oscillator, Zero-point energy, Numerical Problems				
Lecture 22					
Lecture 23	Nuclear Physics: Nuclear properties, Mass defect, Semi-empirical mass formula, binding				
	energy and Numerical Problems				
Lecture 24	Nuclear Models: Liquid drop model and its success & failure				
Lecture 25	Lecture 25 Shell model				
Lecture 26	Particle accelerators: Cyclotron, synchro-cyclotron, Numerical Problems				
Lecture 27	ecture 27 Betatron and Numerical Problems				
Lecture 28	Nuclear fission and fusion, Chain reaction and Nuclear reactor				
Lecture 29	Nuclear particle detectors (GM counter), Numerical problems				
Lecture 30	Mass Spectrographs (Bainbridge and Aston)				
Lecture 31	Tutorial of Nuclear Physics				
Lecture 32	LASER: Absorption and Emission process, Einstein's A & B coefficient				
Lecture 33	Pumping Scheme and its types, component of LASER				
Lecture 34	Ruby laser and He-Ne Laser				
Lecture 35	Laser Holography and applications				
Lecture 36	Fibre Optics: Introduction to optical fibre, Acceptance angle.				
Lecture 37	Types of fibre, V-number, Losses in optical fibre, Uses & applications of fibre				
Lecture 38	Tutorial of LASER and optical fibre				
Lecture 39	Theory of Relativity: Introduction, Michelson-Morley Experiment, Postulates of special				
	theory of relativity				
Lecture 40	Galilean transformation and Lorentz transformation equation				
Lecture 41	Length contraction and time dilation				
Lecture 42	Theorem of addition of velocities, Principle of simultaneity				
Lecture 43	Mass energy equivalence relation, Relativistic mass, Numerical problems				
Lecture 44	Tutorial of theory of relativity				
Lecture 45	Electron Ballistic: Motion of charged particle (electron) in uniform electric field when the				
	field is parallel, perpendicular and at an angle to velocity of electron				
Lecture 46	Motion of charged particle (electron) in uniform magnetic field when the field is parallel,				
	perpendicular and at an angle to velocity of electron				
Lecture 47	Electron Optics: Bethe's law, electrostatic lens				
Lecture 48	CRT, Electron microscope and Numerical Problems				
Lecture 49	Tutorial of electron ballistic				