

MAULANA AZAD NATIONAL INSTITUTE OF TECHNOLOGY, Bhopal - 462003

DEPARTMENT OF MECHANICAL ENGINEERING M.Tech (Full Time) in Thermal Engineering

PROPOSED SCHEME M.Tech (w.e.f. July 2024)

First Semester:

Course No.	Subject		Schemes of studies periods per week			
		L	T	P		
TH24511	Advanced Heat & Mass Transfer	3	-	-	3	
TH24512	Fluid Flow & Gas Dynamics	3	-	-	3	
TH24513	Computational Fluid Dynamics	3		3		
Department Elective –1		3	-	-	3	
	Department Elective –2	3	-	-	3	
TH24514	Thermal Engineering Lab-I	-	-	2	1	
TH24515	Computational Fluid Dynamics Lab-I	-	-	2	1	
TH24516	Seminar-I	-	-	2	1	
TH24517 Minor Project-1(Self Learning)					2	
Total Hours Total Credit		Total Semester Credits		20		

[•] Communication Skill will be Audit Course of 2 credits which will not be counted in SGPA/CGPA calculation

Second Semester:

Course No.	Subject		nes of stu ds per w	Total Credits	
		L	T	P	
TH24521	Thermal Environmental Engineering	3	-	-	3
TH24522	Theory and Design of Heat Exchangers	3	-	-	3
	Department Elective –3	3	-	-	3
	Department Elective –4	3		3	
	Open Elective	3	-	-	3
TH24523	Thermal Engineering Lab-II	-	-	2	1
TH24524	Computational Fluid Dynamics Lab-II	-	-	2	1
TH24525	Seminar-II	-	-	2	1
TH24526	Minor Project-2 (Self Learning)				2
Total Hours: Total Credits		Total Semester Credits		20	

Third Semester:

Course No.	Subject	Schemes	Total Credits		
		L	T	P	Creans
TH24611	Dissertation Phase-I	-	-	40	20
Total Hours: 40 Total Credits: 60 Total S			Semester C	redits	20

Fourth Semester:

Course No.	Subject	Schemes	Total		
		L	T	P	Credits
TH24621	Dissertation Phase-II	-	-	40	20
Total Hours: 4 Total Credits:8		Total Semester Credits			20

List of Department Electives

TH24551	Renewable Energy
TH24552	Refrigeration System & Component Design
TH24553	Advanced Thermodynamics
TH24554	Theory and Design of Gas Turbines
TH24555	Theory and Design of Turbomachines
TH24556	Design and Simulation of IC Engines
TH24557	Advanced Fluid Mechanics
TH24558	Microfluidics
TH24559	Convective Heat & Mass Transfer
TH24560	Instrumentation for Thermal Engineering
TH24561	Advanced Computational Fluid Dynamics
TH24562	Design of Thermal Systems
TH24563	Thermal Power Plant Engg.
TH24564	Power Generation Systems
SM24564	Finite Element Methods
ME24524	Research Methodology

List of Open Electives

ARP24581	Introduction to Urban Planning
BSE24581	Bioprocess Engineering
BSE24582	Biophysics Tools and Techniques
CHE24581	Analytical Techniques
CHE24582	Green Technology & Processes
CE24581	Solid Waste Management
CE24582	Basic Concept of GIS
CE24583	Road Safety
CSE24581	Machine Learning
CSE24582	Advanced Data Structures and Algorithms
PHY24581	Nanotechnology and Nanoscience
EE24581	Electric Machines & Applications
EE24582	Control and Instrumentation
ECE24581	Introduction to Fuzzy Logic
ECE24582	Neural Networks and its Applications

EC24581	Energy Resource Technologies
HUM24581	Intellectual Property Rights for Engineers
HUM24582	Applied Psychology: Human Centered Design and Engineering
MTH24581	Advanced Operations Research
MTH24582	Computing Technologies
MME24581	Advanced Instrumentation Methods for Material Analysis
MME24582	Smart Materials and their Application
MBA24581	Engineering Startup Management

Course Code		f Program	M.	Tech. in Mechanical Engineering with Specialization in Thermal Engineering	Semester: I	Year: I	
Prerequisite if any: 1. Thermodynamics 2. Fluid Mechanics Course Outcomes: 1. Able to formulate mechanical engineering problems related to heat transfer and to find solution using basic principles 2. Able to apply basic laws of heat transfer to solve mechanical engineering problems 3. Ability to synthesis the information, analysis and interpretation of data to find valid conclusion of the problem. Description of Contents in brief: Unit 1. Transient Heat Conduction: Review of Heat Transfer Fundamentals, Newtonian heating/cooling, sudden temp change in finitely thick slabs & semi-infinite solid, periodic heat flow: graphical solution, Transient heat conduction charts, analysis of thermo couple response. Unit 2. Convection: Convection heat transfer was and development of their equations; approximations and special condition, boundary layer similarity equations Reynolds analogy, similarity solutions for flow over flat plate convection heat transfer in flow through circular pipes, Laminar & Turbulent flows. Unit 3. Heat Transfer by Radiation: Heat radiation a type of wave motion; concept of a black body, Planck's law of monochromatic radiation for a black body, Kirchhoff's law of radiation, Stefan Boltzmann's law of total radiation Emissivity and absorptivity of different bodies heat exchange between back surfaces - parallel, perpendicular to each other, heat radiation between two black surfaces, heat exchange between planes of different emissivity, heat exchange between and enclosed by and the enclosure. Unit 4. Boiling & Condensation: Boiling heat transfer, nature of vaporization, nucleate pool boiling film condensation, condensation on tubes and tubes banks, deviations from Nussel theory. Unit 5. Numerical solution of conduction problems: Introduction finite difference equations method of energy balance, finite difference formulation of unidirectional for cartesian condensation on tubes and tubes banks, deviations from Nussel theory was transfer, deviations from Nussel theory condensation and the part of	Name of	f Course		Advanced Heat & Mass Transfer			
Prerequisite if any: 1. Thermodynamics 2. Fluid Mechanics Course Outcomes: 1. Able to formulate mechanical engineering problems related to heat transfer and to find solution using basic principles 2. Able to apply basic laws of heat transfer to solve mechanical engineering problems 3. Ability to synthesis the information, analysis and interpretation of data to find valid conclusion of the problem. Description of Contents in brief: Unit 1. Transient Heat Conduction: Review of Heat Transfer Fundamentals, Newtonian heating/cooling, sudden temp change in finitely thick slabs & semi-infinite solid, periodic heat flow: graphical solution, Transient heat conduction charts, analysis of thermo couple response. Unit 2. Convection: Convection heat transfer & boundary layers and development of their equations; approximations and special condition, boundary layers and development of their equations; approximations and special condition, boundary layers and development of their equations; approximations and special condition, boundary layers and development of their equations; approximations and special condition, boundary layers and development of their equations; approximations and special condition, boundary layers and development of their equations; approximations and special condition, boundary layers and development of their equations; approximations are Turbulent flows. Unit 3. Heat Transfer by Radiation: Heat radiation a type of wave motion; concept of a black body, Branck's law of monochromatic radiation of a black body, Kirchhoff's law of radiation, Stefan Boltzmann's law of total radiation Emissivity and absorptivity of different bodies heat exchange between planes of different emissivity, heat exchange between two black surfaces, heat exchange between planes of different emissivity, heat exchange between and enclosed by and the enclosure. Unit 4. Boiling & Condensation: Boiling heat transfer, nature of vaporization, nucleate pool boiling and empirical correlations for pool boiling heat transfer, factor	Course	Code		TH24511			
 Thermodynamics Fluid Mechanics Course Outcomes: Able to formulate mechanical engineering problems related to heat transfer and to find solution using basic principles Able to apply basic laws of heat transfer to solve mechanical engineering problems Ability to synthesis the information, analysis and interpretation of data to find valid conclusion of the problem. Description of Contents in brief: Transfent Heat Conduction: Review of Heat Transfer Fundamentals, Newtonian heating/cooling, sudden temp change in finitely thick slabs & semi-infinite solid, periodic heat flow: graphical solution, Transient heat conduction charts, analysis of thermo couple response. Convection: Convection heat transfer & boundary layers and development of their equations; approximations and special condition, boundary layers and development of their equations; approximations and special condition, boundary layers similarity equations Reynolds analogy, similarity solutions for flow over flat plate convection heat transfer in flow through circular pipes. Laminar & Turbulent flows. Unit 3. Heat Transfer by Radiation: Heat radiation a type of wave motion; concept of a black body, Planck's law of monochromatic radiation of a black body, Kirchhoff's law of radiation, Stefan Boltzmann's law of total radiation Emissivity and absorptivity of different bodies heat exchange between back surfaces, parallel, perpendicular to each other, heat adiation between two black surfaces, heat exchange between planes of different emissivity, heat exchange between and enclosed by and the enclosure. Unit 4. Boiling & Condensation: Boiling heat transfer, nature of vaporization, nucleate pool boiling film confericents, high heat flux boilin	Core / E	Elective / Other		Core			
 Fluid Mechanics Able to formulate mechanical engineering problems related to heat transfer and to find solution using basic principles Able to apply basic laws of heat transfer to solve mechanical engineering problems Ability to synthesis the information, analysis and interpretation of data to find valid conclusion of the problem. Description of Contents in brief: Unit 1. Transient Heat Conduction: Review of Heat Transfer Fundamentals, Newtonian heating/cooling, sudden temp change in finitely thick slabs & semi-infinite solid, periodic heat flow: graphical solution, Transient heat conduction charts, analysis of thermo couple response. Unit 2. Convection: Convection heat transfer & boundary layers and development of their equations; approximations and special condition, boundary layers and development of their equations; approximations and special condition, boundary layer similarity equations Reynolds analogy, similarity solutions for flow over flat plate convection heat transfer in flow through circular pipes, Laminar & Turbulent flows. Unit 3. Heat Transfer by Radiation: Heat radiation a type of wave motion; concept of a black body, Plancks law of monochromatic radiation of a black body, Kirchhoff's law of radiation, Stefan Boltzmann's law of total radiation Emissivity and absorptivity of different bodies heat exchange between back surfaces - parallel, perpendicular to each other, heat radiation between two black surfaces, heat exchange between planes of different emissivity, heat exchange between engling and engineering problems in properties in the properties of the pro	Prerequ		'				
Course Outcomes: 1. Able to formulate mechanical engineering problems related to heat transfer and to find solution using basic principles 2. Able to apply basic laws of heat transfer to solve mechanical engineering problems 3. Ability to synthesis the information, analysis and interpretation of data to find valid conclusion of the problem. Description of Contents in brief: Unit 1. Transient Heat Conduction: Review of Heat Transfer Fundamentals, Newtonian heating/cooling, sudden temp change in finitely thick slabs & semi-infinite solid, periodic heat flow: graphical solution, Transient heat conduction charts, analysis of thermo couple response. Unit 2. Convection: Convection heat transfer & boundary layers and development of their equations; approximations and special condition, boundary layer similarity equations Reynolds analogy, similarity solutions for flow over flat plate convection heat transfer in flow through circular pipes, Laminar & Turbulent flows. Unit 3. Heat Transfer by Radiation: Heat radiation a type of wave motion; concept of a black body, Plancks law of monochromatic radiation of a black body, Kirchhoff's law of radiation, Stefan Boltzmann's law of total radiation Emissivity and absorptivity of different bodies heat exchange between back surfaces - parallel, perpendicular to each other, heat radiation between two black surfaces between and enclosed by and the enclosure. Unit 4. Boiling & Condensation: Boiling heat transfer, nature of vaporization, nucleate pool boiling film condensation on a vertical plate, Nusselt theory, turbulent film condensation, drop wise condensation, condensation on tubes and tubes banks, deviations from Nusselt theory. Unit 5. Numerical solution of conduction problems; Introduction finite difference equations method of energy balance, finite difference formulation of unidirectional for cartesian cylindrical coordinate of various kinds of boundary conditions, heat conduction problems, numerical methods of solutions, numerical solution of or transient heat diff	1.	Thermodynamics					
 Able to formulate mechanical engineering problems related to heat transfer and to find solution using basic principles Able to apply basic laws of heat transfer to solve mechanical engineering problems Ability to synthesis the information, analysis and interpretation of data to find valid conclusion of the problem. Description of Contents in brief: Unit 1. Transfert Heat Conduction: Review of Heat Transfer Fundamentals, Newtonian heating/cooling, sudden temp change in finitely thick slabs & semi-infinite solid, periodic heat flow: graphical solution, Transient heat conduction charts, analysis of thermo couple response. Unit 2. Convection: Convection heat transfer & boundary layers and development of their equations; approximations and special condition, boundary layers similarity equations from the properties of the problems. Unit 3. Heat Transfer by Radiation: Heat radiation a type of wave motion; concept of a black body, Planck's law of monochromatic radiation of a black body, Kirchhoff's law of radiation, Stefan Boltzmann's law of total radiation Emissivity and absorptivity of different bodies heat exchange between back surfaces - parallel, perpendicular to each other, heat radiation between who black surfaces, heat exchange between planes of different emissivity, heat exchange between and enclosed by and the enclosure. Unit 4. Boiling & Condensation: Boiling heat transfer, nature of vaporization, nucleate pool boiling film coefficients, high heat flux boiling. Physical Mechanisms of Condensation, Laminar film condensation, condensation on tubes and tubes banks, deviations, from Nusselt theory. Unit 5. Numerical solution of conduction problems: Introduction finite difference equations method of energy balance, finite difference formulation of unidirectional for cartesian cylindrical coordinate of various kinds of boundary conditions, heat condensation, drop wise condensation, condensation on t	2.	Fluid Mechanics					
 using basic principles Able to apply basic laws of heat transfer to solve mechanical engineering problems Ability to synthesis the information, analysis and interpretation of data to find valid conclusion of the problem. Description of Contents in brief: Unit 1. Transient Heat Conduction: Review of Heat Transfer Fundamentals, Newtonian heating/cooling, sudden temp change in finitely thick slabs & semi-infinite solid, periodic heat flow: graphical solution, Transient heat conduction charts, analysis of thermo couple response. Unit 2. Convection: Convection heat transfer & boundary layers and development of their equations; approximations and special condition, boundary layer similarity equations Reynolds analogy, similarity solutions for flow over flat plate convection heat transfer in flow through circular pipes, Laminar & Turbulent flows. Unit 3. Heat Transfer by Radiation: Heat radiation a type of wave motion; concept of a black body, Planck's law of monochromatic radiation of a black body, Kirchhoff's law of radiation, Stefan Boltzmann's law of total radiation Emissivity and absorptivity of different bodies heat exchange between back surfaces - parallel, perpendicular to each other, heat radiation between two black surfaces, heat exchange between planes of different emissivity, heat exchange between and enclosed by and the enclosure. Unit 4. Boiling & Condensation: Boiling heat transfer, nature of vaporization, nucleate pool boiling and empirical correlations for pool boiling, Physical Mechanisms of Condensation, Laminar film coefficients, high heat flux boiling. Physical Mechanisms of Condensation, drop wise condensation, condensation on tubes and tubes banks, deviations from Nusselt theory. Unit 5. Numerical solution of conduction problems: Introduction finite difference equations method of energy balance, finite difference formulation of undirectional for cartesian cylindrical coordinate of	Course (Outcomes:					
3. Ability to synthesis the information, analysis and interpretation of data to find valid conclusion of the problem. Description of Contents in brief: Unit 1. Transient Heat Conduction: Review of Heat Transfer Fundamentals, Newtonian heating/cooling, sudden temp change in finitely thick slabs & semi-infinite solid, periodic heat flow: graphical solution, Transient heat conduction charts, analysis of thermo couple response. Unit 2. Convection: Convection heat transfer & boundary layers and development of their equations; approximations and special condition, boundary layers and development of their equations; approximations and special condition, boundary layers and development of their equations; approximations and special condition, boundary layer similarity equations Reynolds analogy, similarity solutions for flow over flat plate convection heat transfer in flow through circular pipes, Laminar & Turbulent flows. Unit 3. Heat Transfer by Radiation: Heat radiation a type of wave motion; concept of a black body, Planck's law of monochromatic radiation of a black body, Kirchhoff's law of radiation, Stefan Boltzmann's law of total radiation Emissivity and absorptivity of different bodies heat exchange between back surfaces - parallel, perpendicular to each other, heat radiation between we black surfaces, heat exchange between planes of different emissivity, heat exchange between and enclosed by and the enclosure. Unit 4. Boiling & Condensation: Boiling heat transfer, nature of vaporization, nucleate pool boiling film coefficients, high heat flux boiling. Physical Mechanisms of Condensation, Laminar film condensation on a vertical plate, Nusselt theory, turbulent film condensation, drop wise condensation, condensation on tubes and tubes banks, deviations from Nusselt theory. Unit 5. Numerical solution of conduction problems: Introduction finite difference equation method of energy balance, finite difference formulation of undirectional for cartesian cylindrical coordinate of various kinds of boundary conditi	1.			nnical engineering problems related to	heat transfer and	l to find solution	
Description of Contents in brief: Unit 1	2.	Able to apply basic	c laws	of heat transfer to solve mechanical en	ngineering proble	ems	
Description of Contents in brief: Unit 1.	3.		is the i	nformation, analysis and interpretation	n of data to find	valid conclusion	
Transient Heat Conduction: Review of Heat Transfer Fundamentals, Newtonian heating/cooling, sudden temp change in finitely thick slabs & semi-infinite solid, periodic heat flow: graphical solution, Transient heat conduction charts, analysis of thermo couple response. Convection: Convection heat transfer & boundary layers and development of their equations; approximations and special condition, boundary layers similarity equations Reynolds analogy, similarity solutions for flow over flat plate convection heat transfer in flow through circular pipes, Laminar & Turbulent flows. Unit 3. Heat Transfer by Radiation: Heat radiation a type of wave motion; concept of a black body, Planck's law of monochromatic radiation of a black body, Kirchhoff's law of radiation, Stefan Boltzmann's law of total radiation Emissivity and absorptivity of different bodies heat exchange between back surfaces - parallel, perpendicular to each other, heat radiation between two black surfaces, heat exchange between planes of different emissivity, heat exchange between and enclosed by and the enclosure. Unit 4. Boiling & Condensation: Boiling heat transfer, nature of vaporization, nucleate pool boiling and empirical correlations for pool boiling heat transfer, factors affecting pool boiling film coefficients, high heat flux boiling. Physical Mechanisms of Condensation, Laminar film condensation, condensation on tubes and tubes banks, deviations from Nusselt theory. Unit 5. Numerical solution of conduction problems: Introduction finite difference equations method of energy balance, finite difference formulation of unidirectional for cartesian cylindrical coordinate of various kinds of boundary conditions, heat conduction problems, numerical methods of solutions, numerical solution of transient heat diffusion problems. Unit 6. MASS TRANSFER: Mass transfer fundamentals, Convective mass transfer, equation for convective mass transfer. Overall Mass Momentum and Energy Balance. Frank Kreith, Raj M. Manglik, Mark S. Bohn.	Descript		brief:				
Unit 2. Convection: Convection heat transfer & boundary layers and development of their equations; approximations and special condition, boundary layer similarity equations Reynolds analogy, similarity solutions for flow over flat plate convection heat transfer in flow through circular pipes, Laminar & Turbulent flows. Unit 3. Heat Transfer by Radiation: Heat radiation a type of wave motion; concept of a black body, Planck's law of monochromatic radiation of a black body, Kirchhoff's law of radiation, Stefan Boltzmann's law of total radiation Emissivity and absorptivity of different bodies heat exchange between back surfaces - parallel, perpendicular to each other, heat radiation between two black surfaces, heat exchange between planes of different emissivity, heat exchange between and enclosed by and the enclosure. Unit 4. Boiling & Condensation: Boiling heat transfer, nature of vaporization, nucleate pool boiling and empirical correlations for pool boiling heat transfer, factors affecting pool boiling film coefficients, high heat flux boiling. Physical Mechanisms of Condensation, Laminar film condensation on a vertical plate, Nusselt theory, turbulent film condensation, drop wise condensation, condensation on tubes and tubes banks, deviations from Nusselt theory. Unit 5. Numerical solution of conduction problems: Introduction finite difference equations method of energy balance, finite difference formulation of unidirectional for cartesian cylindrical coordinate of various kinds of boundary conditions, heat conduction problems, numerical methods of solutions, numerical solution of transient heat diffusion problem. Unit 6. MASS TRANSFER: Mass transfer fundamentals, Convective mass transfer, equation for convective mass transfer, Overall Mass Momentum and Energy Balance. List of Text Books: 1. Frank Kreith, Raj M. Manglik, Mark S. Bohn. Principles of Heat Transfer, Cengage Learning, 2010 2. Jack Philip Holman. Heat Transfer, Tata-McGraw-Hill, 2011 List of Reference Books:				nduction: Review of Heat Trans	sfer Fundament	als, Newtonian	
approximations and special condition, boundary layer similarity equations Reynolds analogy, similarity solutions for flow over flat plate convection heat transfer in flow through circular pipes, Laminar & Turbulent flows. Unit 3. Heat Transfer by Radiation: Heat radiation a type of wave motion; concept of a black body, Planck's law of monochromatic radiation of a black body, Kirchhoff's law of radiation, Stefan Boltzmann's law of total radiation Emissivity and absorptivity of different bodies heat exchange between back surfaces - parallel, perpendicular to each other, heat radiation between two black surfaces, heat exchange between planes of different emissivity, heat exchange between and enclosed by and the enclosure. Unit 4. Boiling & Condensation: Boiling heat transfer, nature of vaporization, nucleate pool boiling and empirical correlations for pool boiling heat transfer, factors affecting pool boiling film coefficients, high heat flux boiling. Physical Mechanisms of Condensation, Laminar film condensation on a vertical plate, Nusselt theory, turbulent film condensation, drop wise condensation, condensation on tubes and tubes banks, deviations from Nusselt theory. Unit 5. Numerical solution of conduction problems: Introduction finite difference equations method of energy balance, finite difference formulation of unidirectional for cartesian cylindrical coordinate of various kinds of boundary conditions, heat conduction problems, numerical methods of solutions, numerical solution of transient heat diffusion problem. Unit 6. MASS TRANSFER: Mass transfer fundamentals, Convective mass transfer, equation for convective mass transfer, boundary layer mass transfer, empirical correlation for convective mass transfer. Overall Mass Momentum and Energy Balance. List of Text Books: 1. Frank Kreith, Raj M. Manglik, Mark S. Bohn. Principles of Heat Transfer, Cengage Learning, 2010 2. Jack Philip Holman. Heat Transfer, Tata-McGraw-Hill, 2011 List of Reference Books:							
approximations and special condition, boundary layer similarity equations Reynolds analogy, similarity solutions for flow over flat plate convection heat transfer in flow through circular pipes, Laminar & Turbulent flows. Unit 3. Heat Transfer by Radiation: Heat radiation a type of wave motion; concept of a black body, Planck's law of monochromatic radiation of a black body, Kirchhoff's law of radiation, Stefan Boltzmann's law of total radiation Emissivity and absorptivity of different bodies heat exchange between back surfaces - parallel, perpendicular to each other, heat radiation between two black surfaces, heat exchange between planes of different emissivity, heat exchange between and enclosed by and the enclosure. Unit 4. Boiling & Condensation: Boiling heat transfer, nature of vaporization, nucleate pool boiling and empirical correlations for pool boiling heat transfer, factors affecting pool boiling film coefficients, high heat flux boiling. Physical Mechanisms of Condensation, Laminar film condensation on a vertical plate, Nusselt theory, turbulent film condensation, drop wise condensation, condensation on tubes and tubes banks, deviations from Nusselt theory. Unit 5. Numerical solution of conduction problems: Introduction finite difference equations method of energy balance, finite difference formulation of unidirectional for cartesian cylindrical coordinate of various kinds of boundary conditions, heat conduction problems, numerical methods of solutions, numerical solution of transient heat diffusion problem. Unit 6. MASS TRANSFER: Mass transfer fundamentals, Convective mass transfer, equation for convective mass transfer, boundary layer mass transfer, empirical correlation for convective mass transfer. Overall Mass Momentum and Energy Balance. List of Text Books: 1. Frank Kreith, Raj M. Manglik, Mark S. Bohn. Principles of Heat Transfer, Cengage Learning, 2010 2. Jack Philip Holman. Heat Transfer, Tata-McGraw-Hill, 2011 List of Reference Books:	Unit 2.						
Dilit 3. Heat Transfer by Radiation: Heat radiation a type of wave motion; concept of a black body, Planck's law of monochromatic radiation of a black body, Kirchhoff's law of radiation, Stefan Boltzmann's law of total radiation Emissivity and absorptivity of different bodies heat exchange between back surfaces - parallel, perpendicular to each other, heat radiation between two black surfaces, heat exchange between planes of different emissivity, heat exchange between and enclosed by and the enclosure. Unit 4. Boiling & Condensation: Boiling heat transfer, nature of vaporization, nucleate pool boiling and empirical correlations for pool boiling heat transfer, factors affecting pool boiling film coefficients, high heat flux boiling. Physical Mechanisms of Condensation, Laminar film condensation on a vertical plate, Nusselt theory, turbulent film condensation, drop wise condensation, condensation on tubes and tubes banks, deviations from Nusselt theory. Unit 5. Numerical solution of conduction problems: Introduction finite difference equations method of energy balance, finite difference formulation of unidirectional for cartesian cylindrical coordinate of various kinds of boundary conditions, heat conduction problems, numerical methods of solutions, numerical solution of transient heat diffusion problem. Unit 6. MASS TRANSFER: Mass transfer fundamentals, Convective mass transfer, equation for convective mass transfer. Overall Mass Momentum and Energy Balance. List of Text Books: 1. Frank Kreith, Raj M. Manglik, Mark S. Bohn. Principles of Heat Transfer, Cengage Learning, 2010 2. Jack Philip Holman. Heat Transfer, Tata-McGraw-Hill, 2012 3. P.K. Nag. Heat and Mass Transfer, Tata-McGraw-Hill, 2011		approximations a	and sp	ecial condition, boundary layer simila	rity equations Re	eynolds analogy,	
Planck's law of monochromatic radiation of a black body, Kirchhoff's law of radiation, Stefan Boltzmann's law of total radiation Emissivity and absorptivity of different bodies heat exchange between back surfaces - parallel, perpendicular to each other, heat radiation between two black surfaces, heat exchange between planes of different emissivity, heat exchange between and enclosed by and the enclosure. Boiling & Condensation: Boiling heat transfer, nature of vaporization, nucleate pool boiling and empirical correlations for pool boiling heat transfer, factors affecting pool boiling film coefficients, high heat flux boiling. Physical Mechanisms of Condensation, Laminar film condensation on a vertical plate, Nusselt theory, turbulent film condensation, drop wise condensation, condensation on tubes and tubes banks, deviations from Nusselt theory. Unit 5. Numerical solution of conduction problems: Introduction finite difference equations method of energy balance, finite difference formulation of unidirectional for cartesian cylindrical coordinate of various kinds of boundary conditions, heat conduction problems, numerical methods of solutions, numerical solution of transient heat diffusion problem. Unit 6. MASS TRANSFER: Mass transfer fundamentals, Convective mass transfer, equation for convective mass transfer, Overall Mass Momentum and Energy Balance. List of Text Books: 1. Frank Kreith, Raj M. Manglik, Mark S. Bohn. Principles of Heat Transfer, Cengage Learning, 2010 2. Jack Philip Holman. Heat Transfer, Tata-McGraw-Hill, 2012 3. P.K. Nag. Heat and Mass Transfer, Tata-McGraw-Hill, 2011 List of Reference Books:		•		•	transfer in flow	through circular	
Boltzmann's law of total radiation Emissivity and absorptivity of different bodies heat exchange between back surfaces - parallel, perpendicular to each other, heat radiation between two black surfaces, heat exchange between planes of different emissivity, heat exchange between and enclosed by and the enclosure. Unit 4. Boiling & Condensation: Boiling heat transfer, nature of vaporization, nucleate pool boiling and empirical correlations for pool boiling heat transfer, factors affecting pool boiling film coefficients, high heat flux boiling. Physical Mechanisms of Condensation, Laminar film condensation on a vertical plate, Nusselt theory, turbulent film condensation, drop wise condensation, condensation on tubes and tubes banks, deviations from Nusselt theory. Unit 5. Numerical solution of conduction problems: Introduction finite difference equations method of energy balance, finite difference formulation of unidirectional for cartesian cylindrical coordinate of various kinds of boundary conditions, heat conduction problems, numerical methods of solutions, numerical solution of transient heat diffusion problem. Unit 6. MASS TRANSFER: Mass transfer fundamentals, Convective mass transfer, equation for convective mass transfer, boundary layer mass transfer, empirical correlation for convective mass transfer. Overall Mass Momentum and Energy Balance. List of Text Books: 1. Frank Kreith, Raj M. Manglik, Mark S. Bohn. Principles of Heat Transfer, Cengage Learning, 2010 2. Jack Philip Holman. Heat Transfer, Tata-McGraw-Hill, 2012 3. P.K. Nag. Heat and Mass Transfer, Tata-McGraw-Hill, 2011 List of Reference Books:	Unit 3.						
exchange between back surfaces - parallel, perpendicular to each other, heat radiation between two black surfaces, heat exchange between planes of different emissivity, heat exchange between and enclosed by and the enclosure. Unit 4. Boiling & Condensation: Boiling heat transfer, nature of vaporization, nucleate pool boiling and empirical correlations for pool boiling heat transfer, factors affecting pool boiling film coefficients, high heat flux boiling. Physical Mechanisms of Condensation, Laminar film condensation on a vertical plate, Nusselt theory, turbulent film condensation, drop wise condensation, condensation on tubes and tubes banks, deviations from Nusselt theory. Unit 5. Numerical solution of conduction problems: Introduction finite difference equations method of energy balance, finite difference formulation of unidirectional for cartesian cylindrical coordinate of various kinds of boundary conditions, heat conduction problems, numerical methods of solutions, numerical solution of transient heat diffusion problem. Unit 6. MASS TRANSFER: Mass transfer fundamentals, Convective mass transfer, equation for convective mass transfer. Overall Mass Momentum and Energy Balance. List of Text Books: 1. Frank Kreith, Raj M. Manglik, Mark S. Bohn. Principles of Heat Transfer, Cengage Learning, 2010 2. Jack Philip Holman. Heat Transfer, Tata-McGraw-Hill, 2012 3. P.K. Nag. Heat and Mass Transfer, Tata-McGraw-Hill, 2011 List of Reference Books:							
two black surfaces, heat exchange between planes of different emissivity, heat exchange between and enclosed by and the enclosure. Unit 4. Boiling & Condensation: Boiling heat transfer, nature of vaporization, nucleate pool boiling and empirical correlations for pool boiling heat transfer, factors affecting pool boiling film coefficients, high heat flux boiling. Physical Mechanisms of Condensation, Laminar film condensation on a vertical plate, Nusselt theory, turbulent film condensation, drop wise condensation, condensation on tubes and tubes banks, deviations from Nusselt theory. Unit 5. Numerical solution of conduction problems: Introduction finite difference equations method of energy balance, finite difference formulation of unidirectional for cartesian cylindrical coordinate of various kinds of boundary conditions, heat conduction problems, numerical methods of solutions, numerical solution of transient heat diffusion problem. Unit 6. MASS TRANSFER: Mass transfer fundamentals, Convective mass transfer, equation for convective mass transfer. Overall Mass Momentum and Energy Balance. List of Text Books: 1. Frank Kreith, Raj M. Manglik, Mark S. Bohn. Principles of Heat Transfer, Cengage Learning, 2010 2. Jack Philip Holman. Heat Transfer, Tata-McGraw-Hill, 2012 3. P.K. Nag. Heat and Mass Transfer, Tata-McGraw-Hill, 2011 List of Reference Books:							
between and enclosed by and the enclosure. Unit 4. Boiling & Condensation: Boiling heat transfer, nature of vaporization, nucleate pool boiling and empirical correlations for pool boiling heat transfer, factors affecting pool boiling film coefficients, high heat flux boiling. Physical Mechanisms of Condensation, Laminar film condensation on a vertical plate, Nusselt theory, turbulent film condensation, drop wise condensation, condensation on tubes and tubes banks, deviations from Nusselt theory. Unit 5. Numerical solution of conduction problems: Introduction finite difference equations method of energy balance, finite difference formulation of unidirectional for cartesian cylindrical coordinate of various kinds of boundary conditions, heat conduction problems, numerical methods of solutions, numerical solution of transient heat diffusion problem. Unit 6. MASS TRANSFER: Mass transfer fundamentals, Convective mass transfer, equation for convective mass transfer. Overall Mass Momentum and Energy Balance. List of Text Books: 1. Frank Kreith, Raj M. Manglik, Mark S. Bohn. Principles of Heat Transfer, Cengage Learning, 2010 2. Jack Philip Holman. Heat Transfer, Tata-McGraw-Hill, 2012 3. P.K. Nag. Heat and Mass Transfer, Tata-McGraw-Hill, 2011 List of Reference Books:							
and empirical correlations for pool boiling heat transfer, factors affecting pool boiling film coefficients, high heat flux boiling. Physical Mechanisms of Condensation, Laminar film condensation on a vertical plate, Nusselt theory, turbulent film condensation, drop wise condensation, condensation on tubes and tubes banks, deviations from Nusselt theory. Unit 5. Numerical solution of conduction problems: Introduction finite difference equations method of energy balance, finite difference formulation of unidirectional for cartesian cylindrical coordinate of various kinds of boundary conditions, heat conduction problems, numerical methods of solutions, numerical solution of transient heat diffusion problem. Unit 6. MASS TRANSFER: Mass transfer fundamentals, Convective mass transfer, equation for convective mass transfer, boundary layer mass transfer, empirical correlation for convective mass transfer. Overall Mass Momentum and Energy Balance. List of Text Books: 1. Frank Kreith, Raj M. Manglik, Mark S. Bohn. Principles of Heat Transfer, Cengage Learning, 2010 2. Jack Philip Holman. Heat Transfer, Tata-McGraw-Hill, 2012 3. P.K. Nag. Heat and Mass Transfer, Tata-McGraw-Hill, 2011 List of Reference Books:					creme emissivity	, meat exchange	
coefficients, high heat flux boiling. Physical Mechanisms of Condensation, Laminar film condensation on a vertical plate, Nusselt theory, turbulent film condensation, drop wise condensation, condensation on tubes and tubes banks, deviations from Nusselt theory. Unit 5. Numerical solution of conduction problems: Introduction finite difference equations method of energy balance, finite difference formulation of unidirectional for cartesian cylindrical coordinate of various kinds of boundary conditions, heat conduction problems, numerical methods of solutions, numerical solution of transient heat diffusion problem. Unit 6. MASS TRANSFER: Mass transfer fundamentals, Convective mass transfer, equation for convective mass transfer. Overall Mass Momentum and Energy Balance. List of Text Books: 1. Frank Kreith, Raj M. Manglik, Mark S. Bohn. Principles of Heat Transfer, Cengage Learning, 2010 2. Jack Philip Holman. Heat Transfer, Tata-McGraw-Hill, 2012 3. P.K. Nag. Heat and Mass Transfer, Tata-McGraw-Hill, 2011 List of Reference Books:	Unit 4.						
condensation on a vertical plate, Nusselt theory, turbulent film condensation, drop wise condensation, condensation on tubes and tubes banks, deviations from Nusselt theory. Numerical solution of conduction problems: Introduction finite difference equations method of energy balance, finite difference formulation of unidirectional for cartesian cylindrical coordinate of various kinds of boundary conditions, heat conduction problems, numerical methods of solutions, numerical solution of transient heat diffusion problem. Unit 6. MASS TRANSFER: Mass transfer fundamentals, Convective mass transfer, equation for convective mass transfer. Overall Mass Momentum and Energy Balance. List of Text Books: 1. Frank Kreith, Raj M. Manglik, Mark S. Bohn. Principles of Heat Transfer, Cengage Learning, 2010 2. Jack Philip Holman. Heat Transfer, Tata-McGraw-Hill, 2012 3. P.K. Nag. Heat and Mass Transfer, Tata-McGraw-Hill, 2011 List of Reference Books:							
Unit 5. Numerical solution of conduction problems: Introduction finite difference equations method of energy balance, finite difference formulation of unidirectional for cartesian cylindrical coordinate of various kinds of boundary conditions, heat conduction problems, numerical methods of solutions, numerical solution of transient heat diffusion problem. Unit 6. MASS TRANSFER: Mass transfer fundamentals, Convective mass transfer, equation for convective mass transfer, boundary layer mass transfer, empirical correlation for convective mass transfer. Overall Mass Momentum and Energy Balance. List of Text Books: 1. Frank Kreith, Raj M. Manglik, Mark S. Bohn. Principles of Heat Transfer, Cengage Learning, 2010 2. Jack Philip Holman. Heat Transfer, Tata-McGraw-Hill, 2012 3. P.K. Nag. Heat and Mass Transfer, Tata-McGraw-Hill, 2011 List of Reference Books:		•		•			
 Unit 5. Numerical solution of conduction problems: Introduction finite difference equations method of energy balance, finite difference formulation of unidirectional for cartesian cylindrical coordinate of various kinds of boundary conditions, heat conduction problems, numerical methods of solutions, numerical solution of transient heat diffusion problem. Unit 6. MASS TRANSFER: Mass transfer fundamentals, Convective mass transfer, equation for convective mass transfer. Overall Mass Momentum and Energy Balance. List of Text Books: Frank Kreith, Raj M. Manglik, Mark S. Bohn. Principles of Heat Transfer, Cengage Learning, 2010 Jack Philip Holman. Heat Transfer, Tata-McGraw-Hill, 2012 P.K. Nag. Heat and Mass Transfer, Tata-McGraw-Hill, 2011 List of Reference Books: 							
method of energy balance, finite difference formulation of unidirectional for cartesian cylindrical coordinate of various kinds of boundary conditions, heat conduction problems, numerical methods of solutions, numerical solution of transient heat diffusion problem. Unit 6. MASS TRANSFER: Mass transfer fundamentals, Convective mass transfer, equation for convective mass transfer, boundary layer mass transfer, empirical correlation for convective mass transfer. Overall Mass Momentum and Energy Balance. List of Text Books: 1. Frank Kreith, Raj M. Manglik, Mark S. Bohn. Principles of Heat Transfer, Cengage Learning, 2010 2. Jack Philip Holman. Heat Transfer, Tata-McGraw-Hill, 2012 3. P.K. Nag. Heat and Mass Transfer, Tata-McGraw-Hill, 2011 List of Reference Books:	Unit 5.					•	
numerical methods of solutions, numerical solution of transient heat diffusion problem. Unit 6. MASS TRANSFER: Mass transfer fundamentals, Convective mass transfer, equation for convective mass transfer, boundary layer mass transfer, empirical correlation for convective mass transfer. Overall Mass Momentum and Energy Balance. List of Text Books: 1. Frank Kreith, Raj M. Manglik, Mark S. Bohn. Principles of Heat Transfer, Cengage Learning, 2010 2. Jack Philip Holman. Heat Transfer, Tata-McGraw-Hill, 2012 3. P.K. Nag. Heat and Mass Transfer, Tata-McGraw-Hill, 2011 List of Reference Books:		method of energ	y bala	nce, finite difference formulation of u	unidirectional for	r cartesian	
 Unit 6. MASS TRANSFER: Mass transfer fundamentals, Convective mass transfer, equation for convective mass transfer, boundary layer mass transfer, empirical correlation for convective mass transfer. Overall Mass Momentum and Energy Balance. List of Text Books: 1. Frank Kreith, Raj M. Manglik, Mark S. Bohn. Principles of Heat Transfer, Cengage Learning, 2010 2. Jack Philip Holman. Heat Transfer, Tata-McGraw-Hill, 2012 3. P.K. Nag. Heat and Mass Transfer, Tata-McGraw-Hill, 2011 List of Reference Books: 		-		•		_	
convective mass transfer, boundary layer mass transfer, empirical correlation for convective mass transfer. Overall Mass Momentum and Energy Balance. List of Text Books: 1. Frank Kreith, Raj M. Manglik, Mark S. Bohn. Principles of Heat Transfer, Cengage Learning, 2010 2. Jack Philip Holman. Heat Transfer, Tata-McGraw-Hill, 2012 3. P.K. Nag. Heat and Mass Transfer, Tata-McGraw-Hill, 2011 List of Reference Books:	TI *4 6					•	
mass transfer. Overall Mass Momentum and Energy Balance. List of Text Books: 1. Frank Kreith, Raj M. Manglik, Mark S. Bohn. Principles of Heat Transfer, Cengage Learning, 2010 2. Jack Philip Holman. Heat Transfer, Tata-McGraw-Hill, 2012 3. P.K. Nag. Heat and Mass Transfer, Tata-McGraw-Hill, 2011 List of Reference Books:	Unit 6.						
List of Text Books: 1. Frank Kreith, Raj M. Manglik, Mark S. Bohn. Principles of Heat Transfer, Cengage Learning, 2010 2. Jack Philip Holman. Heat Transfer, Tata-McGraw-Hill, 2012 3. P.K. Nag. Heat and Mass Transfer, Tata-McGraw-Hill, 2011 List of Reference Books:						ii for convective	
 Frank Kreith, Raj M. Manglik, Mark S. Bohn. Principles of Heat Transfer, Cengage Learning, 2010 Jack Philip Holman. Heat Transfer, Tata-McGraw-Hill, 2012 P.K. Nag. Heat and Mass Transfer, Tata-McGraw-Hill, 2011 List of Reference Books: 	List of T		, crair	The state of the s			
 Jack Philip Holman. Heat Transfer, Tata-McGraw-Hill, 2012 P.K. Nag. Heat and Mass Transfer, Tata-McGraw-Hill, 2011 List of Reference Books: 		Frank Kreith, Raj	M. M	anglik, Mark S. Bohn. Principles of F	leat Transfer, Ce	engage Learning,	
List of Reference Books:	2.		n. Hea	t Transfer, Tata-McGraw-Hill, 2012			
	3.	P.K. Nag. Heat and	d Mas	s Transfer, Tata-McGraw-Hill, 2011			
	List of R	Reference Books:					
			ang. B	oiling Heat Transfer and Two-Phase F	low, CRC Press,	2008	

URLs:		
1.	https://swayam.gov.in	
2.	http://www.nptel.ac.in	
Lectur Lectu	e Plan (about 40-50 Lectures): Topic	Remarks
No.	Торіс	Kemarks
1.	Review of Heat Transfer Fundamentals	
2.	Newtonian heating/cooling	
3.	Unsteady state heating of bodies with known temperature distribution	
4.	Unsteady state heating of bodies with negligible internal resistance	
5.	Unsteady state heating of bodies with negligible surface resistance	
6.	Sudden temp change in finitely thick slabs	
7.	Sudden temp change in semi-infinite solid	
8.	Periodic heat flow	
9.	Analysis of thermo couple response	
10	Graphical solution	
11	•	
12	Numerical on above topic	
13	Numerical on above topic	
14	Convection heat transfer	
15	Development of boundary layers, Laminar & Turbulent flows	
16	Boundary layers equations; approximations and special condition	
17	Boundary layer similarity equations	
18	Reynolds analogy	
19	<u> </u>	
20		
21	1	
22		
23	1	
24		
25		
26		
27		
28		
29		
20	different emissivity and between and enclosed by and the enclosure	
30	*	
31		
32	1	
33		
35	<u>, , , , , , , , , , , , , , , , , , , </u>	
36	·	
38		
39	*	
4(
	2	
41	1 25	
42	finite difference formulation of unidirectional for cartesian cylindrical coordinate of various kinds of boundary conditions	

43.	Heat conduction problems, numerical methods of solutions, numerical	
	solution of transient heat diffusion problem	
44.	Mass transfer fundamentals	
45.	Convective mass transfer, equation for convective mass transfer	
46.	Boundary layer mass transfer, empirical correlation for convective mass	
	Transfer	
47.	Overall Mass Momentum and Energy Balance	
48.	Revision	

^{*}Min 48 (for four credit course)

Sl. No.	Name of Examination	Marks Allotted	Remarks
1	Mini Test	10	
2	Mid Semester Test	20	
3	Assignment if any	10	
4	Tutorial if any	10	
5	Quiz if any	-	
6	Seminar, Viva voce if ay	-	
7	End Semester Examination	50	
8	Experiments if any (for practical courses)	-	
9	Any other	-	

Name of	ne of Program M. Tech. in Mechanical Engineering Semester: I Year: I with Specialization in Thermal Engineering							
Name of	Course		Fluid Flow & Gas Dynamics					
Course (se Code TH24512							
Core / E	re / Elective / Other Core							
Prerequi	isite if any:							
1.	Engineering Theri	modyn	amics					
2.	Fluid Mechanics							
Course (Outcomes:							
1.	problems in engin	eering						
2.	over immersed bo	dies	ning equations of ideal flows and appl					
3.	Apply concepts of through pipes	of bour	ndary layer to understand behavior of	flows over flat	plate and flow			
4.		in pro	perties of compressible flows and norm	al shock				
5.	Formulate and sol	ve one	dimensional compressible fluid flow p	roblems				
Descript	ion of Contents in							
Unit 1.			ons of Fluid and Heat Flow: Governing fluid and thermal systems	ng equations and	l applications to			
Unit 2.	Potential Flow:	Eleme	entary flows, superposition of flow patte	erns, flow over in	nmersed bodies			
Unit 3.		mess,	ver flat plates-laminar and turbulent bo velocity distribution in turbulent flows					
Unit 4.	properties, flow	throug	f Gases-I: Isentropic and adiabatic flogh ducts of constant area, Fanno-line and variation in flow properties					
Unit 5.			of Gases-II: Flow with normal shoc	k waves govern	ning equations,			
List of T	Prandtl- Meyer a 'ext Books:	nd Rai	nkine-Hugoniot relations					
1.		lament	als of Compressible Flows, New Age Ir	nternational (P) L	imited, 2009			
2.	•		Philip J. Pritchard. Introduction to Flui					
3.	P. Balachandran. l	Fundaı	mentals of Compressible Fluid Dynamic	cs, PHI Learning,	, 2009			
List of R	deference Books:							
1.		Compre	essible Fluid Flow, Prentice Hall, 2 nd Ed	lition, 1993				
2.	A. Alexandrou. Fluid Mechanics, Prentice Hall, 2001							
URLs:								
1.	http://www.nptel.ac.in							
2.	https://swayam.gov.in/nc_details/NPTEL							
	Lecture Plan (about 40-50 Lectures):							
*Lecture No.	e		Topic		Remarks			
1.	Continuity eq	uation						
2.	Equations of r							
	1							

3.	Equations of motion (Continued)	
4.	Euler's equation	
5.	Bernoulli's equation	
6.	Energy equation	
7.	Stream function and velocity potential	
	* *	
8.	Applied numerical problems	
9.	Applied numerical problems	
10.	Applied numerical problems	
11.	Elementary potential flows: Uniform flow, source, sink, vortex and doublet	
12.	Superposition of flow patterns: Flow over the cylinder, velocity distribution, stagnation points, determination of pressure distribution	
13.	Flow over the cylinder: Determination of the lift and drag, Kutta-Joukowski Profile	
14.	Superposition of flow patterns: Flow over the cylinder with circulation	
	using velocity distribution, stagnation points, determination of pressure distribution	
15.	Flow over the cylinder with circulation: Determination of the lift and drag	
16.	Flow over the cylinder with circulation: Determination of the lift and drag	
17.	Rankine Body: Velocity Distribution, stagnation points, determination of	
	pressure distribution	
18.	Related numerical problems	
19.	Related numerical problems	
20.	Boundary Layers - Laminar and turbulent boundary layers in flat plates,	
	displacement and momentum thickness	
21.	Flow over flat plates - Characteristics equations, boundary layer Approximations	
22.	Velocity distribution in turbulent flows in smooth and rough boundaries - Laminar sub layer	
23.	Boundary layer equations - Order of magnitude analysis	
24.	Solution to boundary layer equations - Blasius solution	
25.	Solution to boundary layer equations - Blasius solution Solution to boundary layer equations - Blasius solution	
26.	Approximate solution to boundary layer equations for flat plates	
27.	Related numerical problems	
	Related numerical problems	
28.	*	
29.	Related numerical problems	
30.	Flow through ducts of constant area	
31.	Isentropic flow through converging nozzle	
32.	Isentropic flow through converging - diverging nozzle	
33.	Numerical problems on isentropic flow	
34.	Numerical problems on isentropic flow – continued	
35.	Fanno-line flow: Effects of friction on adiabatic flow through constant area Duct	
36.	Rayleigh line flows: Effects of heat exchange on friction-less flow through constant area duct	
37.	Related numerical problems	
38.	Related numerical problems	
39.	Related numerical problems	
40.	Flow with normal shock waves: Governing equations	
41.	Derivation of equations for normal shock	
41.	*	
	Derivation of equations for normal shock	
43.	Derivation of equations for normal shock	
44.	Rankine-Hugonoit Relation	

45.	Prandtl-Meyer Relation
46.	Numerical problems related to normal shock
47.	Numerical problems related to normal shock
48.	Numerical problems related to normal shock

^{*}Min 48 (for four credit course)

Sl.No.	Name of Examination	Marks Allotted	Remarks
1	Mini Test	10	
2	Mid Semester Test	20	
3	Assignment if any	10	
4	Tutorial if any	-	
5	Quiz if any	10	
6	Seminar, Viva voce if ay	-	
7	End Semester Examination	50	
8	Experiments if any (for practical courses)	-	
9	Any other	-	

Name	me of Program M. Tech. in Mechanical Engineering with Specialization in Thermal Engineering					
Name	ne of Course Computational Fluid Dynamics					
Cours	Course Code TH24513					
Core /	Core / Elective / Other Core					
Prere	quisite if any:					
1.	Engineering The	ermodyn	namics			
2.	Fluid Mechanics	3				
3.	Heat & Mass Tra	ansfer				
Cours	e Outcomes:					
1.	Techniques				ondition using diffe	
2.				•	bility of a numerica	
3.	Develop an algor	rithm ar	nd numerical code	for fluid flow a	nd heat transfer pro	blems.
Descr	iption of Contents i					
Unit					Techniques: Basic uid flow and heat	
	partial different techniques using Grids, Numerica	tial equ g finite o al Errors	nations — Initial difference method , Grid Independe	and Boundary s – Taylor's Ser nce Test.	cal species - Classi Conditions - Di ies - Uniform and n	scretization on-uniform
Unit 2.					retization of unstead	
Unit	problems – Explicit, Implicit and Crank-Nicholson's schemes, Stability of schemes. Convection – Diffusion Processes: Finite difference technique for one dimensional					
3.	convection - dif	convection – Diffusion Processes: Finite difference technique for one diffusional convection – diffusion problem, central difference scheme, upwind scheme – Hybrid and power law discretization techniques – QUICK scheme.				
Unit 4.				mpressible flow	equations – Press	sure based
Unit		algorithms, SIMPLE, PISO algorithms. Turbulence And Its Modeling: Description of turbulent flow, free turbulent flows, flat				
5.	plate boundary la	ayer and	d pipe flow. Alge	oraic Models, O	ne equation model, models. Transport m	k – ε & k –
List of	f Textbooks:			-	-	
1.	Publishing Compar	ıny Limi	ited, 1998		at Transfer, Tata Mo	
2.	Versteeg, N. Malal Volume Method, P				nal Fluid Dynamics	The Finite
3.	·			•	hing Corporation, 1	980
List of	f Reference Books:	<u> </u>				
1.	D.A. Anderson, J.I Transfer, Hemisph				l Fluid Mechanics a	and Heat
2.		Sundara			and Heat Transfer,	Narosa
3.	T.K. Bose. Numeri		id Dynamics, Nar	osa Publishing I	House, 1997	
URLs	<u> </u>					
1.	http://www.nptel.a	ac.in				
2.	https://swayam.gov		details/NPTFI			
4.	intps.//swayami.gov	v .111/11C_	_GCtario/TVI TEL			

*Lecture	Topic	Remarks
No.		
1.	Mathematical description of fluid flow and heat transfer –	
2.	conservation of mass, momentum Mathematical description of fluid flow and heat transfer –energy and	
4.	chemical species	
3.	Classification of partial differential equations	
4.	Initial and boundary conditions	
	Discretization techniques using finite difference methods – Taylor's	
٥.	Series	
6.	Discretization techniques using finite difference methods – Taylor's	
	series (Continued)	
7.	Uniform and non-uniform grids, numerical errors, grid	
	independence test	
8.	Uniform and non-uniform grids, numerical errors, grid	
	independence test (Continued)	
9.	Steady one-dimensional heat diffusion: Discretization	
10.	Numerical solution of sample problem	
11.	Explicit formulation: Numerical solution of sample problem	
12.	Numerical solution of sample problem	
13.	Numerical solution of sample problem	
14.	Implicit formulation: Numerical solution of sample problem	
15.	Numerical solution of sample problem	
16.	Numerical solution of sample problem	
17.	Crank-Nicolson formulation, comparison of three formulation	
18.	Stability of schemes	
19.	One dimensional convection – diffusion problem: Finite volume Formulation	
20.	Central difference scheme for convection term	
21.	Central difference scheme for convection term (Continued)	
22.	Upwind scheme	
23.	Hybrid discretization techniques	
26.	Hybrid discretization techniques (Continued)	
27.	Power law discretization techniques	
28.	Power law discretization techniques (Continued)	
29.	Quick Scheme: formulation	
30.	Discretization of incompressible flow equations – Pressure based	
50.	Algorithms	
31.	Discretization of incompressible flow equations – Pressure based	
	Algorithms	
32.	Discretization of incompressible flow equations – Pressure based	
	Algorithms	
33.	SIMPLE scheme	
34.	SIMPLE scheme	
35.	PISO algorithms	
36.	PISO algorithms	
37.	Description of turbulent flow	
38.	Description of turbulent flow	
39.	Free turbulent flows	
40.	Flat plate boundary layer and pipe flow	
41.	Flat plate boundary layer and pipe flow	

42.	Algebraic Models, one equation model	
43.	$k - \varepsilon & k - \omega \text{ models}$	
44.	$k - \varepsilon & k - \omega \text{ models}$	
45.	$k - \varepsilon & k - \omega \text{ models}$	
46.	Standard and high and low Reynolds number models. Transport method.	
47.	Standard and high and low Reynolds number models. Transport method.	
48.	Standard and high and low Reynolds number models. Transport method.	

^{*}Min 48 (for four credit course)

Sl.No.	Name of Examination	Marks Allotted	Remarks
1	Mini Test	10	
2	Mid Semester Test	20	
3	Assignment if any	20	
4	Tutorial if any	-	
5	Quiz if any	-	
6	Seminar, Viva voce if ay	-	
7	End Semester Examination	50	
8	Experiments if any (for practical courses)	-	
9	Any other	-	

Name of	Program	М.	Tech. in Mechanical Engineering with Specialization in Thermal Engineering	Semester: I	Year: I
Name of	Course		Thermal Engineering Lab-I		
Course (Code		TH24514		
Core / E	lective / Other		Core		
Prerequi	isite if any:				
1.	Heat and Mass Tr	ansfer			
Course (Outcomes:				
1.	Practical knowled	ge abo	out functioning of different types of heat ex	changers	
2.	Learning about di Parameters	fferent	types of heat transfer processes and measu	rement of their	evaluation
3.	Physical Observat	ion of	Heat Transfer Phenomena		
Descript	ion of Contents in	brief:			
Exp. 1.			TD, Overall Heat Transfer Coefficient and allel Flow and Counter Flow Configuration		Double Pipe
Exp. 2.	Determination o	f Thei	mal Conductivity of Metal Rod		
Exp. 3.	Determination of Heat Transfer in Free and Forced Convection				
Exp. 4.	Determination of Heat Transfer Rate in Drop wise and Film wise Condensation				
Exp. 5.	Performance Testing of Air Conditioning Cycle Test Rig.				
Exp. 6	Determination of COP and Tonnage Capacity of a Mechanical Heat Pump				
List of T	ext Books:				
1.	D.S. Kumar. Heat	and M	Mass Transfer, S.K. Kataria and Sons, 2009		
2.	S.P. Sukhatme. A	Textb	ook on Heat Transfer, Universities Press, 2	2005	
3.	Dhanpat Rai & Co		dwar, Anand V. Domkundwar. A Course Ltd., 2007	in Heat and M	ass Transfer,
	deference Books:				
1.	Frank P. Incropera. Introduction to Heat Transfer, Wiley, 2001				
2.	Yunus Cengel, Af	shin C	shajar. Heat and Mass Transfer, McGraw H	Iill Education, 2	011
URLs:					
1.	http://www.nptel.	ac.in			
2.	https://swayam.go	v.in/n	c_details/NPTEL		
	Plan (about 40-50 xperimental course	Lectu	res):		

Sl. No.	Name of Examination	Marks Allotted	Remarks
1	Mini Test	-	
2	Mid Semester Test	-	
3	Assignment/Lab Record if any	30	
4	Tutorial if any	-	
5	Quiz if any	10	

6	Seminar, Viva voce if any	20	
7	End Semester Examination	-	
8	Experiments if any (for practical courses)	40	
9	Any other	-	

Name of	Program	M. 7	Specialization in Thermal Engineering	Semester: I	Year: I
Name of	Course		Computational Fluid Dynamics Lab-I		
Course	Code		TH24515		
Core / E	lective / Other		Core		
Prerequ	isite if any:				
1.	Heat and Mass T	ransfe	•		
2.	Computational F	luid D	ynamics		
Course	Outcomes:				
1.	Generate meshes	for va	rious geometries.		
2.	Analyze the fluid	l flow a	and heat transfer for internal flows.		
3.	Visualize the flow	w and l	neat transfer characteristics using post-pr	ocessing softwar	re.
	tion of Contents in				
Exp. 1.	Generation of g	rids fo	r simple 2-D geometry		
Exp. 2.	Grid generation		•		
Exp. 3.			mensional steady-state diffusion		
Exp. 4.			ly-state diffusion with volume source		
Exp. 5.	One-dimensiona	al trans	sient heat conduction		
Exp. 6	Laminar pipe fl	ow			
Exp. 7	Turbulent pipe	flow			
Exp. 8	External flow o	ver a f	at plate		
List of T	ext Books:				
1.	M.Veeramanikan Publishers & Dis		d D. Satish, Computational Fluid Dynamis, 2021.	nics Laboratory	Manua, CBS
2.	P.S. Ghoshdastic Publishing Comp		omputer Simulation of Flow and Heat mited, 1998.	Transfer, Tata	McGraw-Hill
List of F	Reference Books:	-			
1.			annehill, R.H. Pletcher. Computational ublishing Corporation, 2012	Fluid Mechani	cs and Heat
URLs:					
1.	https://nptel.ac.in	/cours	es/112105045		
Lecture	Plan (about 40-50	0 Lecti	ires): It is an experimental course		

Sl. No.	Name of Examination	Marks Allotted	Remarks
1	Mini Test	-	
2	Mid Semester Test	-	
3	Assignment/Lab Record if any	30	
4	Tutorial if any	-	
5	Quiz if any	10	
6	Seminar, Viva voce if any	20	
7	End Semester Examination	-	
8	Experiments if any (for practical courses)	40	
9	Any other	-	

Name o	of Program	M. Tech. in Mechanical Engineering with Specialization in Thermal Engineering				
Name o	of Course	Seminar – I				
Course	Code	TH24516				
Core / 1	Elective / Other	Core				
Prerequ	uisite if any:					
1.	Nil					
Course	Outcomes:					
1.	Familiar with the	research articles.				
2.	Develop commun	Develop communication and presentation skills.				
Descrip	otion of Contents in	brief:				
1.	Students have to collect an International Journal paper on the topics of their interest, preparative up and present with suitable demonstration by software or experimental work.					
List of	Text Books: Nil					
List of	Reference Books: N	Vil				
URLs:						
1.	https://www.sciencedirect.com/					
2.	https://www.tandfonline.com/					
3.	https://www.google.com/					
Lecture	e Plan (about 40-50	Lectures): It is a seminar course				

Sl. No.	Name of Examination	Marks Allotted	Remarks
1	Mini Test	-	
2	Mid Semester Test/Evaluation	20	
3	Assignment if any	-	
4	Tutorial if any	-	
5	Quiz if any	-	
6	Seminar, Viva voce if any	20	
7	End Semester Examination	60	
8	Experiments if any (for practical courses)	-	
9	Any other	-	

Name o	of Program M.		Tech. in Mechanical Engineering with Specialization in Thermal Engineering	Semester: I	Year: I	
Name o	f Course		Minor Project -1 (Self Learning)		I	
Course	Code		TH24517			
Core / I	Elective / Other		Core			
Prerequ	uisite if any:					
1.	Nil					
Course	Outcomes:					
1.	Enhance research	h skil	ls and thinking.			
2.	Apply the fundamentals of subjects to analyse the real engineering problem.				n.	
Descrip	scription of Contents in brief:					
1.					tal) and will	
List of	Text Books: Nil					
	ist of Reference Books: Nil					
URLs:						
1.	Nil					
2.	Nil					
3.	Nil					
Lecture	Lecture Plan (about 40-50 Lectures): It is a seminar course					

Sl. No.	Name of Examination	Marks Allotted	Remarks
1	Mini Test	-	
2	Mid Semester Test/Evaluation	20	
3	Assignment if any	-	
4	Tutorial if any	-	
5	Quiz if any	-	
6	Seminar, Viva voce if any	20	
7	End Semester Examination	60	
8	Experiments if any (for practical courses)	-	
9	Any other	-	

Name of Program M.			. Tech. in Mechanica with Specializa Thermal Engin	ition in	Semester: I	Year: I
Nam	e of Course	•	Communication Ski			
Cour	rse Code		HUM24511			
Core	/ Elective / Oth	er	Other			
	equisite: Nil					
	se Outcomes:					
1.	To help postgr listening, spea		tudents improve their ding, writing	technical commu	nication skills	related to
2.			organize, comprehend thin the broad framew			g forms of
3.	To help studen	its adher	e to ethical norms of	scientific commun	ication	
Desci	ription of Conto	ents in b	rief:			
Unit			and its Relationship	to Technical Com	munication	
	Basics of	techni	cal communication, ent development, evid	formulation o	f hypothesis,	paragraph
Unit	0					
			of literature, different	t reading strategies	3	
Unit	0		. 1.11	1 1	1.1	
	-		r review skills, sumi	•	-	graphy and
T T 24			lysis and presentation	i, visuai communic	cation	
Unit	1 0		presentation, slides f	or presentation, gr	oup discussion	s, interview
	skills					
Unit						
			and research, copyri		m, authorship,	gender and
T		et etique	ttes and workplace co	mmunication		
	of Text Books:	1.1	11 1 T 37	W.'.' O. C. 1	II : ', D	2012
1.	V.N. Arora, La	iksnmi C	Chandra. Improve You	ir Writing, Oxford	University Pres	ss, 2013
2.			tein Cathy. They Say n, W. W. Norton and G	•	That Matter is	n Academic
3.	V. Raymond,	E. Mar	ie, Flatley Lesikar.	Basic Business C	Communication	Skills for
	Empowering the Internet Generation, Ninth Edition, McGraw-Hill, 2002					
	of Reference Bo					
1.		Graff Gerald, Birkenstein Cathy. They Say I Say-The Moves That Matter in Academic Writing, Fourth Edition, W. W. Norton and Company, 2018				
2.	Sanjay Kumar	njay Kumar, Pushp Lata. Communication Skills, Oxford University Press, 2011				
3.		Meenakshi Raman, Sangeeta Sharma. Technical Communication: Principles and Practice, Oxford University Press, 2015				
URL	s: Nil					
	ure Plan (about	40-50 I	ectures):			
Lectu			· · · · · · · · · · · · · · · · · · ·			
No.						
1-2			l communication			
3.	Formulati	on of hy	pothesis			

4-5	Paragraph organization			
6.	Argument development			
7.	Evidence and elaboration			
8.	Note taking			
9-10	Survey of literature			
11.	Different reading strategies			
12-13	Report writing			
14-16	Peer review skills			
17-18	Summary and abstract writing			
19-20	Bibliography and references			
21-25	Data analysis and presentation			
26-27	Visual communication			
28.	Elevator pitch			
29-33	Oral presentation			
34.	Slides for presentation			
35-37	Group discussions			
38-40	Interview skills			
41.	Ethics in education and research			
42-43	Copyrights and plagiarism			
44.	Authorship			
45.	Gender and diversity			
46.	Net etiquettes			
47- 48	Workplace communication			

Sl. No.	Name of Examination	Marks Allotted	Remarks
1	Mini Test	10	
2	Mid Semester Test	20	
3	Assignment if any	20	
4	Tutorial if any	-	
5	Quiz if any	-	
6	Seminar, Viva voce if any	-	
7	End Semester Examination	50	
8	Experiments if any (for practical courses)	-	
9	Any other	-	

Name of	Program	М.	Tech. in Mechanical Engineering with Specialization in Thermal Engineering	Semester: II	Year: I	
Name of	Course		Thermal Environmental Engineering	'		
Course (Code		TH24521			
Core / E	lective / Other		Core			
Prerequi	isite if any:					
1.	Engineering Theri	modyn	amics			
2.	Heat Transfer					
Course (Outcomes:					
1.	Understand princi	ples of	f comfort air conditioning			
2.	Understand differen	ent air	conditioning systems, equipment, com	ponents and contr	ols	
3.	Understand air dis	stributi	on systems and duct design			
4.	Understand load c	alcula	tions and applied psychrometrics			
5.	Understand variou	ıs syst	ems of refrigeration and their application	on to environment	al control	
Descript	ion of Contents in					
Unit 1.			l exchanges of body with environment,	comfort air condi	tioning and	
Unit 2.	effective temperature Air Conditioning Systems: Elements of air conditioning systems, classification, a					
	conditioning equipments, filters, fans and air conditioning controls					
Unit 3.	Air Distribution static and dynam		nciples of air distribution, air distributi	on systems, flow	through ducts,	
Unit 4.			ics: Moist air properties, various psyc	hrometric process	es, summer air	
	conditioning, winter air conditioning, bypass factor, RSHF, use of ERSHF, application with				pplication with	
			nd high latent heat loads. Solar radiation, heat gain through glasses, heat			
Unit 5.			and walls, total cooling load estimation		votom multi	
Unit 5.			trol Systems : Vapour compression refrigeration system, multi- pressor systems, vapour absorption system, evaporative cooling,			
			ems, vapour adsorption system	, - · · · · · · · · ·	,	
	ext Books:					
1.	C.P. Arora. Refrig	geratio	n and Air Conditioning, Tata McGraw	Hill Education, 20	000	
2.	R.C. Arora. Refrig	geratio	n and Air Conditioning, PHI Learning,	2010		
3.	S.N. Sapali. Refri	geratio	on and Air Conditioning, PHI Learning,	2009		
List of R	deference Books:					
1.	Roy J. Dossat, The	omas J	. Horan. Principles of Refrigeration, Pe	earson, 2001		
2.	W.F. Stoecker, J. W. Jones. Refrigeration and Air Conditioning, McGraw Hill, 1982			982		
3.	Carter Stanfield, I	David :	Skaves. Fundamentals of HVACR, Pea	rson, 2009		
URLs:						
1.			es/112/105/112105129/			
2.	https://nptel.ac.in/courses/112/107/112107208/					
	Plan (about 40-50	Lectu	-			
*Lecture	e		Topic		Remarks	
No.						

1-2	Thermal exchanges of body with environment			
3-4	Comfort air conditioning and effective temperature			
5-6	Elements of air conditioning systems			
7-8	Classification of air conditioning systems			
9-10	Air conditioning equipment's			
11-13	Filters, fans and air conditioning controls			
14-16	Principles of air distribution			
17-19	Air distribution systems			
20-21	Flow through ducts, static and dynamic losses			
22-24	Duct design			
25-26	Moist air properties			
27-29	Various psychrometric processes			
30-31	Summer air conditioning, winter air conditioning			
32-33	Bypass factor, RSHF, use of ERSHF			
34-36	Application with low latent heat loads and high latent heat loads			
37-38	Solar radiation			
39-40	Heat gain through Glasses, heat transfer through roofs and walls, total			
	cooling load estimation			
41-42	Vapour compression refrigeration system			
43-44	Multi-evaporator and multi-compressor systems			
45-46	Vapour absorption system			
47-48	Evaporative cooling, desiccant cooling systems			
49-50	Vapour adsorption system			
*N#: 40 (C	6 14			

^{*}Min 48 (for four credit course)

Sl. No.	Name of Examination	Marks Allotted	Remarks
1	Mini Test	10	
2	Mid Semester Test	20	
3	Assignment if any	20	
4	Tutorial if any	-	
5	Quiz if any	-	
6	Seminar, Viva voce if ay	-	
7	End Semester Examination	50	
8	Experiments if any (for practical courses)	-	
9	Any other	-	

Name of	ne of Program M		. Tech. in Mechanical Engineering with Specialization in Thermal Engineering	Semester: II	Year: I	
Name of	f Course		Theory and Design of Heat Exchanger	r's		
Course	Code		TH24522			
Core / E	Core / Elective / Other		Core			
Prerequ	isite if any:					
1.	Heat & Mass Transfer					
2.	Fluid Mechanics					
Course	Outcomes:					
1.	Able to apply knowledge of engineering fundamentals for solving mechanical engine Problems				engineering	
2.	Able to formulate mechanical engineering problems and to find solution using principles Engineering				•	
3.	Ability to design and develop mechanical component /system and processes that meets specific needs				s that meets	

Description of Contents in brief:

Outline: The subject aimed to detail design of heat exchangers used in process industries and other industrial applications. The design should include practical approach of material available as per Indian & International Standards, considering variable effect of various parameters like temperature, viscosity, density, specific heat, pressure, Reynolds no. etc. in details

Note:

- 1) The calculation data tables of international and Indian standards, property tables, charts and figures and design approach will be allowed in examination
- 2) The question paper should have total three questions, include two details design problems one each from unit 3,4 and unit 5,6 and theoretical questions from unit 1,2 of equal weightage

110111	unit 5,4 and unit 5,0 and theoretical questions from unit 1,2 of equal weightage							
Unit 1.	Introduction and Basic concepts to Heat Exchanger Design: Types of heat exchangers							
Unit 2.	based on construction details of double pipe, shell and tube heat exchangers, TEMA							
Cilit 2.	Standards, classification as per manufactures association, flow arrangements, regenerators							
	and recuperators, vaporizers and standards. Industrial applications. Temperature distribution							
	and its implications. Overall heat transfer coefficient, dirt factor. Basic design equation.							
	Mean temperature difference concept: LMTD. Effectiveness-NTU method for heat							
	exchanger of design/analysis. Concept of caloric temperature. Rating and sizing problem.							
	Correlations for tube side pressure drop and heat transfer coefficients.							
	Construction Details and Heat Flow Distribution and Stress Analysis –Effect of turbulence,							
	friction factor, pressure loss, channel divergence. Thermal stress, types of failures. Design							
	aspects –Heat transfer and pressure loss, Flow configuration, effect of baffles, effect of							
	deviations from ideality, Indian and International Standards of heat exchangers types and							
	components. Standards data table & charts for design parameters. Testing evaluation and							
	maintenance of heat exchanger							
Unit 3.	Detail design of double pipe heat exchangers: Constructional details of double pipe heat							
Unit 4.	exchangers and their fittings, film coefficients for fluids in pipes & annuli, fouling factor for							
ome	pipes & annuli. Design calculations of flow area, mass velocity, viscosity, heat transfer							
	factor, specific heat, over all heat transfer coefficient and their corrections. Checking							
	pressure drop and adjusting flow arrangement accordingly, series and parallel arrangement							
	of double pipe heat exchanger. Net working of heat exchangers.							
Unit 5.	Design of Shell and tube heat exchangers: Flow arrangement for increased heat recovery,							
Unit 6.	different tube pitch arrangements, effect of baffles pitch, packed band & u-head							
Onit o.	arrangements. Calculations of shell and tube heat exchangers.							
	Liquid to gases, and gases to gases heat exchangers design. Evaporation and phase change,							
	calculation of process conditions, design of condensers and evaporators.							

List of Te							
1. l	O.Q. Kern, Process Heat Transfer, Mc Graw Hill, 2013						
2.	G.F. Hewuttm, G.L. Shires, T.R. Bott. Process Heat Transfer, CRC Press, 1994	. Hewuttm, G.L. Shires, T.R. Bott. Process Heat Transfer, CRC Press, 1994					
3.	R.K. Shah, D.P. Sekulic. Fundamentals of Heat Exchanger Design, John Wiley & Sons, 2003						
List of Re	Ference Books:						
1.	A. Kakac, H. Liu. Heat Exchangers, CRC Press, 2002						
	D. Annaratone. Handbook for Heat Exchangers and Tube Banks Design, Sp 010	ringer Verlaş					
	Eric M. Smith. Advances in Thermal Design of Heat Exchangers, John W. Limited, 2005	Viley & Son					
URLs:							
1. l	ttp://www.nptel.ac.in						
2. l	ttps://swayam.gov.in						
Lactura P	an (about 40-50 Lectures):						
*Lecture	Topic	Remarks					
No.	Торіс	Keiliai KS					
1.	Introduction & types of heat exchangers, industrial applications						
2.	Classification of heat exchangers						
3.	Use of standard tables & charts						
4.	Shell & tube type heat exchanger, TEMA Standards selection of shell &						
-•	tube type heat exchanger						
5.	Construction details of double pipe and shell & tube type heat exchanger						
6.	Flow arrangements						
7.	Regenerators and recuperators, vaporizers						
8.	Temperature distribution and its implications. Overall heat transfer						
0.	coefficient, dirt factor						
9.	Basic design equation. Mean temperature difference Concept: LMTD						
10	Effectiveness-NTU method for heat exchanger of design/ analysis						
11	Concept of caloric temperature						
12	Rating and sizing problem						
13							
14	1 1						
15							
16							
17	-						
18							
19							
20	* * * * * * * * * * * * * * * * * * * *						
20	factor, specific heat, over all heat transfer coefficient and their corrections						
21	 21. Checking pressure drop and adjusting flow arrangement accordingly 22. Series and parallel arrangement of double pipe heat exchanger 23. Net working of Heat exchangers 						
	24. Design – Tutorials25. Design – Tutorials						
	· ·						
	26. Design – Tutorials27. Design – Tutorials						
28							
29	71 & &						
30							
	Heat Pumpbe pitch arrangements						

31.	Effect of baffles pitch			
32.	Effect of baffles pitch, packed band & u-head arrangements			
33.	Design of shell and tube heat exchangers, design Calculations of flow			
	area, mass velocity, viscosity, heat transfer factor, specific heat, over all			
	heat transfer coefficient and their corrections			
34.	Flow arrangement for increased heat recovery			
35.	Liquid to gases heat exchangers design.			
36.	Liquid to gases heat exchangers design- Continued			
37.	Gases to gases heat exchangers design			
38.	Gases to gases heat exchangers design-Continued			
39.	Evaporation and phase change, calculation of process conditions			
40.	Design of condensers			
41.	Design of condensers-Continued			
42.	Design of evaporators			
43.	Design of evaporators-Continued			
44.	Design –Tutorials			
45.				
46.	Design – Tutorials			
47.	Revision			
48.	Revision			

^{*}Min 48 (for four credit course)

Sl. No.	Name of Examination	Marks Allotted	Remarks
1	Mini Test	10	
2	Mid Semester Test	20	
3	Assignment if any	20	
4	Tutorial if any	-	
5	Quiz if any	-	
6	Seminar, Viva voce if any	-	
7	End Semester Examination	50	
8	Experiments if any (for practical courses)	-	
9	Any other	-	

Name of	Program	M.	Tech. in Mechanical Engineering with Specialization in Thermal Engineering	Semester: II	Year: I	
Name of	Course		Thermal Engineering Lab-II			
Course (Code		TH24523			
Core / E	lective / Other		Core			
	isite if any:					
1.	Thermodynamics					
2.	Heat Transfer					
3.	Fluid Mechanics					
Course (Outcomes:					
1.	Analyze performa	nce of	IC Engines			
2.	Understand Steam	Turbi	ne, Gas Turbine and Wind Tunnel			
3.	Analyze performa	nce of	Thermal Power Plant			
4.	Understand fluid f	low a	nd heat transfer processes			
Descript	ion of Contents in	brief				
Exp. 1.	Determination of	f Heat	Balance for Compression Ignition Engine			
Exp. 2.	To Find Effect of Compression Ratio on I.C. Engine Performance					
Exp. 3.	Determination of Isentropic Efficiency of Steam Turbine					
Exp. 4.	Determination of	f Effic	iency Enhancement in Solar Air Heater			
Exp. 5.	Determination of	f Heat	Removal Factor of Solar Water Heater			
Exp. 6	Study of Cold St	orage				
	ext Books:					
1.			mbustion Engines, Tata McGraw-Hill, 200			
2.	R. Yadav. Steam a	ınd Ga	s Turbines, Central Publishing House, Alla	habad, 1997		
3.	Publishing Compa		mputer Simulation of Flow and Heat 7 mited, 1998	Fransfer, Tata M	cGraw-Hill	
	deference Books:	т.	of Combination E. J. E. J. 197	C II'II E 1	2017	
1.	•		nal Combustion Engine Fundamentals, Mc	Graw Hill Educa	tion, 2017	
2.	Frank P. Incropera. Introduction to Heat Transfer, Wiley, 2001					
3.	K. Muralidhar, T Publishing House		dararajan. Computational Fluid Flow	and Heat Transf	er, Narosa	
URLs:	https://pptal.go.in/	COURSE	se/112/104/112104033/			
	https://nptel.ac.in/courses/112/104/112104033/					
2.			es/112/104/112104117/			
	Plan (about 40-50 xperimental course	Lectu	res):			

Sl. No.	Name of Examination	Marks Allotted	Remarks
1	Mini Test	-	
2	Mid Semester Test	-	
3	Assignment/Lab Record if any	30	
4	Tutorial if any	-	
5	Quiz if any	10	
6	Seminar, Viva voce if any	20	
7	End Semester Examination	-	
8	Experiments if any (for practical courses)	40	
9	Any other	-	

Name of	Program	M. 7	Fech. in Mechanical Engineering with Specialization in Thermal Engineering	Semester: II	Year: I
Name of	Course		Computational Fluid Dynamics Lab-II		
Course	Code		TH24524		
Core / E	lective / Other		Core		
Prerequ	isite if any:				
1.	Heat and Mass T	ransfe			
2.	Computational F	luid D	ynamics		
3.	Fluid Flow & Ga	s Dyna	nmics		
Course	Outcomes:				
1.	Able to generate	multi-	block structured & unstructured mesh.		
2.	Develop numeric	al cod	e using programming language for simple	e heat conduction	n problem.
3.	Simulate fluid flo geometrical conf		heat transfer analysis for laminar and turons.	bulent flow in va	arious
Descript	ion of Contents in	n brief	:		
Exp. 1.	Structured mesh	n genei	ration for the circular bend.		
Exp. 2.		_	neration for complex geometry.		
Exp. 3.			in 3-D circular pipe at different Reynolds	s numbers.	
Exp. 4.	Estimation of N	lusselt	number in 3-D rectangular duct.		
Exp. 5.			Open Source CFD software		
Exp. 6	Laminar flow a	nalysis	using Open Source CFD software		
Exp. 7	Write a comput	er prog	ram for a steady-state 1-D heat conduction	on problem.	
Exp. 8	Write a comput	er prog	ram for an unsteady-state 1-D heat cond	uction problem.	
List of T	ext Books:				
1.	M.Veeramanikar Publishers & Dis		nd D. Satish, Computational Fluid Dynarrs, 2021.	nics Laboratory	Manua, CBS
2.	P.S. Ghoshdastidar. Computer Simulation of Flow and Heat Transfer, Tata McGraw-Hill Publishing Company Limited, 1998.				
	Reference Books:				
1.	· ·		annehill, R.H. Pletcher. Computational aublishing Corporation, 2012	Fluid Mechanic	cs and Heat
URLs:					
1.	https://openfoam	.org/			
2.	https://doc.cfd.direct/openfoam/user-guide-v11/index				
Lecture	Plan (about 40-50) Lect	ıres):		
It is an e	xperimental course	2			

Sl. No.	Name of Examination	Marks Allotted	Remarks
1	Mini Test	-	
2	Mid Semester Test	-	
3	Assignment/Lab Record if any	30	
4	Tutorial if any	-	

5	Quiz if any	10
6	Seminar, Viva voce if any	20
7	End Semester Examination	-
8	Experiments if any (for practical courses)	40
9	Any other	-

Name o	f Program	M.	Tech. in Mechanical Engineering with Specialization in Thermal Engineering	Semester: II	Year: I
Name o	of Course		Seminar - II		
Course	Code		TH24525		
Core / l	Elective / Other		Core		
Prerequ	uisite if any:				
1.	Nil				
Course	Outcomes:				
1.	Able to understan	nd the	pattern of research articles.		
2.	Develop a comm	nunica	ion and presentation skills.		
Descrip	otion of Contents	in bri	ef:		
1.			t an International Journal paper on the top th suitable demonstration on numerical or		
	Text Books: Nil				
	Reference Books:	Nil			
URLs:	T				
1.	https://www.sciencedirect.com/				
2.	https://www.tandfonline.com/				
3.	https://www.google.com/				
Lecture	Plan (about 40-5	50 Lec	tures): It is a seminar course		

Sl. No.	Name of Examination	Marks Allotted	Remarks
1	Mini Test	-	
2	Mid Semester Test/Evaluation	20	
3	Assignment if any	-	
4	Tutorial if any	-	
5	Quiz if any	-	
6	Seminar, Viva voce if any	20	
7	End Semester Examination	60	
8	Experiments if any (for practical courses)	-	
9	Any other	-	

Name	of Program	M. Te	ch. in Mechanical Engineering with Specialization in Thermal Engineering	Semester: II	Year: I
Name	of Course	M	inor Project -2 (Self Learning)		
Cours	se Code	T	H24526		
Core /	Elective / Other	C	ore		
Prere	quisite if any:	I			
1.	Nil				
Cours	se Outcomes:				
1.	Learn the exper	imental/r	numerical technique.		
2.	Apply the funda	amentals	of core subjects to analyse the real	engineering prob	olem.
Descr	iption of Contents	s in brief	•		
1.	Students will be	e able to e	xtend project phase to get more insigh	it.	
List of	f Text Books: Nil				
List of	f Reference Books	s: Nil			
URLs	:				
1.	Nil				
2.	Nil				
3.	Nil				
Lectu	re Plan (about 40-	-50 Lecti	ires): It is a seminar course		

Sl. No.	Name of Examination	Marks Allotted	Remarks
1	Mini Test	-	
2	Mid Semester Test/Evaluation	20	
3	Assignment if any	-	
4	Tutorial if any	-	
5	Quiz if any	-	
6	Seminar, Viva voce if any	20	
7	End Semester Examination	60	
8	Experiments if any (for practical courses)	-	
9	Any other	-	

Name of Program M.		М.	Tech. in Mechanical Engineering with Specialization in Thermal Engineering	Semester: I/II	Year: I	
Name of Course			Renewable Energy			
Course	Code		TH24551			
Core / Elective / Other Elective						
Prerequ	isite if any: Nil					
Course	Outcomes:					
1.	_		ysics of solar radiation. Ability to blogies of storing solar energy.	classify the so	lar energy	
2.	Knowledge in a aspects.	applyii	ng solar energy, wind energy and	biomass with its	s economic	
3.			ng and applying other forms of energe, small hydro etc.	gy sources like wi	nd, biogas,	
Descrip	tion of Contents		•			
Unit 1.	& Global Energy	Energy Resources and their Utilization, Types of Energy Resources, Energy Parameters, India & Global Energy Resources, Environment Aspects of Energy, Solar Radiation Geometries and Solar Radiation Measuring Instruments				
Unit 2.	Solar Energy: In Analysis of Liqu collector efficien	Solar Energy: Introduction, Solar collectors, Classification of Solar collectors, Performance Analysis of Liquid flat-plate collector, Overall loss coefficient and Heat transfer correlations, collector efficiency factor, Collector heat removal factor, Efficiency of flat plate collectors, Evacuated tube collectors, Modified flat plate collectors, Selective coatings, Solar Air heaters				
Unit 3.	Solar concentrating collectors, types of concentrating collectors, thermal analysis of concentrating collectors, Orientation and tracking modes, performance Analysis, Overall loss coefficient and Heat transfer correlations. Thermal Energy storage.					
Unit 4.	Wind Energy, Origin of winds, wind turbine siting, Types of Wind turbine, Wind turbine sizing and system design, Environmental impacts of wind turbine.					
Unit 5.	Other Renewable energy sources, Biomass energy, geothermal energy, Wave energy, Ocean thermal energy, Economic Analysis, Solar photovoltaic system, Solar PV Sustainability					
List of T	Text Books:					
1.	John Twidell, To	ony Wo	eir. Renewable Energy Resources, Ro	outledge, 2015		
2.	S.P. Sukhatme, J	K. N	ayak. Solar Energy, McGraw Hill Ed	ucation, 2017		
3.	Godfrey Boyle.	Renew	able Energy, OUP Oxford, 2009			
List of I	Reference Books:	;				
1.	G.D. Rai. Non-C	Conver	ntional Energy Sources, Khanna Publ	ishers, 1999		
2.	H.P. Garg, J. Pra Education, 2000	H.P. Garg, J. Prakash. Solar Energy Fundamentals and Applications, Tata McGraw Hill Education, 2000				
3.	G.N. Tiwari. Solar Energy: Fundamentals, Design, Modelling and Applications, CRC Press, 2002					
Lecture	Lecture Plan					
Lecture No.			Topic		Remarks	
1	Energy Resou	rces ai	nd their Utilization, Types of Energy	Resources,		
2	Energy Param	eters,	India & Global Energy Resources,			
3	Instruments E	nviron	ment Aspects of Energy			

4	Solar Radiation Geometries			
5	Solar Radiation Measuring			
6	Solar Energy: Introduction, Solar collectors,			
7	Classification of Solar collectors,			
8	Performance Analysis of Liquid flat-plate collector,			
9	Overall loss coefficient			
10	Heat transfer correlations			
11	collector efficiency factor,			
12	Collector heat removal factor,			
13	Efficiency of flat plate collectors,			
14	Evacuated tube collectors,			
15	Modified flat plate collectors,			
16	Selective coatings, Solar Air heaters			
17	Solar concentrating collectors,			
18	types of concentrating collectors,			
19	thermal analysis of concentrating collectors			
20	Orientation and tracking modes			
21	performance Analysis,			
22	Overall loss coefficient.			
23	Heat transfer correlations			
24	Thermal Energy storage			
25	Wind Energy, Origin of winds,			
26	wind turbine siting,			
27	Types of Wind turbine			
28	Wind turbine sizing and system design			
29	Environmental impacts of wind turbine.			
30	Other Renewable energy sources,			
31	Biomass energy,			
32	geothermal energy,			
33	Wave energy,			
34	Ocean thermal energy,			
35	Economic Analysis,			
36	Solar photovoltaic system			
37	Solar PV Sustainability			

^{*}Min 36 (for three credit course)

Sl. No.	Name of Examination	Marks Allotted	Remarks
1	Mini Test	10	
2	Mid Semester Test	20	
3	Assignment if any	10	
4	Tutorial if any	-	
5	Quiz if any	10	
6	Seminar, Viva voce if ay	-	
7	End Semester Examination	50	

Ī	8	Experiments if any (for practical courses)	-	
Ī	9	Any other	Nil	

various types of refrigeration systems. Basics of vapour compression refrigeration system multi stage compression system, multi evaporator system, cascade system Various components of refrigeration system: Types of compressor, condensers, evaporators expansion devises used for used for refrigeration system, thermal design of reciprocating compressor, principle dimensions of reciprocating compressor. Construction featur of rotary, screw, scroll and centrifugal compressors Unit 3. Thermal design of condensers: Water-cooled and air-cooled, heat rejection ratio, heat transfer in condenser, condensing heat transfer coefficient for outside and inside surfaces, Wilson's plot Unit 4. Thermal design of different evaporators: Direct expansion chiller, direct expansion cooling coil for air with forced convection, direct expansion etc. Extended surface evaporator, heat Transfer in evaporators, augmentation of boiling heat transfer Unit 5. Selection of expansion valves and other refrigerant control devices, components balancing testing and charging methods Unit 6. Design of cold storages: Construction details of cold storage, storage parameters for different food items, transmission heat load, air change load and product load calculation. Construction details and application of transport refrigeration system List of Text Books: 1. C.P. Arora. Refrigeration and Air Conditioning, Tata McGraw-Hill Education, 2000 2. W.F. Stoecker. Design of Thermal Systems, McGraw Hill, 1980 3. R.S. Khurmi. Refrigeration and Air Conditioning, S. Chand Publication, 2006 List of Reference Books: 1. R.J. Dossat. Principles of Refrigeration, Pearson Education India, 1996 2. Whitman, Johnson & Tomczyk. Refrigeration and Air Conditioning Technology, Cengage Learning, 2009 3. Hundy, Trott & Welch. Refrigeration and Air Conditioning, Butterworth-Heinemann, 2008 URLs: 1. https://www.ashrae.org/	Name of	Program	M.	Tech. in Mechanical Engineering with Specialization in Thermal Engineering	Semester: I/II	Year: I
Prerequisite if any: 1. Refrigeration and Air Conditioning 2. Able to apply knowledge of refrigeration and air conditioning problems for different applications and to find solution using principles engineering sciences, mathematics and literature 3. Ability to design and develop refrigeration and air conditioning component/system and processes that meets specific needs Description of Contents in brief: Unit 1. Review of basic of refrigeration machine, coefficient of performance, ton of refrigeration systems. Basics of vapour compression refrigeration systems multi stage compression system, multi evaporator system, cascade system Unit 2. Various components of refrigeration system: Types of compressor, condensers, evaporators expansion devises used for used for refrigeration geompressor, condensers, evaporators of rotary, screw, scroll and centrifugal compressors prefromance characteristic or reciprocating compressor, capacity control of reciprocating compressor. Construction featur of rotary, screw, scroll and centrifugal compressors Unit 3. Thermal design of condensers: Water-cooled and air-cooled, heat rejection ratio, heat transfer coefficient of reciprocating compressor, capacity control of reciprocating compressor, condensing heat transfer coefficient for outside and inside surfaces, Wilson's plot Unit 4. Thermal design of different evaporators: Direct expansion chiller, direct expansion cities in condenser; condensing heat transfer coefficient for outside and inside surface, wilson's plot Unit 5. Selection of expansion valves and other refrigerant control devices, components balancing testing and charging methods Unit 6. Design of cold storages: Construction details of cold storage, storage parameters for different food items, transmission heat load, air change load and product load calculation. Construction details and application of transport refrigeration system Unit 6. C.P. Arora. Refrigeration and Air Conditioning, S. Chand Publication, 2006 Unit 6. C.P. Arora. Refrigeratio	Name of Course			Refrigeration System and Component	Design	
Prerequisite if any: 1. Refrigeration and Air Conditioning Course Outcomes: 1. Able to apply knowledge of refrigeration and air conditioning engineering fundamentals for solving problems 2. Able to formulate refrigeration and air conditioning problems for different applications and to find solution using principles engineering sciences, mathematics and literature 3. Ability to design and develop refrigeration and air conditioning component /system and processes that meets specific needs Description of Contents in brief: Unit 1. Review of basic of refrigeration machine, coefficient of performance, ton of refrigeration various types of refrigeration systems. Basics of vapour compression refrigeration system multi stage compression system, multi evaporator system, cascade system Unit 2. Various components of refrigeration system; Types of compressor, condensers, evaporators expansion devises used for used for refrigeration system, thermal design of reciprocating compressor, principle dimensions of reciprocating compressor, condensers, evaporators expansion devises used for used for refrigeration system, thermal design of reciprocating compressors of compressors. Construction feature of rotary, screw, scroll and centrifugal compressors Unit 3. Thermal design of condensers: Water-cooled and air-cooled, heat rejection ratio, heat transfer in condenser, condensing heat transfer coefficient for outside and inside surfaces, Wilson's plot Unit 4. Thermal design of different evaporators: Direct expansion chiller, direct expansion cooling coil for air with forced convection, direct expansion etc. Extended surface evaporator, heat Transfer in evaporators, augmentation of boiling heat transfer Unit 5. Selection of expansion valves and other refrigerant control devices, components balancing testing and charging methods Unit 6. Design of cold storages: Construction details of cold storage, storage parameters for different deaths and application of transport refrigeration system List of Text Books: 1. C.P. Arora R	Course Code			TH24552		
Refrigeration and Air Conditioning	Core / E	llective / Other		Elective		
Course Outcomes: 1. Able to apply knowledge of refrigeration and air conditioning engineering fundamentals for solving problems 2. Able to formulate refrigeration and air conditioning problems for different applications and to find solution using principles engineering sciences, mathematics and literature 3. Ability to design and develop refrigeration and air conditioning component /system and processes that meets specific needs Description of Contents in brief: Unit 1. Review of basic of refrigeration machine, coefficient of performance, ton of refrigeration avaious types of refrigeration systems. Basics of vapour compression refrigeration system multi stage compression system, multi evaporator system, cascade system Unit 2. Various components of refrigeration systems: Types of compressor, condensers, evaporators expansion devises used for used for refrigeration system, themal design of reciprocating compressor, principle dimensions of reciprocating compressor. Construction feature of rotary, screw, scroll and centrifugal compressors Unit 3. Thermal design of condensers: Water-cooled and air-cooled, heat rejection ratio, heat transfer in condenser, condensing heat transfer coefficient for outside and inside surfaces, Wilson's plot Unit 4. Thermal design of different evaporators: Direct expansion chiller, direct expansion cooling coil for air with forced convection, direct expansion chiller, direct expansion cooling coil for air with forced convection, direct expansion chiller, direct expansion cooling coil for air with forced convection, direct expansion chiller, direct expansion coling coil for air with forced convection, direct expansion chiller, direct expansion coling coil for air with forced convection, direct expansion chiller, direct expansion coling coil for air with forced convection details of cold storage, storage parameters for different food items, transmission heat load, air change load and product load calculation. Construction details and application of transport refrigeration system U						
 Able to apply knowledge of refrigeration and air conditioning engineering fundamentals fo solving problems Able to formulate refrigeration and air conditioning problems for different applications and to find solution using principles engineering sciences, mathematics and literature Ability to design and develop refrigeration and air conditioning component /system and processes that meets specific needs Description of Contents in brief: Unit 1. Review of basic of refrigeration systems. Basics of vapour compression refrigeration various types of refrigeration systems. Basics of vapour compression refrigeration system multi stage compression system, multi evaporator system, cascade system Unit 2. Various components of refrigeration systems: Types of compressor, condensers, evaporators expansion devises used for used for refrigeration system, thermal design of reciprocatin compressor, principle dimensions of reciprocating compressor. Construction feature of rotary, screw, scroll and centrifugal compressors Unit 3. Thermal design of condensers: Water-cooled and air-cooled, heat rejection ratio, heat transfer in condenser, condensing heat transfer coefficient for outside and inside surfaces, Wilson's plot Unit 4. Thermal design of different evaporators: Direct expansion chiller, direct expansion cooling coil for air with forced convection, direct expansion etc. Extended surface evaporator, heat Transfer in evaporators, augmentation of boiling heat transfer Unit 5. Selection of expansion valves and other refrigerant control devices, components balancing testing and charging methods Unit 6. Design of cold storages: Construction details of cold storage, storage parameters for different food items, transmission heat load, air change load and product load calculation. Construction details and application of transport refrigeration system C.P. Arora. Refrigeration and Air Conditioni	1.	Refrigeration and	Air Co	onditioning		
solving problems Able to formulate refrigeration and air conditioning problems for different applications and to find solution using principles engineering sciences, mathematics and literature 3. Ability to design and develop refrigeration and air conditioning component /system and processes that meets specific needs Description of Contents in brief: Unit 1. Review of basic of refrigeration machine, coefficient of performance, ton of refrigeration various types of refrigeration systems. Basics of vapour compression refrigeration system multi stage compression system, multi evaporator system, cascade system Unit 2. Various components of refrigeration system: Types of compressor, condensers, evaporators expansion devises used for used for refrigeration system, thermal design of reciprocating compressor, performance characteristic or reciprocating compressor, capacity control of reciprocating compressor. Construction featur of rotary, screw, scroll and centrifugal compressors Unit 3. Thermal design of condensers: Water-cooled and air-cooled, heat rejection ratio, heat transfer in condenser, condensing heat transfer coefficient for outside and inside surfaces, Wilson's plot Unit 4. Thermal design of different evaporators: Direct expansion chiller, direct expansion cooling coil for air with forced convection, direct expansion etc. Extended surface evaporator, heat Transfer in evaporators, augmentation of boiling heat transfer Unit 5. Selection of expansion valves and other refrigerant control devices, components balancing testing and charging methods Unit 6. Design of cold storages: Construction details of cold storage, storage parameters for different food items, transmission heat load, air change load and product load calculation. Construction details and application of transport refrigeration system List of Text Books: 1. C.P. Arora. Refrigeration and Air Conditioning, Tata McGraw-Hill Education, 2006 List of Reference Books: 1. R.J. Dossat. Principles of Refrigeration, Pearson Education India, 1996	Course	Outcomes:				
find solution using principles engineering sciences, mathematics and literature Ability to design and develop refrigeration and air conditioning component /system and processes that meets specific needs Description of Contents in brief: Unit 1. Review of basic of refrigeration machine, coefficient of performance, ton of refrigeration various types of refrigeration systems. Basics of vapour compression refrigeration system multi stage compression system, multi evaporator system, cascade system Unit 2. Various components of refrigeration system: Types of compressor, condensers, evaporators expansion devises used for used for refrigeration system, thermal design of reciprocating compressor, principle dimensions of reciprocating compressor, performance characteristic or reciprocating compressor, capacity control of reciprocating compressor. Construction feature of rotary, screw, scroll and centrifugal compressors Unit 3. Thermal design of condensers: Water-cooled and air-cooled, heat rejection ratio, heat transfer in condenser, condensing heat transfer coefficient for outside and inside surfaces, Wilson's plot Unit 4. Thermal design of different evaporators: Direct expansion chiller, direct expansion cooling coil for air with forced convection, direct expansion etc. Extended surface evaporator, heat Transfer in evaporators, augmentation of boiling heat transfer Unit 5. Selection of expansion valves and other refrigerant control devices, components balancing testing and charging methods Unit 6. Design of cold storages: Construction details of cold storage, storage parameters for different food items, transmission heat load, air change load and product load calculation. Construction details and application of transport refrigeration system List of Text Books: 1. C.P. Arora. Refrigeration and Air Conditioning, Tata McGraw-Hill Education, 2000 2. W.F. Stoecker. Design of Thermal Systems, McGraw Hill, 1980 3. R.S. Khurmi. Refrigeration and Air Conditioning, S. Chand Publication, 2006 List of Reference Books	1.		owled	ge of refrigeration and air conditioning	ng engineering fund	damentals for
Description of Contents in brief:	2.					cations and to
Description of Contents in brief: Unit 1.	3.				oning component	/system and
Unit 1. Review of basic of refrigeration machine, coefficient of performance, ton of refrigeration various types of refrigeration systems. Basics of vapour compression refrigeration system multi stage compression system, multi evaporator system, cascade system. Various components of refrigeration system: Types of compressor, condensers, evaporators expansion devises used for used for refrigeration system, thermal design of reciprocating compressor, principle dimensions of reciprocating compressor, performance characteristic or reciprocating compressor, capacity control of reciprocating compressor. Construction featur of rotary, screw, scroll and centrifugal compressors Unit 3. Thermal design of condensers: Water-cooled and air-cooled, heat rejection ratio, heat transfer in condenser, condensing heat transfer coefficient for outside and inside surfaces, Wilson's plot Unit 4. Thermal design of different evaporators: Direct expansion chiller, direct expansion cooling coil for air with forced convection, direct expansion etc. Extended surface evaporator, heat Transfer in evaporators, augmentation of boiling heat transfer Unit 5. Selection of expansion valves and other refrigerant control devices, components balancing testing and charging methods Unit 6. Design of cold storages: Construction details of cold storage, storage parameters for different food items, transmission heat load, air change load and product load calculation. Construction details and application of transport refrigeration system List of Text Books: 1. C.P. Arora. Refrigeration and Air Conditioning, Tata McGraw-Hill Education, 2000 2. W.F. Stoecker. Design of Thermal Systems, McGraw Hill, 1980 3. R.S. Khurmi. Refrigeration and Air Conditioning, S. Chand Publication, 2006 List of Reference Books: 1. R.J. Dossat. Principles of Refrigeration, Pearson Education India, 1996 2. Whitman, Johnson & Tomczyk. Refrigeration and Air Conditioning, Butterworth-Heinemann, 2008 URLs: 1. https://www.ashrae.org/	Descript					
expansion devises used for used for refrigeration system, thermal design of reciprocating compressor, principle dimensions of reciprocating compressor, performance characteristic of reciprocating compressor, capacity control of reciprocating compressor. Construction feature of rotary, screw, scroll and centrifugal compressors. Unit 3. Thermal design of condensers: Water-cooled and air-cooled, heat rejection ratio, heat transfer in condenser, condensing heat transfer coefficient for outside and inside surfaces, Wilson's plot. Unit 4. Thermal design of different evaporators: Direct expansion chiller, direct expansion cooling coil for air with forced convection, direct expansion etc. Extended surface evaporator, heat Transfer in evaporators, augmentation of boiling heat transfer. Unit 5. Selection of expansion valves and other refrigerant control devices, components balancing testing and charging methods. Unit 6. Design of cold storages: Construction details of cold storage, storage parameters for different food items, transmission heat load, air change load and product load calculation. Construction details and application of transport refrigeration system. List of Text Books: 1. C.P. Arora. Refrigeration and Air Conditioning, Tata McGraw-Hill Education, 2000 2. W.F. Stoecker. Design of Thermal Systems, McGraw Hill, 1980 3. R.S. Khurmi. Refrigeration and Air Conditioning, S. Chand Publication, 2006 List of Reference Books: 1. R.J. Dossat. Principles of Refrigeration, Pearson Education India, 1996 2. Whitman, Johnson & Tomczyk. Refrigeration and Air Conditioning Technology, Cengage Learning, 2009 3. Hundy, Trott & Welch. Refrigeration and Air Conditioning, Butterworth-Heinemann, 2008 URLs: 1. https://www.ashrae.org/	Unit 1.	Review of basic various types of multi stage comp	Review of basic of refrigeration machine, coefficient of performance, ton of refrigeration, various types of refrigeration systems. Basics of vapour compression refrigeration system,			
in condenser, condensing heat transfer coefficient for outside and inside surfaces, Wilson's plot Unit 4. Thermal design of different evaporators: Direct expansion chiller, direct expansion cooling coil for air with forced convection, direct expansion etc. Extended surface evaporator, heat Transfer in evaporators, augmentation of boiling heat transfer Unit 5. Selection of expansion valves and other refrigerant control devices, components balancing testing and charging methods Unit 6. Design of cold storages: Construction details of cold storage, storage parameters for different food items, transmission heat load, air change load and product load calculation. Construction details and application of transport refrigeration system List of Text Books: 1. C.P. Arora. Refrigeration and Air Conditioning, Tata McGraw-Hill Education, 2000 2. W.F. Stoecker. Design of Thermal Systems, McGraw Hill, 1980 3. R.S. Khurmi. Refrigeration and Air Conditioning, S. Chand Publication, 2006 List of Reference Books: 1. R.J. Dossat. Principles of Refrigeration, Pearson Education India, 1996 2. Whitman, Johnson & Tomczyk. Refrigeration and Air Conditioning Technology, Cengage Learning, 2009 3. Hundy, Trott &Welch. Refrigeration and Air Conditioning, Butterworth-Heinemann, 2008 URLs: 1. https://www.ashrae.org/		expansion devises used for used for refrigeration system, thermal design of reciprocating compressor, principle dimensions of reciprocating compressor, performance characteristic of reciprocating compressor, capacity control of reciprocating compressor. Construction feature				
coil for air with forced convection, direct expansion etc. Extended surface evaporator, hear Transfer in evaporators, augmentation of boiling heat transfer Unit 5. Selection of expansion valves and other refrigerant control devices, components balancing testing and charging methods Unit 6. Design of cold storages: Construction details of cold storage, storage parameters for different food items, transmission heat load, air change load and product load calculation. Construction details and application of transport refrigeration system List of Text Books: 1. C.P. Arora. Refrigeration and Air Conditioning, Tata McGraw-Hill Education, 2000 2. W.F. Stoecker. Design of Thermal Systems, McGraw Hill, 1980 3. R.S. Khurmi. Refrigeration and Air Conditioning, S. Chand Publication, 2006 List of Reference Books: 1. R.J. Dossat. Principles of Refrigeration, Pearson Education India, 1996 2. Whitman, Johnson & Tomczyk. Refrigeration and Air Conditioning Technology, Cengage Learning, 2009 3. Hundy, Trott & Welch. Refrigeration and Air Conditioning, Butterworth-Heinemann, 2008 URLs: 1. https://www.ashrae.org/	Unit 3.	in condenser, co				
 Unit 5. Selection of expansion valves and other refrigerant control devices, components balancing testing and charging methods Unit 6. Design of cold storages: Construction details of cold storage, storage parameters for different food items, transmission heat load, air change load and product load calculation. Construction details and application of transport refrigeration system List of Text Books: C.P. Arora. Refrigeration and Air Conditioning, Tata McGraw-Hill Education, 2000 W.F. Stoecker. Design of Thermal Systems, McGraw Hill, 1980 R.S. Khurmi. Refrigeration and Air Conditioning, S. Chand Publication, 2006 List of Reference Books: R.J. Dossat. Principles of Refrigeration, Pearson Education India, 1996 Whitman, Johnson & Tomczyk. Refrigeration and Air Conditioning Technology, Cengage Learning, 2009 Hundy, Trott & Welch. Refrigeration and Air Conditioning, Butterworth-Heinemann, 2008 URLs: https://www.ashrae.org/ 	Unit 4.	Thermal design of different evaporators: Direct expansion chiller, direct expansion cooling coil for air with forced convection, direct expansion etc. Extended surface evaporator, heat				
food items, transmission heat load, air change load and product load calculation. Construction details and application of transport refrigeration system List of Text Books: C.P. Arora. Refrigeration and Air Conditioning, Tata McGraw-Hill Education, 2000 W.F. Stoecker. Design of Thermal Systems, McGraw Hill, 1980 R.S. Khurmi. Refrigeration and Air Conditioning, S. Chand Publication, 2006 List of Reference Books: R.J. Dossat. Principles of Refrigeration, Pearson Education India, 1996 Whitman, Johnson & Tomczyk. Refrigeration and Air Conditioning Technology, Cengage Learning, 2009 Hundy, Trott & Welch. Refrigeration and Air Conditioning, Butterworth-Heinemann, 2008 URLs: https://www.ashrae.org/	Unit 5.	Selection of expansion valves and other refrigerant control devices, components balancing,				
 C.P. Arora. Refrigeration and Air Conditioning, Tata McGraw-Hill Education, 2000 W.F. Stoecker. Design of Thermal Systems, McGraw Hill, 1980 R.S. Khurmi. Refrigeration and Air Conditioning, S. Chand Publication, 2006 List of Reference Books: R.J. Dossat. Principles of Refrigeration, Pearson Education India, 1996 Whitman, Johnson & Tomczyk. Refrigeration and Air Conditioning Technology, Cengage Learning, 2009 Hundy, Trott & Welch. Refrigeration and Air Conditioning, Butterworth-Heinemann, 2008 URLs: https://www.ashrae.org/ 		Design of cold storages: Construction details of cold storage, storage parameters for different food items, transmission heat load, air change load and product load calculation. Construction details and application of transport refrigeration system				
 W.F. Stoecker. Design of Thermal Systems, McGraw Hill, 1980 R.S. Khurmi. Refrigeration and Air Conditioning, S. Chand Publication, 2006 List of Reference Books: R.J. Dossat. Principles of Refrigeration, Pearson Education India, 1996 Whitman, Johnson & Tomczyk. Refrigeration and Air Conditioning Technology, Cengage Learning, 2009 Hundy, Trott & Welch. Refrigeration and Air Conditioning, Butterworth-Heinemann, 2008 URLs: https://www.ashrae.org/ 						
3. R.S. Khurmi. Refrigeration and Air Conditioning, S. Chand Publication, 2006 List of Reference Books: 1. R.J. Dossat. Principles of Refrigeration, Pearson Education India, 1996 2. Whitman, Johnson & Tomczyk. Refrigeration and Air Conditioning Technology, Cengage Learning, 2009 3. Hundy, Trott & Welch. Refrigeration and Air Conditioning, Butterworth-Heinemann, 2008 URLs: 1. https://www.ashrae.org/						JU
 List of Reference Books: R.J. Dossat. Principles of Refrigeration, Pearson Education India, 1996 Whitman, Johnson & Tomczyk. Refrigeration and Air Conditioning Technology, Cengage Learning, 2009 Hundy, Trott &Welch. Refrigeration and Air Conditioning, Butterworth-Heinemann, 2008 URLs: https://www.ashrae.org/ 				•		
 R.J. Dossat. Principles of Refrigeration, Pearson Education India, 1996 Whitman, Johnson & Tomczyk. Refrigeration and Air Conditioning Technology, Cengage Learning, 2009 Hundy, Trott & Welch. Refrigeration and Air Conditioning, Butterworth-Heinemann, 2008 URLs: https://www.ashrae.org/ 						
 Whitman, Johnson & Tomczyk. Refrigeration and Air Conditioning Technology, Cengage Learning, 2009 Hundy, Trott & Welch. Refrigeration and Air Conditioning, Butterworth-Heinemann, 2008 URLs: https://www.ashrae.org/ 						
3. Hundy, Trott &Welch. Refrigeration and Air Conditioning, Butterworth-Heinemann, 2008 URLs: 1. https://www.ashrae.org/		Whitman, Johnson	•			ogy, Cengage
1. https://www.ashrae.org/	3.		elch. F	Refrigeration and Air Conditioning, But	terworth-Heinemar	nn, 2008
1. https://www.ashrae.org/	URLs:	<u> </u>				
2. https://ishrae.in/		https://www.ashra	ae.org/			
	2.	https://ishrae.in/				

Lecture F	Plan (about 40-50 Lectures):			
Lecture	Торіс			
No.				
1-6	Review of basic of refrigeration machine, coefficient of performance, ton of			
	refrigeration, various types of refrigeration systems. Basics of vapour			
	compression refrigeration system, multi stage compression system, multi			
	evaporator system, cascade system			
7-10	Types of compressor, condensers, evaporators expansion devises used for used			
	for Refrigeration system			
11-16	Principle dimensions of reciprocating compressor, performance characteristic			
	of reciprocating compressor, capacity control of reciprocating compressor.			
	Construction feature of rotary, screw, scroll and centrifugal compressors			
17-22	, j			
	heat transfer in condenser, condensing heat transfer coefficient for outside and			
	inside surfaces. Wilson's plot			
23-28	Thermal design of different evaporators-Direct expansion chiller, direct			
	expansion cooling coil for air with forced convection, direct expansion etc.			
	Extended surface evaporator			
29-30	Heat transfer in evaporators. Augmentation of boiling heat transfer			
31-38	Selection of expansion valves and other refrigerant control devices, components			
	balancing, testing and charging methods			
39-48	Design of cold storages: Construction details of cold storage, storage			
	parameters for different food items, transmission heat load, air change load and			
	product load calculation			
49-50	Construction details and application of transport refrigeration system			

^{*}Min 48 (for four credit course)

Sl. No.	Name of Examination	Marks Allotted	Remarks
1	Mini Test	10	
2	Mid Semester Test	20	
3	Assignment if any	10	
4	Tutorial if any	-	
5	Quiz if any	10	
6	Seminar, Viva voce if ay	-	
7	End Semester Examination	50	
8	Experiments if any (for practical courses)	-	
9	Any other	-	

Name of	Name of Program M.		Tech. in Mechanical Engineering with Specialization in Thermal Engineering	Semester: I/II	Year: I	
Name of	ame of Course		Advanced Thermodynamics		•	
Course C	ode		TH24553			
Core / El	ective / Other		Elective			
Prerequis	site if any:					
1.	Thermodynamic	es				
2.		ions a	nd Chemical equilibrium			
	utcomes:					
1.	thermal energy sy	stems	asic thermodynamics, entropy and exer			
2.	Understand prope	erties o	f pure substance and thermodynamic pr	operties of real gases	S	
3.	Apply energy bala	ances	to reacting systems for both closed and	open system		
4.			nilibrium constant and apply the general reacting ideal-gas mixtures	criteria for chemical		
Note:	Use of Steam Tab	oles, M	olier diagram and Charts will be allowed	ed in examination		
Descripti	on of Contents in	n brie	f :			
Unit 1.			ics, and its applications to different f thermodynamics and their applications		and exergy,	
Unit 2.	P-V-T surfaces, phase diagram, phase changes, Gibbs phase rule, various properties diagram					
Unit 3.	Thermodynamic relations. Throttling process. Joule Thomson effect. Clayperon's equations					
Unit 4.	Equations of states for real gases - Vander Waal's equation of state. Law of corresponding states. Mixtures of ideal & real gases				, ,	
Unit 5.	Fundamentals of chemical thermodynamics, First law of thermodynamics in thermo chemistry, heat effects of reaction. Hess's law. Kirchhoff's law. Chemical equilibrium. Bond energy					
	ext Books:					
1.	Gordon Rogers, Pearson Educati		Mayhew. Engineering Thermodynar 002	nics: Work and He	at Transfer,	
2.	P.K. Nag. Basic 2010	and A	Applied Thermodynamics, Tata McC	Graw-Hill Publishir	ng Co. Ltd.,	
3.	Yonus A. Ceng McGraw Hill, 20		Iichale A. Boles. Thermodynamics	: An Engineering	Approach,	
4.	A. Bejan. Advar	nced I	Engineering Thermodynamics, John	Wiley & Sons, 200	6	
List of Ro	eference Books:					
1.	M.J. Moran, H.N. Shapiro. Fundamentals of Engineering Thermodynamics, John Wiley and Sons, 1999				Wiley and	
2.	M. W. Zemansky. Heat and Thermodynamics, 8 th Edition, Tata Mc Graw Hill Education Private Limited, 2011				Education	
3.			cepts of Thermodynamics, Mc Grav			
4.	and Sons,1994		Fundamentals of Classical Thermody			
5.	J.P. Holman. Th	ermo	dynamics (ISE Editions), Mc Graw-l	Hill Education, 198	8	
URLs:						
1.	www.nptel.ac.in	1				

2.	https://swayam.gov.in/nc_details/NPTEL				
Lecture Plan (about 40-50 Lectures):					
*Lecture No.	Topic	Remarks			
1.	Equation of the first law of the thermodynamics				
2.	Application of the first law to flow & non flow system				
3.	Reversible & irreversible processes with ideal and real gases				
4.	Problems onflow & non flow system				
5.	Statement of Second law and its applications				
6.	Entropy & exergy				
7.	Thermodynamic potential functions				
8.	Availability, losses of maximum useful work				
9.	Nerst's heat theorem				
10.	Problems on Second law and availability				
11.	Problems on availability and irreversibility				
12.	Formulae of partial derivatives for internal energy				
13.	Differential equations for heat, enthalpy, entropy				
14.	Free energy and isobaric potential				
15.	Equations of heat capacities, thermal coefficients				
16.	Application of general differential equations of thermodynamics				
17.	Problems on differential equations of thermodynamics				
18.	Pure substances				
19.	Phase diagram				
20.	Phase changes				
21.	Triple point, critical point				
22.	Temperature-Entropy diagram				
23.	Enthalpy-Entropy charts				
24.	Gibbs phase rule				
25.	Problems on pure substances				
26.	Problems on pure substances				
27.	Thermodynamic relations				
28.	Throttling process				
29.	Joule Thomson effect				
30.	Clayperon's equation, Clausius Clayperon's equation				
31.	Problems on Clayperon's equations				
32.	Introduction to real gases and their deviation from ideal behaviour				
33.	Real substances & their properties				
34.	Equations of states for real gases Vander Waal's equation of state				
35.	Law of corresponding states				
36.	Compressibility chart				
37.	Problems on real gases				
38.	Introduction to mixtures of ideal & real gases				
39.	Laws regulating mixtures of ideal & real gases				
40.	Adiabatic mixing of flowing gases				
41.	Mixing of gases at constant volume				
42.	Problems on mixtures of ideal & real gases				
43.	Application of First law of thermodynamics in thermo chemistry				
44.	Heat effects of reaction				
45.	Hess's law				

46.	Kirchhoff's law	
47.	Chemical equilibrium	
48.	Bond energy	
49.	Problems on Hess's law	
50.	Problems on chemical equilibrium	

^{*}Min 48 (for four credit course)

Sl. No.	Name of Examination	Marks Allotted	Remarks
1	Mini Test	10	
2	Mid Semester Test	20	
3	Assignment if any	10	
4	Tutorial if any	-	
5	Quiz if any	10	
6	Seminar, Viva voce if any	-	
7	End Semester Examination	50	
8	Experiments if any (for practical courses)	-	
9	Any other	-	

Name of	Program	M. T	ech. in Mechanical Engineering	with	Semester: I/II	Year: I
			Specialization in Thermal Engineering			
Name of	Course		Theory and Design of Gas Turbi	ines		
r turne or	Course		Theory and Besign of Gus Tures	iiios		
Course	Code		TH24554			
Core / E	llective / Other		Elective			
Preregu	isite if any:					
1.	Engineering Ther	modyn	amics			
2.	Turbo Machines					
Course	Outcomes:					
1.	To analyze gas tu:	rbines	cycles			
2.	To understand the	worki	ng and design principles of gas tu	rbines		
3.	Design of compre	ssor of	gas turbine cycle			
4.	Design of combus	stion cl	amber			
Descript	tion of Contents in	brief:				
Unit 1.			bines classification, thermodyna	mic ar	alysis, open and o	closed cycles,
			and efficiency. Introduction to	codes	and standards us	ed in turbine
Unit 2.			turbine testing methods cades: Cascade nomenclature, li	ft and	drag giraulation a	nd lift losses
Omt 2.			essor and turbine cascade performance			
	nominal deflecti				,r	,
Unit 3.			sor: Principle of operation, velo			
			compressors. Three dimensional			ormance.
Unit 4.			ns of transonic and supersonic co Velocity diagram, multistage t			nd efficiency
CIII 4.			n within blade rows, efficiencies			
	manufacture, bl	ade ma	terial and blade cooling, limiting	factors	s in turbine design	
Unit 5.			rs: Combustion chambers of			
	0 0		performance, combustion proces rangements, limiting factors in co	_	•	n zones,
List of T	Cext Books:	inoci al	rangements, minuing factors in ec	JIIIUUSI	Ton Chambers	
1.		and Ga	s Turbines, Central Publishing Ho	ouse, A	Allahabad, 1997	
2.	V. Ganesan. Gas	Turbin	es, McGraw Hill, 2010			
3.	A.V. Arasu. Turb	o Macl	ines, Vikas Publishing House, 20)13		-
	Reference Books:					
1.	Springer, 2018		Gas Turbine Design, Compone			
2.	H.I.H. <u>Saravanan</u> Pearson Education		G.F.C. <u>Rogers, H. Cohen</u> , Pada, 2008	aul <u>St</u>	<u>raznicky</u> . Gas Tur	rbine Theory,
3.	Gregory K. McM	illan. C	entrifugal and Axial Compressor	Contro	ol, Momentum Pre	ess, 2010
URLs:	1					
1.	https://nptel.ac.in/	noc/co	urses/noc18/SEM1/noc18-me34/			
2.	https://nptel.ac.in/	/conten	t/storage2/courses/112104117/ui/	/TOC.l	<u>ntm</u>	
3.	https://nptel.ac.in/	/course	s/112/104/112104117/			

Lecture Plan	Lecture Plan (about 40-50 Lectures):			
*Lecture	Topic	Remarks		
No.				
1-3	Gas turbines classification, thermodynamic analysis, open and closed cycles			
4-6	Cycle analysis, losses and efficiency			
7-9	Introduction to codes and standards used in turbine design			
10-11	Introduction to turbine testing methods			
12-14	Cascade nomenclature, lift and drag, circulation and lift, losses and Efficiency			
15-17	Compressor and turbine cascade performance			
18-20	Axial compressor cascades, nominal deflection, fluid deviation			
21-23	Axial compressor principle of operation, velocity triangles for axial flow Compressors			
24-26	Design procedure for single and multistage compressors			
27-28	Three dimensional effect compressor performance			
29-30	Description and problems of transonic and supersonic compressors.			
31-33	Velocity diagram of axial flow turbines, multistage turbines, stage losses and efficiency, stage reaction			
34-36	Diffusion within blade rows, efficiencies and characteristics			
37-39	Blade design & manufacture, blade material and blade cooling			
40-42	Limiting factors in turbine design			
43-45	Combustion chambers of gas turbines requirements, factors affecting design and performance			
46-48	Combustion process, geometry, combustion zones			
49-50	Combustion chamber arrangements, limiting factors in combustion chambers			

^{*}Min 48 (for four credit course)

Sl. No.	Name of Examination	Marks Allotted	Remarks
1	Mini Test	10	
2	Mid Semester Test	20	
3	Assignment if any	20	
4	Tutorial if any	-	
5	Quiz if any	-	
6	Seminar, Viva voce if ay	-	
7	End Semester Examination	50	
8	Experiments if any (for practical courses)	-	
9	Any other	-	

	ne of Program	M. Tech. in Mechanical Engineering with Specialization in Thermal Engineering	/II Year: I
Nam	ne of Course	Theory and Design of Turbomachines	
Cou	rse code	TH24555	
Core	e/ Elective/other	Elective	
Prer	requisite:	<u>'</u>	
1.	Fluid Mechan	ies	
2.	Thermodynan	nics	
3.	Hydraulic Ma	chinery	
Cou	rse Outcomes:		
1.	Identify the fu	indamental concepts of energy balance in a turbine system	
2.	Integrate the f	undamentals of thermodynamics into turbomachinery	
3.	Demonstrate s	skills required for design of Turbomachines	
4.	The capability	to design, analyse and troubleshoot systems involving turbomach	ines
5.	Suggest advar	nced and innovative solutions for efficient turbomachines	
Desc	cription of Conten	ts in brief:	
Unit	t 2. Classification	ram, streamline theory, mass-momentum principle, circulation on of impellers & diffuser: Axial flow, radial flow and mixed wortex theory, classification of casing, diffuser, principle and characteristics.	
	turbobiowers	S	
Unit	t 3. Cascade An estimation o	nalysis: Two-dimensional cascade theory, lift and drag, blast floss, cascade nomenclature, compressor and turbine cascade, cascades in cascade, correlation of low speed	ade efficiency,
Unit	estimation o and curves, l 4. Axial flow dimensional	nalysis: Two-dimensional cascade theory, lift and drag, blaf loss, cascade nomenclature, compressor and turbine cascade, cascade	ande efficiency, scade testing arameters, three
	estimation of and curves, let 4. Axial flow of dimensional calculations, to 5. Steam turbit turbines class	f loss, cascade nomenclature, compressor and turbine cascade, cas losses in cascade, correlation of low speed Compressor: Stage characteristics, blading efficiency, design parallel flow considerations, radial equilibrium design approach procedural losses, Mach and Reynolds number ine & Compressor: Transonic and supersonic compressor, in sification, characteristics and properties. Liscs and blades-Interstage traversing, total pressure, static pressure.	arameters, three re and
Unit	estimation of and curves, let 4. Axial flow of dimensional calculations, to 5. Steam turbines class Stresses in decided and curves.	f loss, cascade nomenclature, compressor and turbine cascade, cas losses in cascade, correlation of low speed Compressor: Stage characteristics, blading efficiency, design parallel flow considerations, radial equilibrium design approach procedural losses, Mach and Reynolds number ine & Compressor: Transonic and supersonic compressor, in sification, characteristics and properties. Liscs and blades-Interstage traversing, total pressure, static pressure.	arameters, three re and
Unit	estimation of and curves, let 4. Axial flow of dimensional calculations, to 5. Steam turbit turbines class Stresses in disturbine performance of Text Books: Budugur Lakshm Interscience, 199.	f loss, cascade nomenclature, compressor and turbine cascade, cascades in cascade, correlation of low speed Compressor: Stage characteristics, blading efficiency, design parallel flow considerations, radial equilibrium design approach procedural losses, Mach and Reynolds number ine & Compressor: Transonic and supersonic compressor, in sification, characteristics and properties. liscs and blades-Interstage traversing, total pressure, static pressuremence	ande efficiency, scade testing arameters, three are and andustrial steam are, vane angles, whinery, Wiley
Unit List 1.	estimation of and curves, let 4. Axial flow of dimensional calculations, to 5. Steam turbin turbines class Stresses in disturbine performance of Text Books: Budugur Lakshm Interscience, 199. E.J. Finnemore, McGraw Hill, 20	f loss, cascade nomenclature, compressor and turbine cascade, cast losses in cascade, correlation of low speed Compressor: Stage characteristics, blading efficiency, design particular flow considerations, radial equilibrium design approach procedural losses, Mach and Reynolds number ine & Compressor: Transonic and supersonic compressor, in sification, characteristics and properties. liscs and blades-Interstage traversing, total pressure, static pressurements or mance initially and Heat Transfer of Turbomac for the static pressure in the stat	ande efficiency, scade testing arameters, three are and andustrial steam are, vane angles, whinery, Wiley
Unit List 1. 2. List	t 3. Cascade Ar estimation of and curves, let 4. Axial flow of dimensional calculations, t 5. Steam turbines class Stresses in disturbine performance of Text Books: Budugur Lakshm Interscience, 199. E.J. Finnemore, McGraw Hill, 20 of Reference Books	f loss, cascade nomenclature, compressor and turbine cascade, cast losses in cascade, correlation of low speed Compressor: Stage characteristics, blading efficiency, design particular flow considerations, radial equilibrium design approach procedural losses, Mach and Reynolds number in a Compressor: Transonic and supersonic compressor, in sification, characteristics and properties. Liscs and blades-Interstage traversing, total pressure, static pressurements and blades-Interstage traversing, total pressure, static pressurements. J.B. Franzini. Fluid Mechanics with Engineering Applications of the compression of t	ande efficiency, scade testing errameters, three ere and endustrial steam ere, vane angles, whinery, Wiley et and endustrial steam ere, vane angles, ethinery, Wiley ethinery, Wiley ethinery, Wiley ethinery, white endustrial endustrial error endustrial endustrial error endustrial endust
Unit List 1. 2. List 1.	estimation of and curves, let 4. Axial flow of dimensional calculations, table turbines class Stresses in disturbine performance of Text Books: Budugur Lakshm Interscience, 1990. E.J. Finnemore, McGraw Hill, 20 of Reference Book.	halysis: Two-dimensional cascade theory, lift and drag, blass floss, cascade nomenclature, compressor and turbine cascade, cascades in cascade, correlation of low speed Compressor: Stage characteristics, blading efficiency, design passing flow considerations, radial equilibrium design approach procedural losses, Mach and Reynolds number in a Compressor: Transonic and supersonic compressor, in sification, characteristics and properties. Liscs and blades-Interstage traversing, total pressure, static pressurements or mance J.B. Franzini. Fluid Mechanics with Engineering Applications of the Design of High-Efficiency Turbomachinery and Gas Turbines, No. 100 per passing to the properties of	arameters, three re and re, vane angles, thinery, Wiley re, 10 th Edition,
Unit List 1. 2. List	estimation of and curves, let 4. Axial flow of dimensional calculations, table turbines class Stresses in disturbine performance of Text Books: Budugur Lakshm Interscience, 1990. E.J. Finnemore, McGraw Hill, 20 of Reference Book.	halysis: Two-dimensional cascade theory, lift and drag, blass floss, cascade nomenclature, compressor and turbine cascade, cascades in cascade, correlation of low speed Compressor: Stage characteristics, blading efficiency, design passed flow considerations, radial equilibrium design approach procedure, losses, Mach and Reynolds number in a Compressor: Transonic and supersonic compressor, in sification, characteristics and properties. Itises and blades-Interstage traversing, total pressure, static pressurements and blades-Interstage traversing, total pressure, static pressurements. J.B. Franzini. Fluid Dynamics and Heat Transfer of Turbomaco Design of High-Efficiency Turbomachinery and Gas Turbines, Noted Dekker. Turbomachinery, Basic Theory and Applications, Interest Dekker. Turbomachinery, Basic Theory and Applications, Interest Dekker.	arameters, three re and re, vane angles, thinery, Wiley re, 10 th Edition,

- **4.** Gorla, S.R. Rama, Aijaz A. Khan. Turbomachinery: Design and Theory, CRC Press, 2003
- 5. Dixon, S. Larry, Cesare Hall. Fluid mechanics and Thermodynamics of Turbomachinery, Butterworth-Heinemann, 2013

URLs

1. http://www.cementechnology.ir/Library/Turbomachinery.Design.and.Theory.pdf

Lecture Plan (about 40-50 Lectures):

Lecture	Topic	Remarks
No.		
1-5	Introduction: Equations of motion, Coriolis effect and centrifugal forces,	
	momentum and energy equation, similarity rules and Cordier diagram	
6-8	Equations: Euler equation, streamline theory, mass-momentum principle,	
	Circulation	
9-16	Impellers: Classification of impellers, axial flow, radial flow and mixed	
	flow machines, prerotation, vortex theory, classification of casing	
17-20	Diffuser: Diffuser, principle and characteristics of turboblowers	
21-25	Cascade Analysis: Two-dimensional cascade theory, lift and drag, blade	
	efficiency, estimation of loss, cascade nomenclature, compressor and turbine	
	cascade	
26-28	Cascade Testing: Cascade testing and curves, losses in cascade, correlation	
	of low speed	
29-33	Axial Flow Compressor: Stage characteristics, blading efficiency, design	
	parameters, three dimensional flow considerations	
34-40	Design of Axial flow Compressor: Radial equilibrium design approach	
	procedure and calculations, losses, Mach and Reynolds number	
41-44	Steam Turbine and Compressor: Transonic and supersonic compressor,	
	industrial steam turbines classification, characteristics and properties	
45-48	Steam Turbine and Compressor: Stresses in discs and blades- interstage	
	traversing, total pressure, static pressure, vane angles, turbine performance	

^{*}Min 48 (for four credit course)

Sl. No.	Name of Examination	Marks Allotted	Remarks
1	Mini Test	10	
2	Mid Semester Test	20	
3	Assignment if any	20	
4	Tutorial if any	-	
5	Quiz if any	-	
6	Seminar, Viva voce if ay	-	
7	End Semester Examination	50	
8	Experiments if any (for practical courses)	-	
9	Any other	-	

Name of	f Program	M. Tech. in Mechanical Engineering with Specialization in Thermal Engineering	Semester: I/II	Year: I
Name of	Course	Design and Simulation of IC Engines	1	ll
Course	Code	TH24556		
Core / E	llective / Other	Elective		
Preregu	isite if any:			
1.		(Basic Internal Combustion Engines)		
2.	Computational Fluid I	Dynamics		
Course	Outcomes:			
1.	Identify and assess the	fundamentals of internal combustion system	n.	
2.	Integrate the fundame	ntals of thermodynamics into heat engines		
3.	Demonstrate skills req	uired for design of internal combustion systematical	ems	
4.	Prepare simulation of	the designed models with respective to boun	ndary conditions	
5.	Suggest advanced and	innovative models for optimized and efficie	ent combustion	
Descript	tion of Contents in brid	ef:		
Unit 1. Unit 2.	of engine models – C	s of thermodynamics, estimation of proper otto, Diesel and Dual Cycle studies first law application to combustion, heat of		
	temperature, chemical engines, heat transfer	al equilibrium and calculation of equilibrium models for engines	n composition, heat	transfer in
Unit 3.		ngines, flame propagation and velocity, siring rate, turbulence models, one dimension nsional models		
Unit 4.	Whitehouse way mo	ngines, single zone models-Premixed, Diffedel, two zone models, multi zone models- odel, Lyn's model. Introduction to multidim	Meguerdichian and	l Watson's
Unit 5.	and multidimensiona	the gas exchange process, flows in engine al models, flow around valves and through s-Isothermal and non-isothermal models.		
List of T	Text Books:			
1.	V. Ganesan. Compute	r Simulation of Spark Ignition Engine Proce	sses, Universities P	ress, 1995
2.	Ashley S. Campbell. 1980	Thermodynamic Analysis of Combustion E	ngines, John Wiley	and Sons,
List of F	Reference Books:			
1.	Ashley S. Campbell. 1980	Thermodynamic Analysis of Combustion E	ngines, John Wiley	and Sons,
2.	V. Ganesan. Compute	r Simulation of Spark Ignition Engine Proce	sses, Universities P	ress, 1995
3.	Press, 2002	Simulation of Compression Ignition En		niversities
4.		Basic Design of Two-Stroke Engines, SAE I		
5.		ombustion Engine Modeling, Hemisphere P		
6.	Engines, Vol. I & II, C			
7.	J.N.Mattavi and C.A. 1980	Amann. Combustion Modeling in Reciproc	ating Engines, Plen	num Press,

URLs:		
1. h	http://www.dragonfly75.com/motorbike/2StrokeDesign.pdf	
Lecture Pl	an (about 40-50 Lectures):	
*Lecture	Topic	Remarks
No.		
1-5	Introduction: First and second laws of thermodynamics, estimation of properties of gas mixtures	
6-8	Cycle studies: Structure of engine models – Otto, Diesel and Dual Cycle Studies	
9-14	Chemical studies: Chemical Reactions, first law application to combustion, heat of combustion, adiabatic flame temperature, chemical equilibrium and calculation of equilibrium composition	
15-20	Heat transfer: Heat transfer in engines, heat transfer models for engines	
21-25	Combustion in SI engines, flame propagation and velocity, single zone models, multi zone models, mass burning rate	
26-30	Combustion in SI: Turbulence models, one dimensional models, chemical kinetics modelling, multidimensional models	
31-35	Combustion in CI engines, single zone models, premixed, diffusive models, Wiebe' model, Whitehouse way model	
36-40	Combustion in CI: Two zone models, multizone models, Meguerdichian and Watson's model, Hiroyasu's model, Lyn's model. Introduction to multidimensional and spray modelling.	
41-44	Flow through engine manifold: Thermodynamics of the gas exchange process, flows in engine manifolds, one dimensional and multidimensional models, flow around valves	
45-48	Flow through ports, models for scavenging in two stroke engines, isothermal and non-isothermal models	

^{*}Min 48 (for four credit course)

Sl. No.	Name of Examination	Marks Allotted	Remarks
1	Mini Test	10	
2	Mid Semester Test	20	
3	Assignment if any	20	
4	Tutorial if any	-	
5	Quiz if any	-	
6	Seminar, Viva voce if ay	-	
7	End Semester Examination	50	
8	Experiments if any (for practical courses)	-	
9	Any other	-	

Name of	Program	M. Tech. in Mechanical Engineering with Specialization in Thermal Engineering	Semester: I/II	Year: I			
Name of	Course	Advanced Fluid Mechanics					
Course C	Code	TH24557					
Core / El	ective / Other	Elective					
	site if any:						
1.	Fluid Mechanics						
Course C	Outcomes:						
	for fluid flow.	e to understand the conservation principle o		and energy			
2.	Students will be a	ble to obtain the exact analytical solution usi	ing N-S equation.				
3.	Students will be a and to design syst	ble to apply the principles of fluid mechanics ems.	s to solve engineering	ng problems			
4.	Student will apply	the numerical techniques for boundary-layer	er equations.				
Descripti	on of Contents in	brief:					
Unit 1.	streamline, path	Definition of continuum, Lagrangian and Eulline, streak line, material derivative and acc, vorticity and stream function, velocity pote	eleration, angular d				
Unit 2.	Fundamental equation of viscous flow: Derivation of continuity, Navier-Stokes and energy equations, initial and boundary conditions, exact solutions of Navier-Stokes Equations, Couette flow, Hagen-Poiseuille flow, Stokes problems, creeping flows, theory of lubrications						
Unit 3.	Boundary Layer Theory: Introduction, boundary layer equations, flow over a flat plate, boundary layer with pressure gradient, momentum-integral approach, boundary layer separation, approximate methods for boundary-layer equations						
Unit 4.	Turbulent Flow: Introduction to turbulent flows, features of turbulence, mean and fluctuating components, derivations of Reynolds averaged Navier-Stokes equations, turbulent boundary layer equations, eddy viscosity and mixing length hypothesis.						
Unit 5.	Compressible flow: Introduction, one dimensional compressible flow, compressible flow in nozzle, origin of shock in supersonic flow, normal shock relations, oblique shock						
	ext Books:						
1.	Pijush K. Kundu,	Ira M. Cohen, David R. Dowling. Fluid Med	chanics,Academic F	Press, 2015			
2.	Frank M. White. I	Fluid Mechanics, McGraw-Hill Education, 20	015				
3.	R.W. Fox, A.T. M	IcDonald. Introduction to Fluid Mechanics, J	John Wiley & Sons,	2011			
4.	S.W. Yuan. Found	dations of Fluid Mechanics, Prentice Hall of	India, 1970				
List of R	eference Books:						
1.	Frank M. White.	Viscous Fluid Flow, McGraw Hill Education,	2005				
2.	H. Schlichting.Bo	undary Layer Theory, McGraw Hill Educati	on, 1979				
3.		L. Lumley. A First Course in Turbulence, N					
4.	K. Muralidhar, G. Biswas. Advanced Engineering Fluid Mechanics, Alpha Science International Limited, 2005						
		nea, 2005					
URLs:							
URLs:		/courses/112/105/112105218/					

3.	http://web.iitd.ac.in/~pmvs/course_mcl702.php	
Lecture 1	Plan (about 40-50 Lectures):	
^k Lecture No.	Topic	Remarks
1	Review of fundamental of fluid mechanics	
2	2 Demonstration on various application of fluid mechanics	
3	Types of flows, Lagrangian and Eulerian approach	
4	Material derivative and acceleration	
5	Streamline, path line and streak line	
6	Strain rate, translation, rotation and distortion of fluid element	
7	Vorticity and stream function, velocity potential	
8	Derivation of conservation of mass equation- differential method and control volume method	
9	Derivation of conservation of mass equation- control volume method	
10	Derivation of Navier-Stokes equations	
11	Special form of Navier-Stokes equations	
12	Derivation of energy equation	
13	Initial and boundary conditions	
14	Fully developed flow in a straight channel	
15	Fully developed flow in power-law fluid	
16	Couette flow and Hagen-Poiseuille flow	
17	Lubrication theory	
18	Unsteady flow in a long tube	
19	Stokes 1 st problem	
20	Stokes 2 nd problem	
21	Creeping flow	
22	Problems	
23	Introduction to boundary layer theory	
24	Derivation of 2-D boundary layer equations	
25	Similarity solution for flow over flat plate	
26	Momentum-Integral equation for boundary	
27	Boundary layer separation	
28	Blassius solution of boundary layer equation	
29	Kármán-Pohlhausen method for flow over plate	
30	Kármán-Pohlhausen method for non-zero pressure gradient	
31	Entry flow in a duct	
32	Numerical method for boundary-layer equations	
33	Problems solving session	
34	Introduction to turbulent flow and engineering applications	
35	Characteristics of turbulent flow	
36	Time mean motions and fluctuations	
37	Derivations of governing equations for turbulent flow	
38	Prandtl mixing length hypothesis	
39	k-ε model of turbulence	
40	Flat plate turbulent boundary layer	
41	Problems	
42	Introduction to compressible flow with example	
43	Speed of sound and isentropic gas relations	
44	Compressible flow in nozzle: Area-velocity relations	
45	Convergent divergent nozzle and velocity measurement using pitot tube	
46	Origin of shock in supersonic flow	

47	Normal shock and oblique shock	
48	Problems	

^{*}Min 48 (for four credit course)

Sl. No.	Name of Examination	Marks Allotted	Remarks
1	Mini Test	10	
2	Mid Semester Test	20	
3	Assignment if any	10	
4	Tutorial if any	-	
5	Quiz if any	05	
6	Seminar, Viva voce if any	05	
7	End Semester Examination	50	
8	Experiments if any (for practical courses)	-	
9	Any other	-	

Name of	f Program	M.	Tech. in Mechanical Engineering with Specialization in Thermal Engineering	Semester: I/II	Year: I
Name of	f Course		Microfluidics	1	
Course	Code		TH24558		
Core / E	Clective / Other		Elective		
Prerequ	isite if any:				
1.	Fluid Mechanics				
Course	Outcomes:				
1.	The student will u	underst	and the physics involved in gas and liq	uid flow in micro	ochannels.
2.	The student will a	able to	analyze the problems of gas and liquid	flows in microck	nannels.
3.	The student will a	able to	design the microchannel system.		
Descrip	tion of Contents ir	ı brief	:		
Unit 1.	·	scalin	n, definition, benefits, challenges g laws, conservation of mass, momen boundary conditions		physics of species
Unit 2.	Pressure-Drive	n Mic	roflows: Fully developed flow, Hagens problem, unsteady flows, Stokes drag		low Reynolds
Unit 3.	Capillary flows	Capillary flows: Surface tension and interfacial energy, contact angle, capillary length and capillary rise, interfacial boundary conditions, Marangoni effect			
Unit 4.			rokinetic effects, electroosmosis, dielec		netophoresis
Unit 5.	photolithograph micromachining molding, hot em	Microfabrication Technique: Materials, clean room, silicon crystallography, photolithography - mask, spin coating, exposure and development, etching, bulk and surface micromachining, polymer microfabrication, PMMA/COC/PDMS substrates, micromolding, hot embossing, fluidic interconnections			
Unit 6.	Biomicrofluidics: An introduction to bio-microfluidics, and some applications computational modelling of micro-flows: MD and DSMC methods				
List of T	Text Books:	nodem	ing of fillero-flows. MD and DSMC file	tilous	
1.		ductio	n to Microfluidics, Oxford University I	Press Inc., 2005	
2.	N.T. Nguyen, S.T Inc., 2002	. Were	ely. Fundamentals and Applications of	Microfluidics, A	rtech House
3.		uidics,	John Wiley & Sons, 2009		
List of F	 Reference Books:		-		
1.	•	damen	tals of Microfabrication, CRC press, 2	002	
2.			dicrofluidics, Oxford University Press I		
URLs:					
1.	https://nptel.ac.in	/course	es/112/105/112105187/		
2.	https://nptel.ac.in	/course	es/112/106/112106169/		
3.	https://canvas.har	vard.e	du/courses/8157/assignments/syllabus		
Lecture	Plan (about 40-50) Lectu	ires):		
*Lectur No.	e		Topic		Remarks
1.	Introduction to	o micr	ofluidics		
2.	Applications				
3.	Scaling Laws				

4	Consequetion of moss					
4.	Conservation of mass					
5.	Navier-Stoke equations					
6.	Derivation of Navier-Stokes equation					
7.	Energy equation					
8.	Species conservation equation					
9.	Flow driven by pressure gradient					
10.	Fully developed flow between two parallel plates					
11.	Hagen-Poiseuille flow					
12.	Low Reynolds hydrodynamics					
13.	Unsteady flows					
14.	Stokes 1 st Problem					
15.	Stokes 2 nd Problem					
16.	Stokes drag on sphere					
17.	Surface driven flows					
18.	Young Laplace equation					
19.	Contact angle: Interpretation of Young law					
20.	Capillary rise and pump					
21.	Interfacial boundary conditions					
22.	Marangoni effect					
23.	Problem solving session					
24.	Fundamental of electrohydrodynamic					
25.	The Debye layer					
26.	Electric double layer					
27.	Ideal electroosmotic flow					
28.	Electroosmotic flow with back pressure					
29.	The cascade electroosmotic pump					
30.	Electrophoresis of particle					
31.	Electrophoretic velocity dependence on particle size					
32.	Dielectrophoresis					
33.	Induced polarization and dielectric forces					
34.	Point dipole in a dielectric fluid					
35.	The dielectrophoretic forces on a dielectric sphere					
36.	Dielectric particle tracking					
37.	Magnetostatics					
38.	Basic equation for magnetophoresis					
39.	Material used in the microfabrication					
40.	Photolithography- mask and spin coating, exposure					
41.	Etching and resists stripping					
42.	Bulk and surface micromachining					
43.	Polymer microfabrication					
44.	PMMA/COC/PDMS substrates, micro-molding					
45.	Hot embossing, fluidic interconnections					
46.	Microfluidics components					
47.	Introduction to Biomicrofluidics					
48.	Drug Delivery, Diagnostics, and Bio Sensing					
49.	Scope of computational modelling in microflows					
*N/! 40 (f-	, , , , , , , , , , , , , , , , , , ,					

^{*}Min 48 (for four credit course)

Sl. No.	Name of Examination	Marks Allotted	Remarks
1	Mini Test	10	
2	Mid Semester Test	20	
3	Assignment if any	05	
4	Tutorial if any	-	
5	Quiz if any	05	
6	Seminar, Viva voce if any	10	
7	End Semester Examination	50	
8	Experiments if any (for practical courses)	-	
9	Any other	-	

Name of	Program	M. T	ech. in Mechanical Engineering with Specialization in Thermal Engineering	Semester: I/II	Year: I
Name of	Course		Convective Heat & Mass Transfer		
Course (Code		TH24559		
Core / E	lective / Other		Elective		
Prerequi	site if any:				
1.	Fluid Mechanics				
2.	Heat Transfer				
Course (Outcomes:				
1.	Able to apply kn mechanical engin		ge of mathematics, science and engin problems	eering fundamental	s for solving
2.			nanical engineering problems and to athematics and literature	find solution using	g principles
3.	Ability to synthes of the problem	sis the i	nformation, analysis and interpretation	of data to find val	id conclusion
Descript	ion of Contents in	brief:			
Unit 1.			: Continuity, momentum and energy estems, boundary layer approximations		
Unit 2.	Laminar External Flow and Heat Transfer: (a) Similarity solutions for flat plate (Blasius solution), flows with pressure gradient (Falkner-Skan and Eckert solutions), and flow with transpiration (b) Integral method solutions for flow over aniso-thermal flat plate, flat plate with constant heat flux and with varying surface temperature (Duhamel's method), flows with pressure				
Unit 3.	gradient (von Karman-Pohlhausen method) Laminar Internal Flow and Heat Transfer: (a) Exact solutions to N-S equations for flow through channels and circular pipe, fully developed forced convection in pipes with different wall boundary conditions, forced convection in the thermal entrance region of ducts and channels (Graetz solution), heat transfer in the combined entrance region (b) Integral method for internal flows with different wall boundary conditions				
Unit 4.	Natural Convection Heat Transfer: Governing equations fornatural convection, Boussinesq approximation, dimensional analysis, similarity solutions for laminar flow past a vertical plate with constant wall temperature and heat flux conditions, integral method for natural convection flow past vertical plate, effects of inclination, natural convection in enclosures, mixed convection heat transfer past vertical plate and in enclosures				
Unit 5.	Turbulent Convection: Governing equations for averaged turbulent flow field (RANS), analogies between heat and mass transfer (Reynolds, Prandtl-Taylor and Von Karman Analogies), turbulence models (zero, one and two equation models), turbulent flow and heat transfer across flat plate and circular tube, turbulent natural convection heat transfer, empirical correlations for different configurations				
Unit 6.	Convective Heat Transfer through Porous Media: Area weighted velocity, Darcy flow model, energy equation, boundary layer solutions for 2-D forced convection, fully developed duct flow, natural convection in porous media, filled enclosures, stability of horizontal porous Layers				lly developed
	ext Books:	0 -	.	m 2 th = -	
1.	W. Kays, M. Crav Hill International		B. Weigand. Convective Heat and Mas	s Transfer, 4 th Editi	on, McGraw

2.	S. Kakac and Y.Yener. Convective Heat Transfer, 2 nd Edition, CRC Press, 1995				
	A. Bejan. Convection Heat Transfer, 3 rd Edition, JohnWiley, 2004				
	ference Books:				
	H. Schlichting, K. Gersten. Boundary Layer Theory, 8 th Edition, Springer-Verlag				
	F.P. Incropera, D. Dewitt. Fundamentals of Heat and Mass Transfer, 7 th Edition, 2011	John Wiley,			
URLs:					
1.	http://www.nptel.ac.in				
	https://swayam.gov.inResearch				
	lan (about 40-50 Lectures):				
*Lecture No.	Topic	Remarks			
1.	Introduction to convective heat transfer				
2.	Governing equations				
3.	Continuity, momentum and energy equations				
4.	Derivations of continuity, momentum and energy equations cartesian coordinate systems				
5.	Derivations of continuity, momentum and energy equations cylindrical coordinate systems				
6.	Derivations of continuity, momentum and energy equations spherical coordinate systems				
7.	Boundary layer approximations to momentum and energy				
8.	Tutorial problems				
9.	Laminar external flow and heat transfer				
10.	Similarity solutions for flat plate (Blasius solution),				
11.	Introduction to flows with pressure gradient				
	12. Flows with pressure gradient (Falkner-Skan solutions)				
13.	Flows with pressure gradient (Eckert solutions)				
14.	Flow with transpiration				
15.	Integral method solutions for flow over aniso-thermal flat plate				
16.	Flat plate with constant heat flux and with varying surface temperature				
17	(Duhamel's method)				
17. 18.	Flows with pressure gradient (Von Karman-Pohlhausen method) Tutorial Problems				
	Laminar internal flow and heat transfer				
19. 20.	Exact solutions to N-S equations for flow through channels				
21.	Exact solutions to N-S equations for flow through circular pipe				
22.	Fully developed forced convection in pipes with different wall boundary				
	Conditions	<u> </u>			
23.	Forced convection in the thermal entrance region of ducts and channels (Graetz solution)				
24.	Heat transfer in the combined entrance region				
25.	Integral method for internal flows with different wall boundary conditions				
26.	Tutorial Problems				
27.	Natural Convection heat transfer				
28.	Governing equations fornatural convection				
29.	Boussinesq approximation				
30.	Dimensional Analysis				
31.	Similarity solutions for laminar flow past a vertical plate with constant wall temperature conditions				

32.	Similarity solutions for laminar flow past a vertical plate with constant heat
	flux conditions
33.	Integral method for natural convection flow past vertical plate
34.	Effects of inclination
35.	Natural convection in enclosures
36.	Mixed convection heat transfer past vertical plate and in enclosures
37.	Tutorial Problems
38.	Turbulent convection: Governing equations for averaged turbulent flow field (RANS)
39.	Analogies between heat and mass transfer (Reynolds, Prandtl-Taylor and Von Karman analogies)
40.	Turbulence models (zero, one and two equation models)
41.	Turbulent flow and heat transfer across flat plate and circular tube
42.	Turbulent natural convection heat transfer
43.	Empirical correlations for different configurations
44.	Tutorial Problems
45.	Convective heat transfer through porous media: Introduction
46.	Area weighted velocity – Darcy flow model
47.	Energy equation – boundary layer solutions for 2-D forced convection
48.	Fully developed duct flow – Natural convection in porous media – filled
	Enclosures
49.	Stability of horizontal porous layers.
50.	Tutorial Problems

^{*}Min 48 (for four credit course)

Sl. No.	Name of Examination	Marks Allotted	Remarks
1	Mini Test	10	
2	Mid Semester Test	20	
3	Assignment if any	20	
4	Tutorial if any	-	
5	Quiz if any	-	
6	Seminar, Viva voce if ay	-	
7	End Semester Examination	50	
8	Experiments if any (for practical courses)	-	
9	Any other	-	

Name of	f Program	M	Tech. in Mechanical Engineering with Specialization in Thermal Engineering	Semester: I/II	Year: I		
Name of	of Course Instrumentation for Thermal Engineering						
Course	Code		TH24560				
Core / E	Clective / Other		Elective				
	isite if any: Nil						
Course	Outcomes:						
1.	Identify and sele	ect pro	per measuring instrument for specific	application			
2.	Illustration wo methodology and	rking d erro	principle of measuring instrum ranalysis related to measuring instrum	ents, Explain	calibration		
3.	Mathematically	mode	l and analyze system/process for stand	ard input respons	ses		
Descript	tion of Contents	in br	ief:				
Unit 1.	measurement, M standards, calibr	lethodation,		ing system, meas	urement		
Unit 2.	and dynamic, Er	ror an	eristics, Instruments classification, chara alysis, Accuracy and precision, Statistical	analysis.			
Unit 3.	Temperature measurement: Introduction, Classification of Temperature Measuring Devices, Liquid in glass, Thermometer, Pressure Gauge thermometer, Bimetal temperature sensing element, Thermocouples, Temperature measurement errors.						
Unit 4.	Manometers, I	Pressure measurement: Introduction, Types of pressure measurement devices, Manometers, Dynamic response of manometer, Bourdon tube, Additional pressure transducers, Calibration methods.					
Unit 5.	Measurement of velocity & flow, Data acquisition system, Hot wire, Anemometer.						
List of T	Text Books:						
1.	2003		Measurement Systems: Application a				
2.	Instrumentation	A.K. Sawhney, PuneetSawhney. A Course in Mechanical Measurements and Instrumentation & Control, DhanpatRai& Co., 2013					
3.	Measurements, l	Pearso	ith, Roy D. Marangoini, John on, 1993	H. Lienhard.	Mechanical		
	Reference Books						
1.	Systems, Cengag	Chennakesava R. Alawala. Principles of Industrial Instrumentation and Control Systems, Cengage Learning Asia, 2009					
2.	Jack Holman. Experimental Methods for Engineers, McGraw-Hill Education, 2011						
3.	William Bolton. Instrumentation and Control Systems, Newnes, 2004						
URLs:							
1.	https://nptel.ac.in/courses/112/107/112107242/						
2.	https://nptel.ac.in/courses/112/106/112106139/						
	Plan (about 40-	50 Le	•				
Lecture No.			Topic		Remarks		

1	Fundamentals of Mechanical Measurement,	
2	Introduction, Significance of mechanical measurement,	
3	Methods of measurements,	
4	Generalized measuring system,	
5	measurement standards,	
6	calibration,	
7	uncertainty.	
8	Measurements characteristics	
9	Instruments classification,	
10	characteristics of instrument- static	
11	characteristics of instrument- dynamic,	
12	Error analysis,	
13	Accuracy	
14	precision,	
15	Statistical analysis.	
16	Temperature: Introduction	
17	Temperature measurement	
18	Classification of Temperature Measuring Devices	
19	Thermometer	
20	Liquid in glass Thermometer	
21	Pressure Gauge thermometer,	
22	Bimetal temperature sensing element,	
23	Thermocouples,	
24	Temperature measurement errors.	
25	Pressure measurement	
26	Introduction	
27	Types of pressure measurement devices	
28	Manometers,	
29	Dynamic response of manometer,	
30	Bourdon tube,	
31	Additional pressure transducers,	
32	Calibration methods.	
33	Measurement of velocity.	
34	Measurement of flow,	
35	Data acquisition system,	
36	Hot wire, Anemometer.	

^{*}Min 36 (for three credit course)

uution Ci	itelia.		
Sl. No.	Name of Examination	Marks Allotted	Remarks
1	Mini Test	10	
2	Mid Semester Test	20	
3	Assignment if any	10	

4	Tutorial if any	-	
5	Quiz if any	10	
6	Seminar, Viva voce if ay	-	
7	End Semester Examination	50	
8	Experiments if any (for practical courses)	-	
9	Any other	-	

Name of	e of Program M. Tech. in Mechanical Engineering with Specialization in Thermal Engineering Semester: I/II Year						
Name of	Tame of Course Advanced Computational Fluid Dynamics						
Course	rrse Code TH24561						
Core / E	Clective / Other		Elective				
Prerequ	isite if any:						
1.	Fluid Flow & Ga	s Dyna	mics				
2.	Engineering Matl	hemati	es				
3.	Advance Heat Tr	ansfer					
Course	Outcomes:						
1.	Understand the	differe	ent iterative methods used in CFD				
2.	Analyses the turb	ulent p	phenomenon using different models.				
3.	Apply CFD appro	oaches	to the analysis of complex fluid flows	•			
Descript	Lion of Contents in	n brief	•				
Unit 1.	Governing equa	ations i	n fluid dynamics; Compact and expli oduction to Conjugate Gradient met				
Unit 2.	Structured Grid technique - Con	Structured Grid generation - algebraic methods, elliptic techniques; Finite difference technique - Convection-diffusion equation, Projection method, coordinate transformation.					
Unit 3.		Finite volume method - integral approximations, flows in simple and complex geometries, introduction to unstructured grid computations					
Unit 4.	Parallel comput Libraries	ations	- Need for vectorization, domain of	lecomposition tec	chnique, MPI		
Unit 5.			lent flow computations – ideas behin mulation (LES) and turbulence model		cal Simulation		
List of T	Text Books:						
1.	J. C. Tannehill, D. Heat Transfer, Ta		nderson and R. H. Pletcher, <i>Computat</i> Errancis, 1997.	ional Fluid Mech	anics and		
2.	J. H. Ferziger and	d M. Pe	eric, Computational Methods for Fluid	Dynamics, Spring	ger 2002.		
3.	J. D. Anderson Jr	, Comp	outational Fluid Dynamics, McGraw-I	Hill International	Edition, 1995.		
List of F	Reference Books:						
1.	K.Muralidhar and Publishing House		ndararajan, <i>Computational Fluid Flov</i>	v and Heat Transf	fer, Narosa		
2.	Tapan K. Sengup 2004.	Tapan K. Sengupta, Fundamentals of Computational Fluid Dynamics, Universities Press,					
3.	S. V. Patankar, N	umeric	al Heat Transfer and Fluid Flow, Her	misphere, 2000.			
URLs:							
1.	https://nptel.ac.in	/course	es/112105045				
Lecture	Plan (about 40-50	0 Lectu	ires):				
*Lectur	e		Topic		Remarks		
No. 1.	Introduction	and apr	olication of CFD				
2.	Mass conserv						
3.& 4.			^				

5. & 6.	Energy equation							
7.	Initial and boundary condition							
8.	Solution of Simultaneous Equations: point iterative/block iterative Methods							
9.	Gauss-Seidel iteration (concept of central coefficient and residue, SOR),							
10.	techniques.	CGS, Bi-CGSTAB and GMRES (m) matrix solvers, different acceleration techniques.						
11.	Finite difference technique-convection-diffusion equation							
12.	Projection method and coordinate transformation							
13.	Fundamental of finite volume method							
14.	Flows in simple and complex geometries, introduction to unstructured grid computations							
15 - 17.	Body fitted grids in complex geometries, orthogonal grids, mapping functions, staggered/collocated and structured/unstructured, various method of grid generations							
18. & 19.	Sources of uncertainties, studies on grid independence, time-step independence, domain independence, initial condition dependence.							
20. & 21.	Discussion on SIMPLE/SIMPLER							
22.	Discretization of governing equations and boundary conditions in FVM Framework							
23.	Introduction to parallel computation and need of parallel computation							
24.	Need for vectorization							
25.	Domain decomposition technique							
26.	MPI libraries							
27.	Solution of Euler equation							
28. & 29.	MacCormack, Jameson algorithm in finite volume formulation and transformed coordinate system.							
30.	Introduction to turbulence and scales of turbulence,							
31.	Reynolds Averaged Navier Stokes (RANS) equation,							
32. & 33.	Eddy viscosity model, k-ε and k-ω model							
34.	Introduction to large eddy simulation (LES)							
35.	Direct numerical simulation (DNS)							

Sl. No.	Name of Examination	Marks Allotted	Remarks
1	Mini Test	10	
2	Mid Semester Test	20	
3	Assignment if any	20	
4	Tutorial if any		
5	Quiz if any		
6	Seminar, Viva voce if any		
7	End Semester Examination	50	
8	Experiments if any (for practical courses)		
9	Any other		

Name of	J	М.	Tech. in Mechanical Engineering with Specialization in Thermal Engineering	Semester: I/II	Year: I		
Name of	Course		Design of Thermal Systems				
Course C	Code		TH24562				
Core / El	ective / Other		Elective				
Prerequi	site if any:						
1.	Heat and Mass Tr	ansfer,	Fluid Mechanics, Turbo Machines				
2.	Thermodynamics,	, Refrig	geration and Air conditioning, Mathema	atics			
Course O	outcomes:						
1.	Understand the ba	sics st	eps in designing for thermal systems				
	To make model of Them	of therr	nal systems and study various types o	f model and interact	ction between		
3.	To generate nume	rical n	nodelling for thermal systems and meth	ods of simulation			
4.	Optimization tech	niques	used in design				
5.	Economic analysi	s in the	e context of thermal system design				
Descripti	on of Contents in	brief:					
Unit 1.	Introduction to engineering design, thermal systems, basic considerations in design, conceptual design, steps in the design process, computer-aided design of thermal systems, material selection, properties and characteristics for thermal systems						
Unit 2.	modelling, physi	ical mo	systems, types of models, interaction delling and dimensional analysis, curv	e fitting			
Unit 3.	system simulati examples. Newt	Numerical modelling and simulation, solution procedure, numerical model for a system, system simulation, methods for numerical simulation. Successive substitution method-examples. Newton Raphson method-One unknown/ multiple unknowns. Gauss Seidel Method-Examples. Rudiments of finite difference method for partial differential equations					
Unit 4. Unit 5.	Optimization in design, basic concepts, mathematical formulation, optimization methods, calculus methods Lagrange multiplier method-proof, examples. Search methods-concept of interval of uncertainty, reduction ratio, reduction ratios of simple search techniques like exhaustive search, dichotomous search, fibonacci search and golden section search-numerical examples, optimization of thermal systems, optimization of unconstrained problems, conversion of constrained to unconstrained, optimization of constrained problems Economic consideration, Introduction, calculation of interest, worth of money as a function of						
	time, series of p	aymen	ts, raising capital, economic factor in	•			
	ext Books:	Da-:	and Outinized: CTI 15	CDC Dans and D	1141 2000		
1.			and Optimization of Thermal Systems		11t10n, 2008		
2.			of Thermal Systems, 3 rd Edition, McG				
3.			gn Analysis of Thermal Systems, Wille				
4.		. Optin	nization for Engineering Design, PHI, 2	2012			
	eference Books:				at at		
1.	Edition, John W	iley an					
2.	I.J. Nagrath, M.	Gopal.	Systems Modeling and Analysis, Tata	McGraw Hill, 198	6		

3.	D.J. Wide. Globally Optimal Design, Wiley Interscience, 1978							
URLs:								
	www.nptel.ac.in							
	<u> </u>							
	nttps://swayam.gov.in/nc_details/NPTEL							
	lan (about 40-50 Lectures):							
*Lecture	Topic	Remarks						
No. 1.	Introduction to engineering design							
2.	Introduction to engineering design							
3.	Basic considerations in design							
4.	Conceptual design							
5.	Steps in the design process							
6.	Thermal systems							
7.	Computer-aided design of thermal systems							
8.	Material selection							
9.	Properties and characteristics for thermal systems							
10.	Modelling of thermal systems							
11.	Types of models							
12.	Types of models							
13.	Interaction between models							
14.	Mathematical modeling							
15.	Mathematical modeling							
16.	Mathematical modeling							
17.	Physical modeling							
18.	Physical modeling							
19.	Dimensional analysis							
20.	Curve fitting							
21.	Numerical modelling and simulation							
22.	Numerical modelling and simulation							
23.	Solution procedure							
24.	Numerical model for a system							
25.	System simulation							
26.	Methods for numerical simulation							
27.	Successive substitution method - Newton Raphson method - one unknown / multiple unknowns.							
28.	Gauss Seidel method - examples							
29.	Rudiments of finite difference method for partial differential equations, with							
20	an example Dudingents of finite difference method for portiol differential equations, with							
30.	Rudiments of finite difference method for partial differential equations, with an example							
31.	Optimization in design							
32.	Basic concepts							
33.	Mathematical formulation							
34.	Optimization methods							
35.	Optimization methods							
36.	Calculus methods: Lagrange multiplier method – proof, examples							
37.	Search methods: Concept of interval of uncertainty, reduction ratio,							
	reduction ratios of simple search techniques							
38.	Exhaustive search, dichotomous search-numerical examples							
39.	Fibonacci search and golden section search – numerical examples.							

40.	Optimization of thermal systems
41.	Optimization of unconstrained problems
42.	Conversion of constrained to unconstrained
43.	Economic consideration introduction
44.	Calculation of interest
45.	Worth of money as a function of time
46.	Series of payments
47.	Raising capital
48.	Economic factor in design
49.	Cost comparison, rate of return
50.	Application to thermal systems

^{*}Min 48 (for four credit course)

Sl. No.	Name of Examination	Marks Allotted	Remarks
1	Mini Test	10	
2	Mid Semester Test	20	
3	Assignment if any	20	
4	Tutorial if any	-	
5	Quiz if any	-	
6	Seminar, Viva voce if any	-	
7	End Semester Examination	50	
8	Experiments if any (for practical courses)	-	
9	Any other	-	

Name of	Program	M. T	ech. in Mechanical Engineering with Specialization in Thermal Engineering	Semester: I/II	Year: I		
Name of	Course		Thermal Power Plant Engineering				
Course (Code		TH24563				
Core / E	lective / Other		Elective				
Prerequi	isite if any:						
1.	Engineering Ther	modyn	amics				
Course (Outcomes:						
1.	Able to apply knowsolving problems	owledg	e of Refrigeration and Air conditioning	g engineering fun	damentals for		
2.	find solution using	g princ	geration and Air conditioning problems iples engineering sciences, mathematics	and literature			
3.	•		levelop Refrigeration and Air condition	oning componen	t /system and		
Descript	processes that me ion of Contents in		cific needs				
Unit 1.			e introduction to various energy conver	rsion systems con	nventional and		
cint 1.	non-conventional selection of qua	Review of power cycle, introduction to various energy conversion systems, conventional and non-conventional energy conversion system. Site selection criteria of thermal power plant, selection of quality of steam, layout of thermal power plant, fuel handling system, fuel preparation system, fuel combustion equipments					
Unit 2.	critical boilers, of principle of com	Generation of Steam: Introduction of high pressure boilers, super critical and ultra-super critical boilers, calculation of capacity and major dimensions of boiler, fuel firing system, principle of combustion of fuel, theoretical and actual air fuel ratio, super-heaters feed water heaters, re-heaters, air pre-heater boiler draught system, dust collection systems, ash handling systems					
Unit 3.	Thermal design condensing heat	Thermal design of steam condensers—water-cooled and air-cooled, heat transfer in condenser, condensing heat transfer coefficient for outside and inside surfaces, cooling tower system, cooling tower performance criteria					
Unit 4.	Power Plant Management: Operation and maintenance of turbines, starting, loading and						
	stopping of turbine, normal operation checks, maintenance logging, parallel operation						
Unit 5. Unit 6.	Power plant instrumentation, general & special instrumentation, centralized & automatic control equipment, types of controls. power plant testing, preliminary performance checks, acceptance tests for various components Station Economics: Definitions and application of load curves, load factor, plant capacity						
	factor, plant utilization factor, diversity factor and demand factor. Introduction to energy audit. Elements of fixed and operating costs, power and various tariff						
	ext Books:	Dlent F	nainagaing Tata McCass- IIII Ed. (1	2002			
1.			Ingineering, Tata McGraw-Hill Education				
2.	R.K. Rajput. A Textbook of Power Plant Engineering, Laxmi Publications, 2005						
3.	Domkundwar & Arora, A Course in Power Plant Engineering, Dhanpat Rai and Sons,2005						
List of R 1.	Reference Books: Joel Weisman, Ec	kart Ro	oy. Modern Power Plant Engineering, Pl	HI, 1985			
2.	Black & Veatch,F	Power F	Plant Engineering, Springer, 1996				
URLs:							
1.	https://www.powe	er-eng.	com/				
Lecture	Plan (about 40-50	Lectu	res):				
*Lecture	e		Topic		Remarks		

No.		
1-4	Review of power cycle, introduction to various energy conversion system, conventional and non-conventional energy conversion system	
5-10	Site selection criteria of thermal power plant, selection of quality of steam, layout of thermal power plant, fuel handling system, fuel preparation system, fuel combustion equipments	
11-18	Introduction of high pressure boilers, super critical and ultra-super critical boilers, calculation of capacity and major dimensions of boiler	
19-26	Fuel firing system, principle of combustion of fuel, theoretical and actual air fuel ratio, super-heaters feed water heaters, re-heaters, air pre-heater boiler draught system, dust collection systems, ash handling systems	
27-32	Thermal design of steam condensers—water-cooled and air-cooled, heat transfer in condenser, condensing heat transfer coefficient for outside and inside surfaces, cooling tower system, cooling tower performance criteria	
33-38	Power Plant Management: Operation and maintenance of turbines, starting, loading and stopping of turbine, normal operation checks, maintenance logging, parallel operation	
39-42	Power plant instrumentation, general & special instrumentation, centralized & automatic control equipment, types of controls. Power plant testing, preliminary performance checks, acceptance tests for various components	
43-46	Definitions and application of load curves, load factor, plant capacity factor, plant utilization factor, diversity factor and demand factor	
47-50	Introduction to energy audit. Elements of fixed and operating costs, power and various tariff	

^{*}Min 48 (for four credit course)

Sl. No.	Name of Examination	Marks Allotted	Remarks
1	Mini Test	10	
2	Mid Semester Test	20	
3	Assignment if any	10	
4	Tutorial if any	-	
5	Quiz if any	10	
6	Seminar, Viva voce if ay	-	
7	End Semester Examination	50	
8	Experiments if any (for practical courses)	-	
9	Any other	-	

Name o	of Program	M. T	ech. in Mechanical Engineering v Specialization in	ith	Semester: I/I	Ι	Year: I
			Thermal Engineering				
Name o	of Course		Power Generation Systems				
Course	ourse Code TH24564						
Core / 1	Core / Elective / Other Elective						
Prerequ	uisite if any:						
1.	Theory and Design	gn of S	eam Turbines, Steam & Gas Power	Сус	cles		
2.	Thermal Power P	lant, Vi	bration, Fuels and Combustion in I	C en	gines		
Course	Outcomes:						
1.	Ability to underst	and and	design various components of Ste	ım T	`urbine		
2.	Knowledge about	functi	oning of Steam Turbine Systems				
3.	Advantages and li	mitatio	ns of combined cycle power genera	tion			
4.	Knowledge about	functi	oning of Engine systems and Comb	ustic	on		
5.	Need for clean en	ergy an	d new emission norms for fuels				
	otion of Contents in						
Unit 1.	Stator Design:	Stator l	Design, Design of Casing & Diaphr	igms	S		
Unit 3.	Turbine Rotor V Steam Turbine turbine, Effect Blade Corrosion	Vibration System of turb n, Blad	ness rotors with hyperbolic profin, Critical speeds, Balancing of rotons: Design procedure for steam to the load on the steam pressure pre Vibration, System of turbine goed tripping, Turbine protective	ors irbin ofile overn	ne stages, Axial e, Turbine seal ning, Starting a	l th	nrust in steam Blade erosion, I stopping a
Unit 4.		Cycle, (Cogeneration and Types of Cogene	atio	n system		
Unit 5.	Engines System	ns & C	ombustion: Fuel Systems, S.I. Eng mbustion, and Gas Turbines & Cor	ne,	CI Engines and		
Unit 6.	Norms	chnolog	y: Alternative Power Sources, Eco	frie	ndly fuels, Fue	1 c	ells, Emission
	Text Books:	, T	1. The street of	20.4			
1.			arbine Theory and Practice, CBS, 2		A11a1a1a1a1	7	
2.			as Turbines, Central Publishing Ho				
3.			ombustion Engines, Tata McGraw-			Ø	
<u>4.</u> <u>5.</u>		P.K. Nag. Power Plant Engineering, McGraw Hill Education, 2017 M.L. Mathur and R.P. Sharma. A Course in I. C. Engines, Dhanpat Rai Publications, 4 th Edition, 1981					blications, 4 th
6.		I. C En	gine Fundamentals, Tata McGraw	Hill,	1 st Edition, 199	8	
List of	Reference Books:						
1.	P. Shlyakhin. Steam	Turbir	es -Theory &Design, Peace Public	tion	is, 2005		
2.	J.E. Lee. Steam & G	.E. Lee. Steam & Gas Turbine, McGraw Hill, 1962.					
	Willard W. Pulkrabek. Engineering Fundamentals of the Internal Combustion Engine, Pearson Prentice Hall, 2004						

4.	. Richard. Alternate Fuels Guide Book, Society of Automotive Engineers, 1	997
URLs:		
1.	http://nptel.ac.in	
2.	https://swayam.gov.in/nc_details/NPTEL	
Lactura	Plan (about 40-50 Lectures):	
*Lecture		Remarks
No.	Торк	Kemarks
1.	Design of Casing	
2.	Design of Casing	
3.	Design of Diaphragms	
4.	Design of Diaphragms	
5.	Rotor Stresses	
6.	Causes of different types stress generation in rotors	
7.	Design of turbine rotors	
8.	Design of turbine rotors	
9.	Rotors of constant strength and of constant thickness	
10.	Rotors with hyperbolic profile	
11.	Temperature stresses in rotors	
12.	Turbine Rotor Vibration	
13.	Critical speeds of turbine rotors	
14.	Balancing of rotors	
15.	Problems on rotor vibration and critical speed of rotors	
16.	Problems on rotor vibration and critical speed of rotors	
17.	Design procedure for steam turbine stages	
18.	Axial thrust in steam turbine	
19.	Effect of turbine load on the steam pressure profile	
20.	Turbine seals	
21.	General instructions for starting and stopping a steam turbine	
22.	Blade Corrosion	
23.	Blade Erosion	
24.	Blade Vibration	
25.	System of turbine governing	
26.	System of turbine governing	
27.	Over speed tripping	
28.	Turbine protective devices	
29.	Steam Turbine Lubrication System	
30.	Steam Turbine Lubrication System	
31.	Binary Vapour Power Cycle (BVPC)	
32.	Cogeneration	
33.	Different types of Cogeneration System	
34.	Problems on BVPC and Cogeneration	
35.	Fuel Systems in S.I. Engine	
36.	Fuel Systems in CI Engines	
37.	Fuel Systems in Gas Turbines	
38.	Combustion in S.I. Engine	
39.	Combustion in C.I. Engine	
40.	Combustion in Gas Turbines	
41.	Design of combustion chamber in SI engines	
42.	Design of combustion chamber in CI engines	
43.	Introduction to Alternative Power Sources and Fuels	

44.	Need for Alternative Fuels
45.	Emission norms (International and National)
46.	Different types of alternative eco friendly fuels
47.	CNG, LNG, Hydrogen as eco friendly fuels
48.	Introduction to Fuel Cells
49.	Working of fuel cells
50.	Advantage and Limitations of alternative fuels

^{*}Min 48 (for four credit course)

Sl. No.	Name of Examination	Marks Allotted	Remarks
1	Mini Test	10	
2	Mid Semester Test	20	
3	Assignment if any	20	
4	Tutorial if any	-	
5	Quiz if any	-	
6	Seminar, Viva voce if any	-	
7	End Semester Examination	50	
8	Experiments if any (for practical courses)	-	
9	Any other	-	

Name of	f Program	M. 7	Tech. in Mechanical	Semester: I/II	Year: I
			Engineering with		
			Specialization in rmal Engineering		
Name of	f Course		Finite Element Meth	ods	L
Course	Code		SM24564		
Core / E	Elective / Other	,	Elective		
Prerequ	isite if any:				
1.					
Course	Outcomes:				
At the en			student shall be able to		
1.	Understand the	fund	amental theory of the	finite element method.	
2.	Generate the g equations.	overn	ing FE equations for	systems governed by p	partial differential
3.			of the basic finite elements.	ements for structural a	pplications using
4.			•	nterpret FEA analysis r	esults for design,
	and evaluation				
5.	•			nes, plate structures, m	achine parts, and
Descrint	tion of Content		NSYS general-purpose	e software.	
Unit 1.				basic concept of the fir	nite element
			n with the finite differ		
Unit 2.	Variational methods: calculus of variation, the Rayleigh-Ritz, and Galerkin				
	methods; Finite element analysis of 1-D problems: formulation by different				
	approaches (direct, potential energy, and Galerkin); Derivation of elemental equations, and their assembly, solution, and its post-processing. Applications in				
	•		<u> </u>	mechanics. Bending o	
	of truss, and f			moonumes zonomg s	i coming, unui jois
Unit 3.	Finite elemen	nt ana	alysis of 2-D probler	ns: finite element mo	deling of single
				gular elements; Applica	ations in heat
TI:4 1			anics, and solid mecha		
Unit 4.				gration, error analysis, Bending of plates; Eige	
	dependent pro	•	_	senang of places, Eige	invarae, and time
Unit 5.	Discussion ab	out p	reprocessors, postpro	cessors, and finite ele	ement packages
	namely ANSY	YS, A	BAQUS, LS Dyna, Si	mufact to name a few.	
List of	Text Books:				
1.	U.S. Dixit, Fin	ite ele	ement methods for eng	gineer, Cengage Learnin	ng, 2009.
2.	K.J. Bathe, Fin	ite ele	ement procedures, Sec	ond Edition, Prentice-I	Hall, 1996.
3.	J. N. Reddy, An introduction to the finite element method, 3rd edition, McGraw-Hill, 2006.				
4.	R.D. Cook, D.	S. Ma	alkus, and M. E. Plesh	na, Concepts, and Appl	ications of Finite
	Element Analy	sis, 41	th edition, John Wiley	, 2007	
List of I	Reference Book	s:			
1.	O. C. Zienkiew	vicz, a	and R. L. Taylor, The	Finite Element Method	, 7th edition,
	Butterworth-He	einem	ann, 2013.		
2.	T. J. R. Hughe	s, The	Finite Element Meth	od, Prentice-Hall, 1986	

URLs:								
1.	https://n	ptel.ac.in/courses/112/104/112104116/						
2.		https://nptel.ac.in/courses/112/104/112104115/						
3.	https://nptel.ac.in/courses/112/106/112106135/							
4.	https://nptel.ac.in/courses/112/106/112106130/							
5.	https://nptel.ac.in/courses/105/108/105108141/							
	_	bout 40-50 Lectures):						
*Lecture		Topic	Remarks					
Lectu	1.	Finite element method: a quick introduction	Kemarks					
	2.	Direct FEM formulation of axial rod problem						
	3.	Direct FEM formulation of beam problem						
	4.	Direct 1 Etvi formatation of beam problem						
	5.	Some classical function approximation methods for						
	6.	solving differential equations: Ritz method, Galerkin						
	7.	method, The Least square method, Collective methods.						
	8.	•						
	9.	Ritz FEM formulation						
	10.							
	11.	Galerkin FEM formulation						
	12.							
	13.	Developing elemental equations by Ritz method						
	14.	Developing element equations by Galerkin method						
	15. Some one-dimensional C ⁰ continuity FEM formulation:							
	16.	steady-state heat conduction; longitudinal deformation of a						
	4=	rod; fluid flow problem						
	17.	Finite element formulation for bending of beams:						
	18.	Galerkin FEM formulation; weak form; choose suitable	_					
		approximating shape functions; Hermitian shape function; elemental equation, application of boundary conditions,						
		and solution						
	19.	Finite element formulation for trusses, and frames						
	20.	Time coment formation for transces, and frames						
	21.	Introduction to 2-D, and 3-D FEM						
	22.	Triangular elements, Tetrahedral element, Rectangular						
		elements, Bricks element						
	23.	Governing heat conduction equation for 2D heat						
		conduction problems						
	24.	Weak form, and FEM formulation						
	25.	Assembly procedure of 2D problems in FEM						
	26.	Poisson equation for 3D FEM						
	27.	Torsion of circular, and non-circular cross-section						
	28.	N 11 1 2 2 2 2 1 1 1 1 2 2						
	29.	Numerical integration: One-dimensional integration formula; Two-dimensional integration formula						
	30.							
	30.	Integration over the square region; Integration over triangular region						
	31.	Natural coordinates, and iso-parametric, sub-parametric,						
	J1.	and super parametric elements						
	32.	Four noded quadrilateral elements, and serendipity						
	~ 	Elements						
	33.	Eight noded curvilinear elements						
		ı -	l					

34.	FEM Formulation for Plane Stress, and Plane Strain
35.	Problems
36.	
37.	Free Vibration Problems: Vibration of A Rod, and
38.	vibration of a beam
39.	Finite Element Formulation of Time-Dependent Problems
40.	FEM formulation of plate problem
41.	
42.	FEM formulation of 2D flow problem
43.	
44.	Error analysis in finite element methods: errors measure
45.	Types of errors, Super convergent patch recovery (SPR)
	Technique
46.	Higher-order of approximations of primary variables
47.	Error estimates by recovery
48.	Miscellaneous topics: Difference between FEM, and
49.	FDM, Essential, and Natural boundary conditions, Solving
50.	the problem of fracture mechanics using FEM, Ill condition
	system, patch test.

Sl.No.	Name of Examination	Marks	Remarks
		Allotted	
1	Mini Test	10	
2	Mid Semester Test	20	
3	Assignment if any	10	
4	Tutorial if any		
5	Quiz if any	10	
6	Seminar, Viva voce if ay		
7	End Semester Examination	50	
8	Experiments if any (for practical courses)		
8	Any other		

Name of	f Program		Tech. in Mechanical Engineering with Specialization in nal Engineering	Semester: I/II	Year: I
Name of	f Course		Research Methodology	/	
Course	Code		ME24524		
Core / E	llective / Other		Elective		
Prerequ	isite if any:				
1.	Graduation in a sci	ences			
2.	Graduation in a Te	chnolo	ogies		
Course	Outcomes:				
1.	Student will be abl	e to ap	ply knowledge Research	Methodology differen	t field and research
2.			esign always the research ta collection tool and tech		t quantities and
3.	Student will be abl	e to ap	ply knowledge and Resea	arch Methodology to w	rite research paper.
4	validation.		entified the tools, softwar	re and techniques for d	lata analysis and data
Descript	tion of Contents in	Brief:			
Unit 1.	Scientific Methods Research Design, I	s, Iden Researd	tification of Problem, Sig	gnificance of Defining	
Unit 2.	Data Collection Methods, Primary Data, Secondary Data, Questionnaire Preparation, Case Study Method, Measurement Scales, Levels of measurement – Nominal, Ordinal, Interval, Ratio Measures of Central Tendency (Mean, medium, Mode), Measures of Dispersion (range, mean deviation, standard deviation), Graphical Representation of Data, Tabular Presentation of Data Oral Presentation, Posters Presentation				
Unit 3.	Sampling Design, Sample Size, Non Response. Characteristics of a good sample. Probability Sample – Simple Random Sample, Systematic Sample, Stratified Random Sample & Multi-stage sampling. Determining size of the sample, Research Question, Normal Probability Curve. Standard Error, Confidence Intervals				
Unit 4.	Significance of correlation, Pearson's Product Moments Correlation. Regression and Multiple Regression equations, Hypothesis Formation, Hypothesis Testing, Testing the Significance difference between means(z and 't' test), Analysis of Variance (ANOVA) -concept arapplications, Chi Square Test steps, Type I and Type II errors,				
Unit 5.	Types of Report, Research Report,	Techr Precau ournal	nical Report Writing, Relation In Writing Report, s, Suitability of Journal	eview of Related Lite Layout of Research	, Steps In Writing Report, erature, Structure of The Paper, Format and Style, arism, Citation, Reference

Unit 6	Introduction of Softwares used for Research like Matlab, SPSS, Reference Manageme like Zotero/Mendeley, Software for paper formatting like LaTeX/MS Office, Software detection of Plagiarism, Google Scholar, Research Gate,				
List of	Text Books:				
	Research Methodology: Methods and Techniques, Kothari, C.R, New Age International 2010, 2010	Publishers,			
2.	Fundamentals of Mathematical Statistics, Gupta, S. C. and Kapoor, V. K, Sultan Chand a New Delhi., 2010	and Sons,			
3.	Theory and Application of Statistics, Bruce E. Wampold and Difford J. Drew, McGraw International Editions., 2010	-Hill			
List	f Reference Books:				
1. I	Business Research Methods – Donald Cooper & Pamela Schindler, TMGH, 9th edition				
2. I	Business Research Methods – Alan Bryman& Emma Bell, Oxford University Press				
3. I	Business Research Methods, Naval Bajpai, Pearson				
URLs:					
2.	https://swayam.gov.in/nd1_noc19_ge21/preview				
3.	https://www.youtube.com/watch?v=Yzfl3rtF0SM				
Lecture	Plan (about 40-50 Lectures):				
Lecture	Topic	Remarks			
No. 1-2	Research Meaning, Objectives				
3-4	Motivation				
5-6	Types of Research, Research Approach, Research and Scientific Methods				
7-8	Identification of Problem, Significance of Defining Research Problem,				
9-10	Research Design, Research Ethics				
11-12	Data Collection Methods, Primary Data, Secondary Data,				
13	Questionnaire Preparation, Case Study Method,				
14-15	Measurement Scales, Levels of measurement – Nominal, Ordinal, Interval,				
16-17	Ratio Measures of Central Tendency (Mean, medium, Mode), Measures of Dispersion (range, mean deviation, standard deviation),	Î			
18	Graphical Representation of Data, Tabular Presentation of Data,				
19-20	Oral Presentation, Posters Presentation				
21	Sampling Design, Sample Size, Non Response. Characteristics of a good sample Probability Sample – Simple Random Sample, Systematic Sample, Stratified Random				

	Sample & Multi-stage sampling.			
22	Determining size of the sample, Research Question, Normal Probability Curve, Standard Error, Confidence Intervals			
23	Significance of correlation, Pearson's Product Moments Correlation.			
24	Regression and Multiple Regression equations,			
25-26	Hypothesis Formation, Hypothesis Testing, Testing the Significance of difference between means(z and 't' test),			
27-28	Analysis of Variance (ANOVA) -concept and applications, Chi Square Test steps, Type I and Type II errors,			
29-30	Writing Research Report:, Interpretation, Significance of Report Writing, Steps In Writing Report, Types of Report,			
31	Technical Report Writing, Review of Related Literature, Structure of The Research Report, Precaution In Writing Report,			
32-33	Layout of Research Paper, Format and Style, Impact Factor of Journals, Suitability of Journal for Publication, Plagiarism, Citation, Reference Writing, IPR, Copyright, Patents,			
34	Introduction of Softwares used for Research like Matlab, SPSS,			
35	Reference Management Software like Zotero/Mendeley,			
36	Software for paper formatting like LaTeX/MS Office,			
37	Software for detection of Plagiarism, Google Scholar, Research Gate,			
	<u> 1 · </u>			

*Min 36 (for three credit course)

Sl.No.	Name of Examination	Marks	Remarks
		Allotted	
1	Mini Test	10	
2	Mid Semester Test	20	
3	Assignment if any	10	
4	Tutorial if any		
5	Quiz if any	10	
6	Seminar, Viva voce if ay		
7	End Semester Examination	50	
8	Experiments if any (for practical courses)		
8	Any other		