मौलाना आजाद राष्ट्रीय प्रौद्योगिकी संस्थान, भोपाल

ऊर्जा केंद्र

पावर कंट्रोलर लैब मैनुअल

क्र. स.	प्रयोग	पृष्ठ सं.
1.	विभिन्न बिजली उपकरणों (एससीआर, बीजेटी, आईजीबीटी, एमओएसएफईटी) का तुलनात्मक विश्लेषण और विभिन्न उपकरणों और उपकरणों की पहचान।	2
2.	एकल-चरण अर्ध-तरंग और पूर्ण-तरंग एससीआर ब्रिज कन्वर्टर की निष्पादन जाँच	3-5
3.	MOSFET उपकरणों का उपयोग करके एकल चरण इन्वर्टर का विश्लेषण।	6-7
4.	समानांतर इन्वर्टर का प्रदर्शन मूल्यांकन।	8-10
5.	स्टेप-अप चॉपर सर्किट के संचालन का अध्ययन करने के लिए।	11-12
6.	MATLAB में LC फिल्टर के साथ DC कनवर्टर के लिए एकल चरण एसी का सिमुलेशन।	13-14
7.	MATLAB में PWM नियंत्रण तकनीक के साथ एकल चरण इन्वर्टर का सिमुलेशन।	15-16
8.	MATLAB में PWM नियंत्रण तकनीक के साथ तीन चरण पुल इन्वर्टर का सिमुलेशन।	17-18
9.	MATLAB में एकल चरण 5 स्तर बहुस्तरीय इन्वर्टर का सिमुलेशन।	19-20
10.	MATLAB में सिंगल फेज DC से DC बक-बूस्ट कन्वर्टर का सिमुलेशन।	21-22

विभिन्न बिजली उपकरणों (एससीआर, बीजेटी, आईजीबीटी, एमओएसएफईटी) का तुलनात्मक विश्लेषण और विभिन्न उपकरणों और उपकरणों की पहचान।

उद्देश्य:

- (१) विभिन्न बिजली उपकरणों के बीच अंतर की पहचान करना और तुलनात्मक विश्लेषण तालिका बनाना।
- (२) विभिन्न बिजली उपकरणों की V-I विशेषताओं को सत्यापित करने के लिए।
- (3) प्रयोग से प्राप्त आँकड़ों से विभिन्न शक्ति युक्तियों के V-I अभिलाक्षणिक आलेखन कीजिए।

उपकरण की आवश्यकता:

क्र.स.	साधन का नाम	विस्तृत जानकारी	मॉडल नं./सीरियल नं. साधन	बड़ तादाद
			का	
			KAY	
		X		

प्रायोगिक सेटअप:

परिणाम:

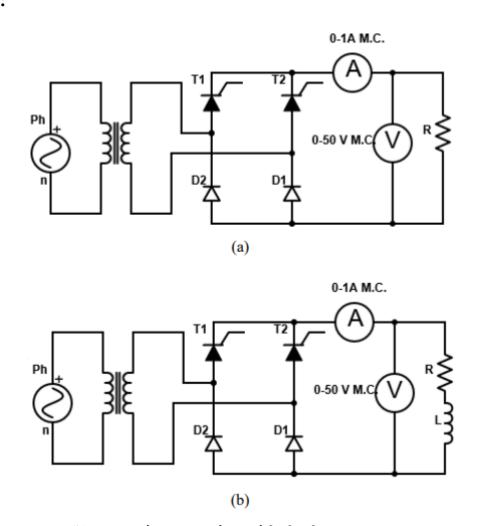
एकल चरण हाफ-वेव और फुल-वेव एससीआर ब्रिज कनवर्टर की प्रदर्शन जांच।

 \mathbf{G} दृश्य: \mathbf{R} और \mathbf{RL} लोड के साथ एकल चरण आधा नियंत्रित पुल दिष्टकारी के आउटपुट तरंग को प्लॉट और निरीक्षण करने के लिए।

उपकरण:

क्र. स.	घटक	श्रेणी
1	आधा नियंत्रित कनवर्टर मॉड्यूल	
2	जांच के साथ सीआरओ	20 MHz
3	प्रतिरोधक भार	500Ω, 1ΚΩ
4	आगमनात्मक भार	100 mH
5	आरपीएस, डुअल चैनल	0-30 V
6	ट्रांसफार्मर	230/0-30 V

परिकल्पना:


परिशोधन, प्रत्यावर्ती धारा या वोल्टेज को प्रत्यक्ष धारा में परिवर्तित करने की प्रक्रिया होती है। वोल्टेज। रेक्टिफायर सर्किट को तीन वर्गों में वर्गीकृत किया गया है:

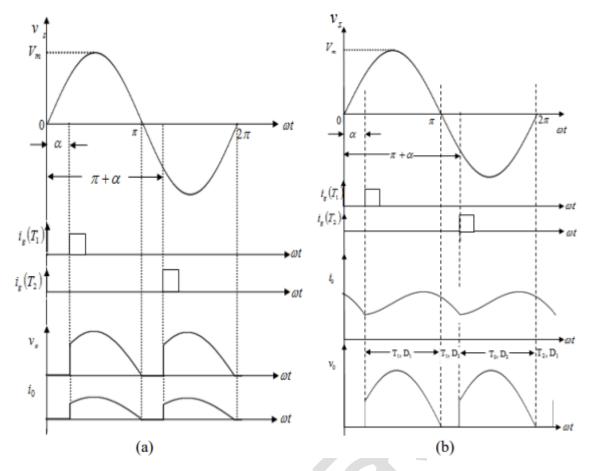
- 1. अनियंत्रित
- 2. पूरी तरह से नियंत्रित
- 3. आधा नियंत्रित।

चित्र 2.1 में एक अर्ध/अर्ध नियन्त्रित परिवर्तक दिया गया है। इसमें दो थाइरिस्टर और दो डायोड होते हैं। फायिंग सिर्किट द्वारा थाइरिस्टर्स को ट्रिगर करने की आवश्यकता होती है; डायोड आचरण इनपुट आपूर्ति की ध्रुवीयता पर निर्भर करता है। डायोड की उपस्थिति के कारण, ब्रिज आउटपुट वोल्टेज को नकारात्मक होने की अनुमित दिए बिना फ्रीव्हीलिंग ऑपरेशन होता है। एक अर्ध-नियंत्रित दिष्टकारी में,

नियंत्रण केवल सकारात्मक आउटपुट वोल्टेज के लिए प्रभावित होता है, और कोई नियंत्रण संभव नहीं है जब इसका आउटपुट वोल्टेज नकारात्मक हो जाता है। जब स्रोत, V_{in} सकारात्मक होता है, तो SCR T1 को α नामक फायरिंग कोण पर ट्रिगर किया जा सकता है और फिर पहले SCR T1 के माध्यम से स्रोत से धारा प्रवाहित होती है, फिर लोड के माध्यम से और डायोड D1 के माध्यम से वापस आती है। SCR T1 और डायोड D1 α < ω t< π के दौरान आचरण करते हैं। जब π < ω t< π 0 के दौरान, डायोड D2 अप्रदिशिक अभिनत हो जाता है और 2CR T2 सामान्यतः π 1 के साथ संचालन करना शुरू कर देता है और इसलिए पुल आउटपुट वोल्टेज शून्य पर क्लैंप किया जाता है। π 4 π 5 π 5 और डायोड D2 हैं। SCR T2 और डायोड D1 0 < π 5 के दौरान आचरण करेंगे।

परिपथ आरेख:

चित्र 2.1 (a) R-भार तथा (b) RL भार के साथ एकल फेज अर्ध नियंत्रित दिष्टकारी


प्रक्रिया:

R-लोड के साथ:

- $1.\ {
 m Tr}$ परिपथ आरेख के अनुसार परिपथ को ${
 m R-L}$ भार से संयोजित कीजिए।
- 2. मुख्य आपूर्ति पर स्विच करें।

4 | Page मै नि ट भो पा ल

3. फायरिंग कोण बदलें, सीआरओ पर लोड वोल्टेज तरंग का निरीक्षण करें और नोट करें।					
4. फायरिंग कोण और अ	4. फायरिंग कोण और आउटपुट वोल्टेज को स्केच करें।				
सारणीबद्ध रूप:					
आर-लोड:					
क्र.सं.	α, फायरिंग एंगल	$V_{ m Theoritical}$	V _{Practical}	IL में A	
RL-लोड:		7			
क्र.सं.	α, फायरिंग एंगल	VTheoritical	V _{Practical}	IL में A	
	25				
मॉडल ग्राफ:					

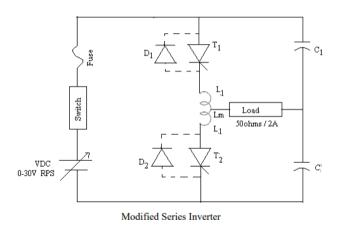
चित्र 2.2 अर्धपरिवर्तक की तरंगें (ं) R-भार तथा (ख) RL भार के साथ।

6 | Page मै नि ट भो पा ल

MOSFET उपकरणों का उपयोग करके एकल चरण इन्वर्टर का विश्लेषण।

उद्देश्य: सिंगल फेज सीरीज इन्वर्टर के संचालन का अध्ययन करना और DC इनपुट से वेरिएबल AC प्राप्त करना।

उपकरण की आवश्यकता:

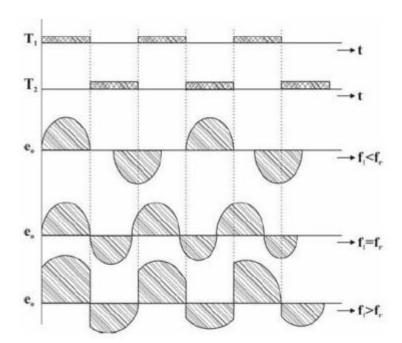

क्र. स.	घटक	श्रेणी
1	सिंगल फेज सीरीज इन्वर्टर मॉड्यूल	
2	जांच के साथ सीआरओ	20 MHz
3	प्रतिरोधक भार	500Ω, 1ΚΩ
4	आगमनात्मक भार	100 mH
5	आरपीएस, डुअल चैनल	0-30 V
6	बदलना	230/0-30 V
7	मल्टी मीटर	
8	ऐमीटर	(0-1 A, MC)

परिकल्पना:

यह परिपथ जो DC शक्ति को AC शक्ति में परिवर्तित करता है, इन्वर्टर कहलाता है। यदि थाइरिस्टर्स

इन्वर्टर का कम्यूटेशन सर्किट लोड के साथ श्रृंखला में होता है, तो इन्वर्टर को श्रृंखला इन्वर्टर कहा जाता है। इस सर्किट में, थाइरिस्टर T1 को चालू करना संभव है, इससे पहले कि थाइरिस्टर T2 के माध्यम से धारा शून्य हो जाए और इसके विपरीत। इसके अलावा, नीचे दिए गए चित्र में दिए गए संशोधित श्रृंखला इन्वर्टर को सर्किट की अनुनाद आवृत्ति (एफआर) से परे संचालित किया जा सकता है। इन्वर्टर की अनुनाद आवृत्ति सर्किट में L, R और C के मूल्यों पर निर्भर करती है।

परिपथ आरेख:


प्रक्रिया:

- 1. फायरिंग सर्किट पर बिजली की आपूर्ति पर स्विच करें, जांचें कि आवृत्ति को बदलकर दालों को ट्रिगर करें।
- 2. कनेक्शन सर्किट आरेख में दिखाए गए अनुसार बनाए जाते हैं।
- 3. अब ट्रिगर आउटपुट को फायरिंग सर्किट से $SCRs\ T1$ और T2 के गेट और कैथोड से कनेक्ट करें।
- 4. डीसी इनपुट को 30v/2A विनियमित बिजली आपूर्ति से कनेक्ट करें और इनपुट डीसी आपूर्ति पर स्विच करें।
- 5. अब एससीआर पर ट्रिगर दालों को लागू करें और लोड में वोल्टेज तरंग का निरीक्षण करें।
- 6. आउटपुट वोल्टेज तरंग की Vrms और आवृत्ति को मापें।

सारणीबद्ध रूप:

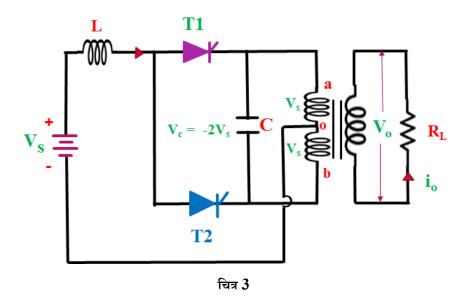
क्र.सं.	आयाम (Volt)	Ton (ms)	T _{off} (ms)

मॉडल ग्राफ:

9 | Page मै नि ट भो पा ल

समानांतर इन्वर्टर का प्रदर्शन मूल्यांकन

उद्देश्य: R एंड RL लोड के साथ एकल-चरण समानांतर इन्वर्टर के एसी आउटपुट वोल्टेज तरंग का अध्ययन और प्राप्त करने के लिए।

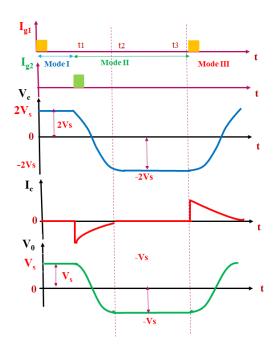

उपकरण की आवश्यकता:

क्र.स.	घटक	श्रेणी
1	एकल चरण समानांतर इन्वर्टर मॉड्यूल	
2	जांच के साथ सीआरओ	20 MHz
3	प्रतिरोधक भार	500Ω, 1ΚΩ
5	आरपीएस, डुअल चैनल	0-30 V
6	बदलना	230/0-30 V
7	मल्टी मीटर	
8	ऐमीटर	(0-1 A, MC)

परिकल्पना:

पावर इलेक्ट्रॉनिक कनवर्टर जो वांछित आउटपुट वोल्टेज और आवृत्ति पर DC पावर को AC पावर में परिवर्तित करता है, इन्वर्टर कहलाता है। जब T1 चालू होता है, तो संधारित्र को आपूर्ति वोल्टेज के दोगुने तक चार्ज िकया जाता है जैसा िक चित्र में दिखाया गया है। जब T2 चालू होता है तो संधारित्र निर्वहन शुरू होता है, T2 में रिवर्स वोल्टेज लागू करता है और T2 को बंद कर देता है। और यह संधारित्र को ध्रुवीयता को उलटने और आपूर्ति वोल्टेज को दोगुना करने के लिए चार्ज करता है। इस वोल्टेज का उपयोग T1 को बंद करने के लिए िकया जाता है जब T2 को निकाल दिया जाता है।

परिपथ आरेख:


प्रक्रिया:

- 1. DC इनपुट टर्मिनलों पर DC आपूर्ति कनेक्ट करें और चालू करें।
- 2. ट्रिगर सर्किट अब ट्रिगर दालों प्रदान करके।
- 3. विभिन्न तरंगों का प्रेक्षण कीजिए तथा आरेखित कीजिए।
- 4. आरएल लोड के साथ एक ही प्रक्रिया दोहराएं।

सारणीबद्ध रूप:

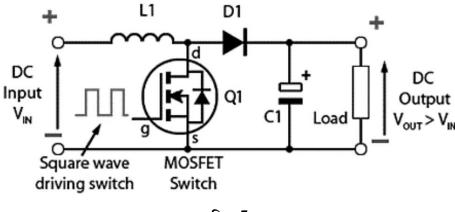
क्र.सं.	आयाम (Volt)	T _{on} (ms)	T _{off} (ms)

मॉडल ग्राफ:

12 | Page मै निट भो पा ल

स्टेप-अप चॉपर सर्किट के संचालन का अध्ययन करने के लिए

उद्देश्य: MOSFET आधारित बूस्ट कन्वर्टर या स्टेप अप चॉपर की लाभ विशेषताओं को प्राप्त करने के लिए।


उपकरण की आवश्यकता:

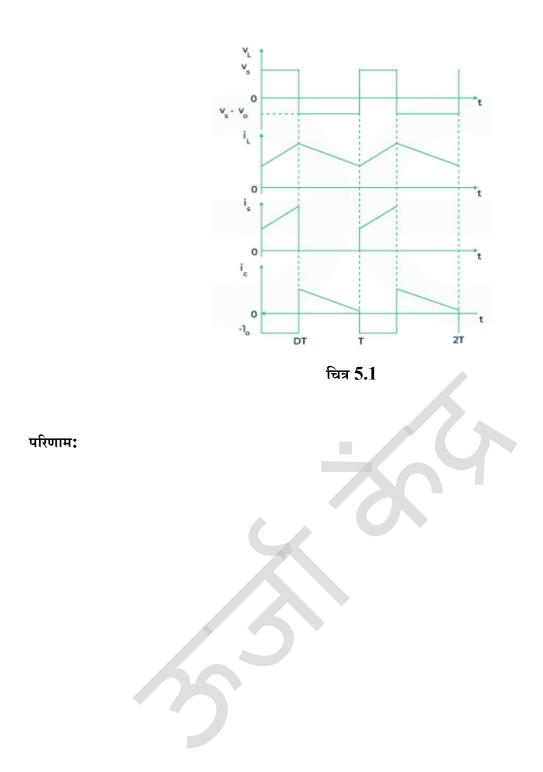
क्र. स.	घटक	श्रेणी
1.	MOSFET आधारित स्टेप-अप चॉपर	
	सर्किट मॉड्यूल	
2.	जांच के साथ सीआरओ	20 मेगाहर्ट्ज
3.	पैच कार्ड	आवश्यकता अनुसार

परिकल्पना:

चॉपर एक उच्च-गित वाला ऑन/ऑफ सेमीकंडक्टर स्विच है। यह स्रोत को लोड से जोड़ता है और तेज गित से स्रोत से लोड को डिस्कनेक्ट करता है। स्टेप-अप चॉपर या बूस्ट कनवर्टर का उपयोग इसके आउटपुट साइड पर इनपुट वोल्टेज स्तर को बढ़ाने के लिए किया जाता है। बूस्ट कनवर्टर में आउटपुट वोल्टेज हमेशा इनपुट वोल्टेज से अधिक होता है और समान ध्रुवता का होता है। बूस्ट पावर स्टेज के लिए इनपुट धारा निरंतर या अस्पंदित होती है क्योंकि इनपुट धारा इंडक्टर धारा के समान होती है। बूस्ट पावर स्टेज के लिए आउटपुट धारा असंतत या स्पंदित होती है क्योंकि आउटपुट डायोड केवल स्विचिंग चक्र के एक भाग के दौरान संचालित होता है। आउटपुट संधारित्र शेष स्विचिंग चक्र के लिए संपूर्ण लोड धारा की आपूर्ति करता है।

परिपथ आरेख:

चित्र 5


प्रक्रिया:

- 1. सर्किट आरेख के अनुसार सर्किट कनेक्ट करें।
- $2.\ 0 \leq t \leq T_{on}$ के दौरान बूस्ट कनवर्टर के मामले में, PE स्विच बंद है और o/p वोल्टेज शून्य है लेकिन अंतराल के दौरान टन $\leq t \leq T$ है, स्विच खोला जाता है और o/p वोल्टेज प्राप्त होता है।
- 3. वोल्टेज और करंट के विभिन्न मूल्यों को प्राप्त करने के लिए पावर सेमीकंडक्टर डिवाइस के कर्तव्य चक्र को बदलें।
- 4. CRO पर भार वोल्टेज का प्रेक्षण कीजिए तथा प्रयोर्द्धन कोण को नोट कीजिए।
- 5. ग्राफ प्लॉट करें।

सारणीबद्ध रूप:

क्र.सं.	कर्तव्य चक्र (≪)	आउटपुट वोल्टेज (Vo)	समय अवधि (ms)
1.			
2.			
3.			

मॉडल ग्राफ:

\mathbf{MATLAB} में \mathbf{LC} फिल्टर के साथ \mathbf{DC} कनवर्टर के लिए एकल चरण \mathbf{AC} का सिमुलेशन।

उद्देश्यः MATLAB/Simulink का उपयोग करके LC फ़िल्टर के साथ सिंगल फेज AC से DC कनवर्टर के सिमुलेशन का अध्ययन करना।

उपकरण की आवश्यकता:

क्र. स.	घटक	प्रकार
1	कंप्यूटर	
2	MATLAB	सॉफ़्टवेयर

परिकल्पना:

एकल-फेज AC-DC कनवर्टर, जिसे रेक्टिफायर के रूप में भी जाना जाता है, एक ऐसा उपकरण है जो प्रत्यावर्ती धारा (AC) को प्रत्यक्ष धारा (DC) में परिवर्तित करता है। एक सामान्य प्रकार का रेक्टिफायर पूर्ण-पुल दिष्टकारी है, जो AC इनपुट को सुधारने के लिए ब्रिज विन्यास में व्यवस्थित चार डायोड का उपयोग करता है। जब इसे एक LC (प्रारंभिक-संधारित्र) फिल्टर के साथ जोड़ा जाता है, तो आउटपुट को लगभग निरंतर DC वोल्टेज का उत्पादन करने के लिए चिकना किया जाता है।

प्रक्रिया:

- 1. MATLAB प्रारंभ करें और कमांड विंडो में simulink टाइप करके Simulink खोलें। कोई नया मॉडल बनाएँ.
- 2. Simulink लाइब्रेरी से घटक जोड़ें: एसी वोल्टेज स्रोत, यूनिवर्सल ब्रिज (डायोड ब्रिज के रूप में कॉन्फ़िगर किया गया), सीरीज आरएलसी शाखा (प्रारंभ करनेवाला के लिए), समानांतर आरएलसी शाखा (संधारित्र के लिए), और एक रोकनेवाला (लोड के लिए)।
- 3. सर्किट बनाने के लिए घटकों को व्यवस्थित और कनेक्ट करें: एसी स्रोत को यूनिवर्सल ब्रिज से कनेक्ट करें, इसके बाद श्रृंखला में प्रारंभ करनेवाला और लोड रोकनेवाला के समानांतर संधारित्र से कनेक्ट करें।
- 4. एसी स्रोत वोल्टेज और आवृत्ति, प्रारंभ करनेवाला का अधिष्ठापन, संधारित्र की धारिता और लोड रोकनेवाला मूल्य के लिए मान सेट करें।
- सर्किट में उपयुक्त बिंदुओं पर वोल्टेज और वर्तमान माप ब्लॉक डालें और आउटपुट तरंगों का निरीक्षण करने के लिए उन्हें एक स्कोप से कनेक्ट करें।
- 6. सिमुलेशन समय सेट करें, और फिर एसी से डीसी रूपांतरण और आउटपुट वॉल्यूम वॉल्यूम पर एलसी फिल्टर के प्रभाव का विश्लेषण करने के लिए सिमुलेशन चलाएंtage.
- 7. स्कोप पर सुधारित और फ़िल्टर किए गए आउटपुट का निरीक्षण करें, एलसी फिल्टर के कारण लहर में कमी को ध्यान में रखते हुए।

16 | Page मै निट भो पा ल

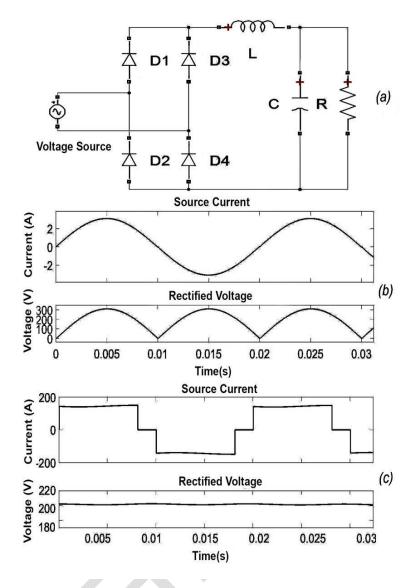


Fig.6 सर्किट आरेख और तरंगों

MATLAB में PWM नियंत्रण तकनीक के साथ एकल चरण इन्वर्टर का सिमुलेशन।

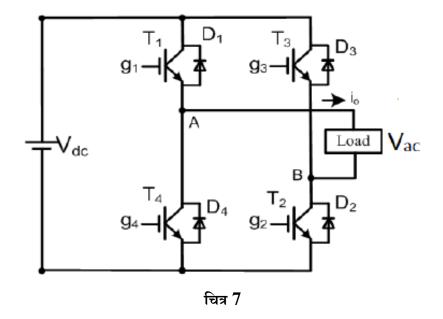
उद्देश्यः MATLAB/Simulink सॉफ्टवेयर में PWM नियंत्रण तकनीक के साथ सिंगल फेज इन्वर्टर के सिमुलेशन का अध्ययन करना।

उपकरण की आवश्यकता:

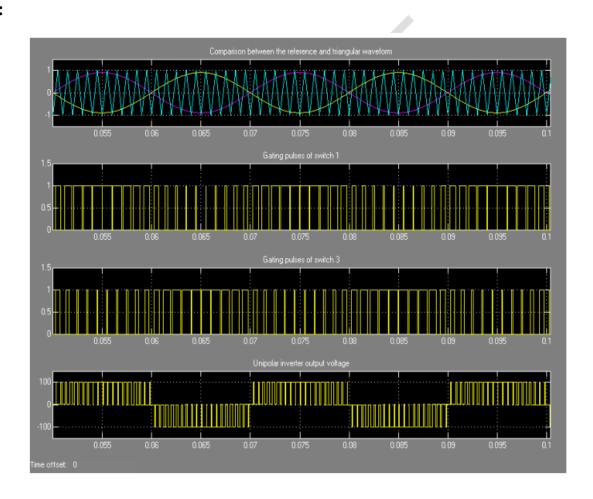
18 | Page

क्र. स.	घटक	प्रकार
1	कंप्यूटर	

2	MATLAB	सॉफ़्टवेयर


परिकल्पना:

पल्स चौड़ाई मॉड्यूलेशन (PWM) नियंत्रण तकनीक से युक्त एकल-चरण इन्वर्टर अर्धचालक उपकरणों (जैसे ट्रांजिस्टर) को एक विशिष्ट पैटर्न में स्विच करके दिष्ट धारा (DC) विद्युत को प्रत्यावर्ती धारा (AC) विद्युत में परिवर्तित करता है। PWM तकनीक में इन्वर्टर के निर्गत में दालों की चौड़ाई को परिवर्तित करके प्रभावी निर्गत वोल्टेज और आवृत्ति को नियंत्रित करना सम्मिलित है। एक उच्च आवृत्ति त्रिकोणीय वाहक संकेत की तुलना में एक ज्यावक्रीय संदर्भ संकेत द्वारा PWM इन्वर्टर स्विच के लिए गेट सिग्नल उत्पन्न करता है। यह विधि निर्गत तरंग पर सटीक नियंत्रण प्रदान करती है, दक्षता में सुधार करती है और हार्मोनिक विकृति को कम करती है, जिससे यह मोटर चालन और नवीकरणीय ऊर्जा प्रणालियों जैसे अनुप्रयोगों के लिए उपयुक्त बन जाता है।


प्रक्रिया:

- 1. MATLAB प्रारंभ करें और कमांड विंडो में simulink टाइप करके Simulink खोलें। कोई नया मॉडल बनाएँ.
- 2. Simulink लाइब्रेरी ब्राउझरबान, DC भोल्युमtage स्रोत, H-Bridge इन्भर्टर ब्लक, PWM जेनरेटर (DC-AC), र प्रतिरोधक लोड थप्नुहोस्।
- 3. वांछित PWM सिग्नल उत्पन्न करने के लिए PWM जेनरेटर पैरामीटर सेट करें, जैसे वाहक आवृत्ति और मॉड्यूलेशन इंडेक्स।
- 4. DC वोल्टेज को कनेक्ट करें स्रोत एच-ब्रिज के इनपुट से, पीडब्लूएम जेनरेटर एच-ब्रिज गेट इनपुट से आउटपुट करता है, और प्रतिरोधक भार एच-ब्रिज आउटपुट से जोड़ता है।
- 5. वोल्टेज और वर्तमान माप ब्लॉक डालें और आउटपुट तरंग की निगरानी के लिए उन्हें स्कोप से कनेक्ट करें।
- 6. DC स्रोत, लोड और PWM जनरेटर के लिए पैरामीटर कॉन्फ़िगर करें, सिमुलेशन समय निर्धारित करें, और सिमुलेशन चलाएँ।
- 7. इन्वर्टर के प्रदर्शन का विश्लेषण करने के लिए स्कोप पर PWM-नियंत्रित AC आउटपुट तरंग का निरीक्षण करें।

परिपथ आरेख:

तरंग:

आकृति 7.1

परिणाम:

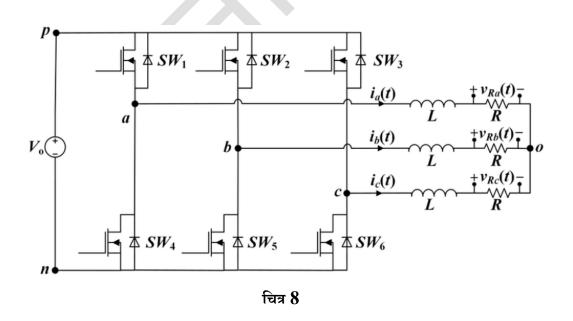
MATLAB में PWM नियंत्रण तकनीक के साथ तीन चरण पुल इन्वर्टर का सिमुलेशन।

उद्देश्य: MATLAB में PWM नियंत्रण तकनीक के साथ तीन चरण पुल इन्वर्टर के सिमुलेशन का अध्ययन करने के लिए।

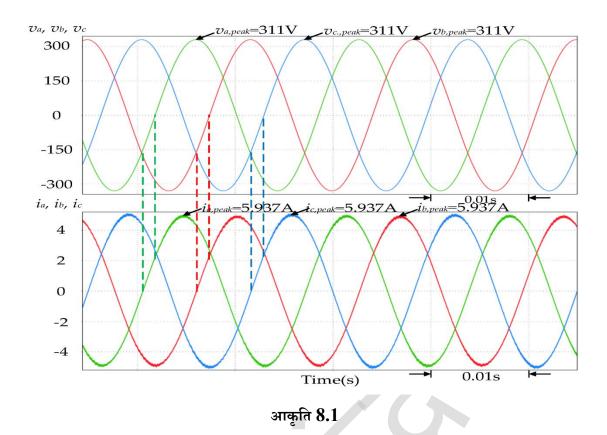
उपकरण की आवश्यकता:

क्र. स.	घटक	प्रकार
1	कंप्यूटर	
2	MATLAB/SIMULINK	सॉफ़्टवेयर

परिकल्पना:


पीडब्लूएम (पल्स चौड़ाई मॉड्यूलेशन) नियंत्रण तकनीक के साथ तीन-चरण ब्रिज इन्वर्टर का उपयोग डीसी शक्ति को नियंत्रित आयाम और आवृत्ति वाली तीन-चरण एसी शक्ति में परिवर्तित करने के लिए किया जाता है। इस विन्यास में, छह अर्धचालक स्विच (आमतौर पर IGBT या MOSFET) एक ब्रिज टोपोलॉजी में तीन जोड़े बनाते हैं, प्रत्येक एसी आउटपुट के एक चरण के अनुरूप। PWM नियंत्रण तकनीक में एक संदर्भ ज्यावक्रीय तरंग और एक उच्च आवृत्ति त्रिकोणीय वाहक तरंग के आधार पर स्विचिंग दालों की चौड़ाई को संशोधित करना शामिल है। यह मॉड्यूलेशन प्रभावी वोल्टेज को नियंत्रित करता है और आउटपुट तरंग में हार्मोनिक विकृति को कम करता है, जिससे इन्वर्टर

आउटपुट पर सटीक नियंत्रण संभव होता है। इस तरह के इन्वर्टर का व्यापक रूप से मोटर ड्राइव, नवीकरणीय ऊर्जा प्रणालियों और ग्रिड-बंधे इन्वर्टर जैसे अनुप्रयोगों में उपयोग किया जाता है।


प्रक्रिया:

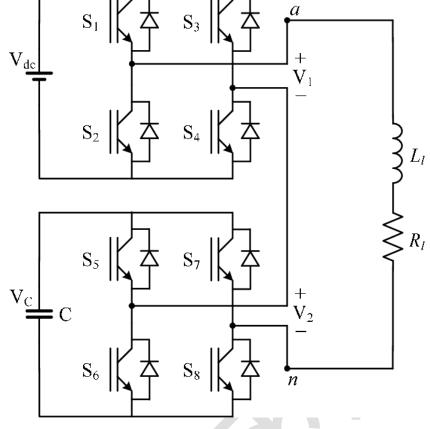
- 1. MATLAB प्रारंभ करें और कमांड विंडो में simulink लिखकर Simulink खोलें। एक नया मॉडल बनाएँ।
- 2. Simulink लाइब्रेरी ब्राउज़र से, एक डीसी वोल्टेज स्रोत, एक तीन-चरण इन्वर्टर ब्लॉक और एक PWM जनरेटर (तीन-चरण) जोड़ें।
- 3. वांछित PWM सिग्नल तीन चरणों उत्पन्न करने हेतु के लिए PWM जनरेटर के प्राचल (पैरामीटर) सेट करें, जैसे वाहक आवृत्ति और मॉड्यूलेशन सूचकांक।
- 4. DC वोल्टेज स्रोत को तीन-चरण इन्वर्टर के निवेश से, PWM जनरेटर के निर्गत को इन्वर्टर स्विच के गेट निवेश से, और इन्वर्टर के निर्गत को तीन-चरण भार से जोड़ें।
- 5. डीसी स्रोत, भार और PWM जनरेटर के प्राचलों को कॉन्फ़िगर करें, सिमुलेशन समय निर्धारित करें और तीन-चरण AC निर्गत का विश्लेषण करने के लिए स्कोप पर सिमुलेशन चलाएँ।

परिपथ आरेख:

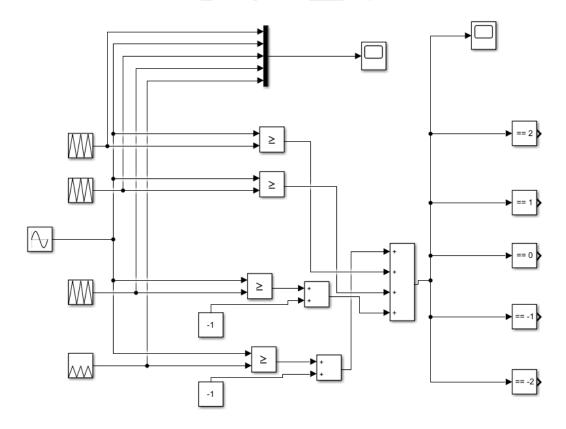
तरंग:

23 | Page मै नि ट भो पा ल

\mathbf{MATLAB} में एकल चरण $\mathbf{5}$ स्तर बहुस्तरीय इन्वर्टर का सिमुलेशन।


उद्देश्य: MATLAB में SPWM तकनीक का उपयोग करके पाँच-स्तरीय कैस्केड H-ब्रिज बहुस्तरीय इन्वर्टर का अनुकरण करना।

उपकरण की आवश्यकता:


क्र. स.	घटक		श्रेणी
1	कंप्यूटर		
2	MATLAB		20 मेगाहर्ट्ज
		70	

प्रक्रिया:

- $1. \ MATLAB$ में IGBT/MOSFET के उपयोग से कैस्केड H-ब्रिज बहुस्तरीय इन्वर्टर को डिज़ाइन करें।
- 2. उपयोग किए गए शक्ति उपकरणों को गेटिंग सिग्नल प्रदान करने के लिए चरण-व्युत्क्रमित PWM तकनीक को डिज़ाइन करें।
- 4. विभिन्न भारों के लिए, आउटपुट वोल्टेज, आउटपुट धारा और कुल हार्मोनिक विकृति (THD) की जांच करें।

चित्र 9.1. पांच स्तर के कैस्केड H-ब्रिज बहुस्तरीय इन्वर्टर का परिपथ आरेख।

चित्र 9.2. साइनसोइडल पल्स चौड़ाई मॉड्यूलेशन तकनीक (एसपीडब्ल्यूएम) का सर्किट आरेख।

26 | Page मै निट भो पा ल

MATLAB में सिंगल फेज DC से DC बक-बूस्ट कन्वर्टर का सिमुलेशन।

उद्देश्य: MATLAB में सिंगल फेज DC से DC बक-बूस्ट कन्वर्टर का सिमुलेशन।

बक कनवर्टर

ड्यूटी अनुपात d=0.5 और स्विचिंग आवृत्ति $f=2.5~\mathrm{kHz}$ के लिए आउटपुट वोल्टेज का निरीक्षण करना है। इसके अलावा, MOSFET, डायोड, प्रारंभिक् और संधारित्र पर वोल्टेज तरंगों का निरीक्षण करना है।

D=0.5 के साथ 1 kHz और 2 kHz स्विचिंग आवृत्तियों के लिए बक कनवर्टर की दक्षता ज्ञात करना है।

ब्स्ट कन्वर्टर

- 1. ड्यूटी अनुपात d=0.5 और स्विचिंग आवृत्ति $f=2.5~\mathrm{kHz}$ के लिए आउटपुट वोल्टेज का निरीक्षण कीजिए। इसके अलावा, MOSFET, डायोड, प्रारंभिक् और संधारित्र पर वोल्टेज तरंगों का निरीक्षण कीजिए।
- 2.~~D=0.5 के साथ 1~kHz और 2~kHz स्विचिंग आवृत्तियों के लिए बक कनवर्टर की दक्षता ज्ञात कीजिए।

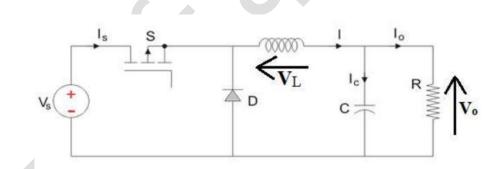


Fig. 1: Buck Converter Circuit Diagram

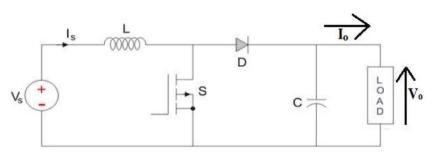


Fig. 2: Boost Converter Circuit Diagram

परिकल्पना:

DC कन्वर्टर्स को चॉपर भी कहा जाता है। एक चॉपर मूल रूप से एक डीसी से डीसी कनवर्टर है जिसका मुख्य कार्य अर्धचालकों के उपयोग से निश्चित DC वोल्टेज स्रोतों से समायोज्य डीसी वोल्टेज बनाना है।

बक कनवर्टर: चित्र 1 (स्टेप-डाउन कनवर्टर) में दिखाए अनुसार एक बक कनवर्टर एक DC-टू-DC पावर कनवर्टर है जो अपने इनपुट (आपूर्ति) से अपने आउटपुट (लोड) तक वोल्टेज (धारा बढ़ाते हुए) को कम करता है। यह स्विच-मोड बिजली आपूर्ति (एसएमपीएस) का एक प्रकार है जिसमें कम से कम दो अर्धचालक (एक डायोड और एक ट्रांजिस्टर) होते हैं। इनपुट वोल्टेज स्रोत एक नियंत्रणीय ठोस अवस्था युक्ति से जुड़ा होता है जो स्विच के रूप में कार्य करता है। यह ठोस अवस्था युक्ति पावर MOSFET या IGBT हो सकती है।

थाइरिस्टर्स का उपयोग आमतौर पर DC-DC कन्वर्टर्स में नहीं किया जाता क्योंकि DC-DC सिकेट में थाइरिस्टर को बंद करने के लिए एक अतिरिक्त कम्यूटेशन सिकेट की आवश्यकता होती है, जिसमें दूसरे थाइरिस्टर का उपयोग शामिल होता है, जबिक एक पावर MOSFET को केवल उसके गेट और सोर्स टर्मिनलों के बीच वोल्टेज शून्य होने से बंद किया जा सकता है। उपयोग किया जाने वाला दूसरा स्विच एक डायोड है। स्विच और डायोड एक निम्न-पारित LC फिल्टर से जुड़े होते हैं, जिसे उचित रूप से धारा और वोल्टेज तरंगों को कम करने के लिए डिज़ाइन किया गया है। भार एक शुद्ध प्रतिरोधक भार है।

बूस्ट कन्वर्टर: एक बूस्ट कन्वर्टर (स्टेप-अप कन्वर्टर) एक DC-टू-DC पावर कन्वर्टर है जो अपने इनपुट (सप्लाई) वोल्टेज को अपने आउटपुट (लोड) वोल्टेज से बढ़ाता है (धारा को कम रखते हुए)। यह स्विच-मोड बिजली आपूर्ति (एसएमपीएस) का एक वर्ग है जिसमें कम से कम दो अर्धचालक (एक डायोड और एक ट्रांजिस्टर) और कम से कम एक ऊर्जा भंडारण तत्व होता है। इनपुट वोल्टेज स्रोत एक प्रारंभिक से जुड़ा होता है। एक सॉलिड-स्टेट डिवाइस, जो एक स्विच के रूप में संचालित होता है, स्रोत के साथ श्रेणीक्रम में जुड़ा होता है। दूसरा उपयोग किया जाने वाला स्विच एक डायोड है। डायोड एक संधारित्र से जुड़ा है, और लोड दोनों समानांतर में जुड़े हैं, जैसा कि चित्र 2 में दिखाया गया है। इनपुट स्रोत से जुड़ा प्रारंभिक एक लगभग निरंतर इनपुट धारा की ओर ले जाता है, और इस प्रकार बूस्ट कन्वर्टर को लगभग निरंतर धारा इनपुट स्रोत के रूप में देखा जाता है। लोड को लगभग निरंतर वोल्टेज स्रोत के रूप में देखा जा सकता है।

स्विच ऑपरेशन:

बक और बूस्ट कन्वर्टर्स दोनों में नियंत्रित स्विच, पल्स चौड़ाई मॉड्यूलेशन (PWM) का उपयोग करके चालू और बंद किए जाते हैं। PWM समय-आधारित या आवृत्ति-आधारित हो सकता है। आवृत्ति-आधारित मॉड्यूलेशन में, वांछित नियंत्रण प्राप्त करने के लिए आवृत्तियों की विस्तृत श्रृंखला की आवश्यकता होती है, जिससे वांछित आउटपुट वोल्टेज प्राप्त होता है। यह कम-पास LC फिल्टर के लिए जटिल डिजाइन की ओर ले जाता है, जिसे आवृत्तियों की विस्तृत श्रृंखला को संभालने में सक्षम होना चाहिए। समय-आधारित मॉड्यूलेशन अधिकांश डीसी-डीसी कन्वर्टर्स में उपयोग किया जाता है। यह निर्माण और उपयोग में आसान है। इस प्रकार के PWM मॉड्यूलेशन में आवृत्ति स्थिर रहती है।

कर्तव्य चक्र (डी) =
$$T_{on}/(T_{on} + T_{off})$$

प्रक्रिया:

MATLAB में बक और बूस्ट कन्वर्टर डिज़ाइन करें।

- 2. बक और बूस्ट कन्वर्टर का अनुकरण करें और बिना किसी त्रुटि के परिणाम प्राप्त करें।
- 3. ड्यूटी अनुपात 0.5 पर, स्विचिंग आवृत्ति $2500~{
 m Hz}$ पर सेट करें और बक तथा बूस्ट कन्वर्टर के आउटपुट वोल्टेज की जाँच करें।

29 | Page मै नि ट भो पा ल